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countries of the World, where the pandemic has caused more
casualties despite their advanced healthcare systems. Mathe-
matical epidemiology based on compartmental modelling can
be used to define the scale of an epidemic and the rate at
which an infection can spread in a community. It can therefore
provide useful insights into how the Covid-19 epidemic can
be mitigated. It can also be used to simulate the predictive
measures suggested by the WHO and their impact on flattening
the infectious curve of the virus; in order to avoid surges that
can overwhelm healthcare systems.

Studies on mathematical epidemiology started in the early
20’s with the work of Kermack and McKendrick pioneering
a contribution to the Mathematical Theory of Epidemics [1].
Further research works were conducted to present different
aspects of mathematical epidemiology by looking at differ-
ent theoretical and application aspects of the field. These
include [2] that focused on the analysis of equilibrium in
malaria, [3] wherein mathematical models for the spread of
infectious diseases were presented and [4] which focused
on the definition and computation of the basic reproduction
number. Further work on mathematical epidemiology emerged
later with focus on both theoretical and simulation aspects of
epidemics. In [5], a basic introduction to disease modelling is
presented with primarily focus on common issues encountered
when structuring and analysing SIR models. The work in [6]
addressed the interaction of ecological processes, with the
objective of modelling these interactions in order to understand
the dynamics of infectious agents in communities consisting of
interacting host and non-host species. The basic reproduction
number is one of the conceptual cornerstones of mathemat-
ical epidemiology. It is classically defined as the number of
secondary cases generated by a typical infected individual in
a fully susceptible population. The basic reproduction was
introduced in [7] with an historic reminder describing the
steps leading to the statement of its mathematical definition.
An explanation of how it can be calculated using the next-
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I. INTRODUCTION

The Corona Virus 2019 (Covid-19) which started in Wuhan,
China, has recently been declared by the World Health Or-
ganisation (WHO) as a global pandemic, after hitting many
countries around the world. The number of infections and
death cases have continued to rise globally. As of May 2020,
South Africa had the highest caseload in Africa; with Cape
Town in the Western Cape province of South Africa, being
the epicentre of the pandemic. Figure 1 shows the distribution
of confirmed c ases i n t he W estern C ape, S outh A frica. It
is widely recognised that pre-empting the pandemic is very
crucial. This is particularly true for Africa, considering its
poorer healthcare system compared to the more developed
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generation matrix method in the case of epidemic models
described by Ordinary Differential Equations (ODEs) was
also given. The work presented in [8] studied two multiplex
contact networks representative of a subset of the Italian and
Dutch populations from highly detailed socio-demographic
data. The authors used these networks to simulate the infection
transmission process of the influenza virus, calibrated on
empirical epidemiological data whilst taking its natural history
into account. The work revealed that the classical concept of
the basic reproduction number is untenable in realistic popu-
lations, and does not provide any conceptual understanding of
the epidemic evolution. In [9], the authors proposed a Bats-
Hosts-Reservoir-People (BHRP) transmission network model
to study the Covid-19 from infection sources (probably bats)
to humans. The study also considered a simplified Reservoir-
People (RP) transmission network model and used the next
generation matrix approach to calculate the basic reproduction
number R0 from the RP model to assess the transmissibility
of the SARS-CoV-2.

This paper proposes predictive models that build around:
i) the SIR model to mimic the main Covid-19 protective
measures and ii) machine learning models to predict the
evolution of the pandemic with time. Building upon traffic data
scrapped from the TomTom system, the proposed SIR model
is implemented and simulated as a predictive analytic tool to
support the efforts of government in fighting the pandemic.
Simulation results reveal the accuracy of the predictive model
and the relevance of using such model to provide awareness
on network effects and measures that can be taken to mitigate
the impact of the pandemic. Furthermore, regression based
machine learning models are applied to real Covid data
collected from Cape Town; to predict the evolution of the
pandemic based on confirmed cases, deaths and recoveries.
The models reveal a good performance in the prediction over
the period of time considered.

The rest of this paper is organised as follows: following
this introductory section is a concise overview of the Corona
Virus 2019 in terms of its evolution and public health response
in section II. Section III presents the epidemic model while
its performance evaluation through simulation modelling is
presented in section IV, while the prediction models are
discussed in section V. Conclusions and future directions are
given in section VI.

II. CORONA VIRUS 2019 CONTEXT

Covid-19 or SARS-CoV-2 is a strain of Coronovirus and
part of a large family of viruses that cause respiratory illness
in humans. Symptoms of Covid-19 are as depicted in Figure 2
and reports have shown the elderly are more susceptible to the
virus. As at the time of writing, no known cure or vaccine for
the Covid-19 exists. In light of this, different strategies have
been adopted by the WHO as public health response to the
pandemic. These include:

1) Interrupt human-to-human transmission including
reducing secondary infections among close contacts and

Fig. 1. Covid-19 Confirmed Cases as of 9th May 2020.

