University

of Glasgow

Ali, A., Anagnostopoulos, C. and Pezaros, D.P. (2020) In-Network
Placement of Security VNFs in Multi-Tenant Data Centers. In: IEEE ISCC
2020, Rennes, France, 07-10 Jul 2020, ISBN 9781728180861
(doi:10.1109/1SCC50000.2020.9219711).

This is the author’s final accepted version.

There may be differences between this version and the published version.

You are advised to consult the publisher’s version if you wish to cite from
it.

http://eprints.gla.ac.uk/215567/

Deposited on: 06 May 2020

Enlighten — Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

http://dx.doi.org/10.1109/ISCC50000.2020.9219711
http://eprints.gla.ac.uk/215567
http://eprints.gla.ac.uk/

In-Network Placement of Security VNFs in
Multi-Tenant Data Centers

Abeer Ali®
School of Computing Science
University of Glasgow, UK
A.Ali.4@research.gla.ac.uk

Abstract—Middleboxes are typically hardware-accelerated ap-
pliances such as firewalls, Proxies, WAN optimizers, and NATSs
that play an important role in service provisioning over today’s
Data Centers. We focus on the placement of virtualised security
services in multi-tenant Data Centers. Customised security ser-
vices are provided to tenants as software VNF modules collocated
with switches in the network. Our placement formulation satisfies
the allocation constraints while maintaining efficient manage-
ment of the infrastructure resources. We propose a Constraint
Programming (CP) formulation and a CPLEX implementation.
We also formulate a heuristic-based algorithm to solve larger
instances of the placement problem. Extensive evaluation of
the algorithms has been conducted, demonstrating that the
VNF approach provides more than 50% reduction in resource
consumption compared to other heuristic algorithms.

Index Terms—Data Centers security, resource management,
security network functions, VNF orchestration

I. INTRODUCTION

To mitigate the problems of the legacy hardware-based
middleboxes such as, e.g., expensiveness, vendor lock-in,
deployment inflexibility, and lack of resource scalability [1],
[2], virtualised middleboxes have emerged such as WAN
optimizers [3] and IDPS systems [4], [5] while the Network
Function Virtualization (NFV) technology have been used to
deploy virtualised middleboxes as network functions (NFs).

Contribution: In this paper, we contribute by developing
efficient allocation for security services over multi-tenant
virtualised DCs. A pool of security services such as firewalls,
IDS/IPS, DDoS mitigation tools, and DPI engines, are avail-
able for tenants to request in the form of software modules.
The modules requested by each tenant will be deployed in the
Data Center (DC) as VNFs where they can process traffic des-
tined to the requesting tenant. We then address the problem of
allocation of different security modules over a virtualised DC
infrastructure using a resource-aware placement methodology.
Our contributions include introducing the placement problem
for both stateless and stateful class of the security function.
We formalise a Constraint Programming (CP) model of the
security function placement as an instance of the NP-hard
bin packing optimisation problem with an objective function
based on maximising residual resources. For a polynomial-
time solution, a modified version of the Best-Fit Decreasing
(BFD) greedy algorithm is also proposed. Finally, through a

SElectronic Research Institute (ERI), Egypt

Christos Anagnostopoulos
School of Computing Science
University of Glasgow, UK
Christos.Anagnostopoulos @ glasgow.ac.uk

Dimitrios P. Pezaros
School of Computing Science
University of Glasgow, UK
Dimitrios.Pezaros @glasgow.ac.uk

comparative assessment, we demonstrate that BFD optimises
the residual resources when compared to other algorithms. The
remainder of this paper is structured as follows: Section II
discusses related work, and Section III introduces the problem
of security modules placement. Section IV formalises the
problem in CP form and, in Section V, we adopt a modified
version of the BFD algorithm and provide a performance and
comparative assessment against different algorithms in Section
VI. Finally, Section VII concludes the paper.

II. RELATED WORK

For virtualised middleboxes, research is focusing on the
automatic managing of network functions such as VNFs
which known as VNF orchestration problem. The earlier work
focused on particular aspects of an overarching architecture.
For example OpenNF in [6] is a centralised control plane that
orchestrates NF dynamically. It supports scaling through dupli-
cation and proposes coping the internal states and network for-
warding states instead of copying the whole virtual machine to
reduce migration cost. While the problem of VNF placement is
an important part of any orchestration tool, approaching this
problem highly depends on the considered parameters such
as computing cost