Fig. 2. Covid-19 Symptoms.

healthcare workers, preventing transmission amplifica-
tion events, and preventing further international spread;

2) Identify, isolate and care for patients early, including
providing optimised care for infected patients;

3) Identify and reduce transmission from animal sources;
4) Address crucial unknowns regarding clinical severity,

extent of transmission and infection, treatment options,
and accelerate the development of diagnostics, therapeu-
tics and vaccines;

5) Communicate critical risk and event information to
all communities and counter misinformation;

6) Minimise social and economic impact through multi-
sectoral partnerships.

Note that the interruption of human-to-human transmission
can be achieved through a combination of public health mea-
sures such as: rapid identification, diagnosis and management
of the cases, identification and follow up of contacts, infection
prevention and control in health care settings, implementation
of health measures for travellers, awareness-raising in the
population and risk communication.

III. COVID-19 EPIDEMIC MODELLING

In modelling the Covid-19 epidemic, we introduce three
state categories for individuals in any given population namely:
Susceptible (S), Infected (I) and Recovered (R). Figure 3
presents a finite state machine of our epidemic model for a
system partitioned into m population groups or locations. It
reveals the states of individuals and for each state its associated
transitions, as well as the actions that trigger transitions from
one state to another.



Fig. 3. State Diagram of the Epidemic Model.

We assume that susceptible individuals Sı in a population
group or location may be infected at the rate ai, while the
infected individuals Iı move to the Recovered state Rı at
a rate bi. While recovered individuals might move back to
the Susceptible state at a rate of ci, this case has not been
considered in this work. Susceptible individuals might also
move from a location ı to another location  with rate aij .
Movement across population groups (locations) is synonymous
to people moving across provinces. The differential equation
(equation 1) is a result of these assumptions.

Sı(t+ 1) = Sı(t)− aı(t)Sı(t)− aj,ıSi(t)
Iı(t+ 1) = Iı(t) + aıSı(t)− bı(t)Iı(t) + aj,ıSj(t)

Rı(t+ 1) = Rı(t) + bı(t)Iı(t)

Nı(t) = Sı(t) + Iı(t) + Rı(t)

(1)

Where Sı(t), Iı(t) and Rı(t) are functions of time t for each
location ı and Nı denotes the size of the population at location
ı. The negative rates in the model represents a decrease,
while the positive ones represent an increase in population.
The parameter aı stands for the transmission rate between
the susceptible and infected population while the parameter
bı represents the recovery rate from infection. The parameter
aı depends on the number of susceptible individuals Sı and
infected individuals Iı as well as the actions taken to contain
the pandemic in terms of social distancing. It therefore makes
sense to relate aı with three other measures:

1) The random transmission rate of each individual at a
location ı at time t, denoted by βı(t).

2) The fraction of infected population in location ı at time
t, denoted by xı(t) = Iı

Nı(t)
.

3) A Human-to-Human transmission parameter ρ expressed
by α for lockdown or δ for social distancing. ρ = 1
depicts a base case scenario, ρ = 0 depicts total
lockdown (or quarantine), while 0 < ρ < 1 depicts in-
between both ends.

Therefore, ai can be computed using the following formula:

aı(t) = αβı(t)xı(t) (2)

It is important to note the following:
1) The third term aj,ıSı(t) of the first expression in (1) is

the same as the fourth term in the second expression.

It is used to express the shared infection between loca-
tions represented by the fraction of infected people that
have arrived from other location j into the location ı,
weighted by their respective transmission rates βj(t). It
is expressed by

aj,ıSj(t) = αSj(t)

∑
j 6=i

wı,j(t)xj(t)βj(t)

Nı +
∑
j 6=i

wı,j(t)

.
where α is a lockdown effect parameter representing
the intensity of traffic in a location, which can be used
to reveal the impact of the lockdown on the model.
wı,j(t) is the mobility from location j to location i,
while xj(t) =

Ij(t)
Nj

is fraction of infected population at
location j at time t.

2) The shared infection expression above can be expressed
by aj,ıSj(t) = ααj,ıSj(t) where

αj,ı(t) =

∑
j 6=i

wı,j(t)xj(t)βj(t)

Nı +
∑
j 6=i

wı,j(t)

.
3) Given that the total population is constant as expressed

by the fourth equation in (1), the portion of shared infec-
tion (infected group from other locations) is subtracted
from the population of susceptible individuals, that are
to be added to the infected group in the first equation.
It is also added to the population of infected individuals
that move to the recovered state in the second equation.

4) The parameter bı(t), which in our model represents the
recovery rate, can be considered as time-independent
as expressed by bı(t) = γ or time-dependent when
expressed as a function of time by bı(t) = γ(t).

The pandemic prediction problem consists of finding for
each location ı, the evolution of the function set over time
Lı(t) = {Sı(t), Iı(t), Rı(t)}; while taking into account the
transformation above and the difference equations in (1). It is
defined as follows:

Find Lı(t) = [Sı(t), Iı(t), Rı(t)]
subject to (3)


Sı(t+ 1) = Sı(t)− δβı(t)xı(t)Sı(t)− ααj,ı(t)Sj(t) (3.1)
Iı(t+ 1) = Iı(t) + δβı(t)xı(t)Sı(t)− γIı(t) + ααj,ı(t)Sj(t) (3.2)
Rı(t+ 1) = Rı(t) + γIı(t) (3.3)
Nı(t) = Sı(t) + Iı(t) + Rı(t) (3.4)
R0 = β

γ (3.5)

Note that equations (3.1), (3.2) and (3.3) form a system
of Ordinary Differential Equations (ODEs) expressing the
dynamics of the compartmental epidemic model by showing
how the disease is disseminated from one compartment to
another. On the other hand, equation (3.4) is a constraint that
reveal that the population remains constant throughout, which
is an indication of the absence of birth or immigration, death
or emigration. In our model the equation (3.5) has been used
to reveal how the basic reproduction number R0, a parameter
that defines how quickly the disease spreads, is related to the



other parameters of the model. R0 is a parameter that plays a
crucial role in determining the fate of an outbreak. If its value
is greater than the ratio of total population to the susceptible
cases at time zero (R0 >

N(0)
S(0) ), then it is assumed that the

outbreak will turn into a full-fledged epidemic. If otherwise,
that is (R0 <=

N(0)
S(0) ), then the outbreak will not result in an

epidemic.

IV. PERFORMANCE EVALUATION

We conducted a set of experiments to simulate the outcome
of some of the public health protective measures proposed by
the WHO and implemented by the South African Government
as responses to the pandemic mitigation. Two measures were
considered: i) locking down the city in order to reduce traffic
intensity and ii) social distancing with the expectation of
reducing the probability of infection through contacts. As
suggested earlier, both measures are designed to flatten the
infectious curve and prevent local healthcare systems from
being overwhelmed.

A. Initial Model Parameters

Given that in the case of Covid-19, the value of the
basic reproduction number R0 varies across countries, ranging
between 1.4 and 4.0; we selected as initial value R0 = 4
to consider the worst case scenario. The value of γ was
considered based on the average infectious rate in Cape Town
for the first 40 days of the outbreak. It was set to 0.23, while
the value of β was derived from equation (3.5). Our initial
population was set to S(0) = 3, 776, 000, considering the
entire population of Cape Town as being susceptible to the
Covid-19 outbreak. The initial time T was set to be day 1,
the day the first cases were confirmed in Cape Town. The
simulation was used to predict the number of susceptible,
infected and recovered cases over a period of 40 days starting
from day 1. We use the first 40 days because this duration
cuts across the first few weeks of the outbreak and the first
few weeks of the government imposed lockdown and social
distancing regulations.

B. Simulating the city lockdown

To simulate the city lockdown, the traffic intensity parameter
α was varied in the lockdown experiments to evaluate its
impact of the epidemic curves. We conducted the first set of
experiments using different traffic intensity within the city and
compared the pandemic curves obtained to assess if and when
the lockdown enabled the flattening of the infectious curve.
Different traffic intensities were considered in our experiments
with values set to α= 0.9, 0.8 for minimal lockdown, and α
={0.6, 0.4} for stringent lockdown. We did not go beyond 40%
lockdown as essential services remained functional during the
lockdown. The results are presented in Figures 4 and 5.

The results under minimal lockdown depicted in Figure 4
revealed that:

For α = 0.9, the infection curve was nearly normally
distributed and peaking at about 40% by the 15th day. This
implies that in two weeks, about 40% of the population would

(a) α = 0.9.

(b) α = 0.8.

Fig. 4. Minimal City Lockdown: α = 0.9 and α = 0.8.

be infected. The recovery curve reveals an exponential growth
with starts to plateau at the 30th day, revealing that almost a
full recovery could be seen after about a month.

For α = 0.8, the slight reduction in traffic intensity resulted
in a slightly flatter infection curves. This reveals that a
reduction of the traffic intensity by 10% had major impact
on the shape of the epidemic curve, reducing its peak to about
25%. It is important to note that, the susceptible curve never
gets to zero. This is as expected, as individuals who are locked
down are still susceptible and a person can only be in one of
the three states at any given time.

Fig. 5. Stringent City Lockdown: α ≤ 0.5.

The results under stringent lockdown in Figure 5 revealed
that: for α = 0.5, the infectious curve was completely flat. This
is as expected, because if stringent lockdown had been in place
right from the first day, then no one would have been infected.
Similarly, with no one infected, there would be no recoveries,
hence the flat recovery curve. The susceptibility curve remains



at the peak, because as earlier stated we assumed everyone in
the city is susceptible at the beginning. Besides an individual
would still be considered susceptible even if in isolation.
Similar results were obtained for values of α ≤ 0.5, hence
these graphs are not shown.

From these results, it can be inferred that, if the city had
been put on any form of lockdown from the first few days,
the outbreak would have been quickly contained. Even a 10%
restriction of mobility would have translated to less than 25%
of the population being infected with quicker recovery.

(a) Tomtom Data.

(b) α = 0.9.

(c) α = 0.1.

Fig. 6. Traffic intensity comparison: α = 0.9 and α = 0.1.

To verify this claim, another experiment was conducted to
reveal the impact of the model when using real traffic intensity
data. Traffic data for the city of Cape Town was web-scrapped
from TomTom and applied to the model to evaluate the impact
on the curves. As revealed by Figure 6, the real traffic intensity
in the city at that point in time was 0.1. When we applied this
traffic intensity to the model, the following was observed:

As in the case with α ≤ 0.5, the infectious and recovery
curves were completely flat. Similarly, the susceptibility curve
remained at 100%, implying that everyone in the city was still
vulnerable to the virus.

C. Simulating the Impact of Social Distancing in the City

The social distancing impact was simulated in a manner
similar to the city lockdown by considering different values
of the δ parameter for what were considered as both minimal
and stringent social distancing. These values were used in the
social distancing experiments to reveal their impact on the epi-
demic curves. Four different distance values were considered
in our experiments, viz.: δ = {1.0, 0.8} for minimal social
distancing and δ = {0.5, 0.4} for stringent social distancing.
The results are presented in Figures 7 and 8.

(a) δ = 1.00.

(b) δ = 0.80.

Fig. 7. Minimal Social distancing: δ = 1.0 and δ = 0.80.

Figure 7 reveals that for δ = 1.0, with no social distancing,
a peak of about 37% was reached in less than 2 weeks of the
pandemic. Interestingly, there was an interception between the
number of recovered individuals, number of susceptible and
number of infected on the 12th day. The recovery curve shows
that recovery would rise gradually and start to plateau after
the 30th day. However, it never gets to 100%, implying that
full recovery would not be achieved in this time frame. This
reveals that aggressive social distancing would be required to
tackle the pandemic.

For δ = 0.80, when minimal social distancing starts to
take effect, the peak of infection drops from 40% to 20%
on the 21st day of the pandemic. It then starts decreasing but
never gets to zero. The recovery curve rises gradually and only
started to plateau after the 37th day; however, it never reaches
the 100% mark. This implies that with only minimal social
distancing, about 20% of the population would still remain
infected. It is important to note that, the peak of the infectious
curve was almost halved, revealing that with even minimal



social distancing, the percentage of the infected population
can be cut by almost half.

(a) δ = 0.50.

(b) δ ≤ 0.40.

Fig. 8. Stringent Social distancing

The results under stringent social distancing depicted in
Figure 8 revealed that for δ = 0.5, the infection was com-
pletely contained after about 10 days. With a peak of about
5% at day 1. This implies that by practicing social distancing
immediately the virus broke out, the outbreak could have been
defeated within the first two weeks. In response, the recovery
curve peaked around the 10th day and plateaued afterwards.
This was also expected, as the outbreak would have been
contained by the second week. Similarly, the susceptibility
curve dropped slightly from 100% to 95%. This 5% drop
translates to the individuals who moved from susceptible to
infected, when the virus first broke out.

For δ = 0.40, the infection and recovery curves were com-
pletely flat. This means that if social distance was aggressively
implemented earlier, the pandemic breakout would have been
prevented. Furthermore, all individuals would have remained
in the susceptible state.

V. PREDICTING THE PANDEMIC’S EVOLUTION

Experiments were also conducted to predict the evolution
of the pandemic in Cape Town. For these experiments, two
regression-based machine learning models were used, namely:
Multi-Linear Regression (MLR) and Support Vector Regres-
sion (SVR). The models were trained using publicly available
data about the epidemic in Cape Town, for the first 40 days of
the outbreak. Due to the small size of the dataset, all were used

in training the models. New sets of data were then generated
to test the models using the population growth formula in 4.

P (t) = P0E
rt (4)

where P is the total population after time t, P0 is the starting
population, r is the percentage rate of growth, t is the time in
hours and E is the Euler number = 2.7182. This new data set
spanned the first 60 days and allowed us test the predictive
performance of our models, for the 20 days after the training
data.

A. Prediction Models & Metrics

MLR is a variant of linear regression analysis, wherein
multiple independent variables are used to predict a dependent
variable. Support vector regression (SVR) on the other hand
is a machine learning regression model based on Support
Vector Machine [10] which seeks to minimize the predictor co-
efficient to a value ≤ threshold (ε). For our SVR implementa-
tion, the following parameters were used C = 107, γ = 1e−10,
rbf kernal. These were obtained after performing grid search
on SVR. For both models, Recovery Prec, deaths Pdea and
infections Pinf rates were used as multiplicative scalars for
the independent variables and expressed in equation 5.

Yp = Intercept+ PinfX0 + PrecX1 + PdeaX2 (5)

where Intercept = 35.088, Pinf = 0.779, Prec = 0.720,
Pdea = 5.995

In evaluating the resulting prediction, we used the Root
Means Square Error (RMSE), Mean Absolute Error (MAE)
and Coefficient of Determination (R2). RMSE is the square
root of the averaged squared difference between the actual
and predicted values. MAE measures the absolute difference
between the actual and predicted values, while R2 is used to
benchmark a selected model against a baseline (mean of the
data).

B. Prediction Results

A comparison between reported (actual) numbers of Covid-
19 cases and the predicted numbers are shown in Figure 9.
Both figures are plots of days (x-axis) against number of cases
(y-axis); with the orange and blue lines depicting the actual
and predicted data respectively.

Though both models gave similar output curves, their val-
ues for each of the metrics differed. For MLR, the RMSE
was 511.87, which was lower than SVR’s value of 545.83.
Similarly, MLR also resulted in a lower MAE value at 422.75
compared to SVR’s 438.54. These results indicate that MLR’s
predicted values were slightly more accurate (closer to the
actual values) than those of SVR. This was further buttressed
by the R2 values, with MLR’s 0.976 being closer to 1 than
SVR’s 0.973.

These differences are however only marginal and both fig-
ures show that the predicted data for confirmed cases follows
the trajectory of the reported data from the national database.
It can therefore be concluded that, there is a strong correlation



(a) Prediction curves - MLR.

(b) Prediction curves - SVR.

Fig. 9. Predictive Evolution of Confirmed Cases.

between the predicted data and the reported trends within the
actual data (r = 0.999, p < 0.001).

VI. CONCLUSIONS AND FUTURE WORK

The goals of the study were to: i) produce simulation results
that could help in validating the measures put in place to
mitigate the impact of the Covid-19 virus and ii) use machine
learning based data analytics to produce models that can pre-
dict the evolution of the pandemic based on the actual numbers
of recovered, infected and confirmed cases. Building upon the
classic SIR model, this study’s focus modelled the Covid-
19 epidemic in Cape Town, South Africa; with the objective
of estimating the number of infections, the peak infection
day, the rate of increase of infections and the resolution of
the end-point of the epidemic. The SIR model included two
parameters used to respectively mimic the lockdown and social
distancing measures. By varying these parameters in a set of
carefully selected simulation experiments, the model revealed
the relevance of the preventive measures by showing: i) how
the peak of the infectious curve could be flattened; ii) how the
infection rate could be reduced to prevent overwhelming the
healthcare system; iii) how the scale of the pandemic could
be reduced in time, with full immunity of the population at

the end of the pandemic. Two predictive data analytic models
complemented the simulation results by revealing (with high
precision) the evolution of the confirmed cases based on the
actual number of cases, recoveries and deaths.

A number of other epidemic models could be used to mimic
the Covid-19 pandemic, in particular the Susceptible-Exposed-
Infected-Removed (SEIR) model, which accounts for a period
of exposition to the virus before infection. The extension of the
current work using this model and the underlying simulations
for the other Covid-19 affected cities of South Africa as well
as tracking the migration of affected individuals across these
cities are directions for future research. At the time of writing,
Covid-19 related data for other African countries, including
the Democratic Republic of Congo, have been collected for
the purpose of replicating this study in those countries. This
is another avenue for future research work and an extension
to the framework proposed in [11] for supporting healthcare
in Africa specifically and the developing nations in general.
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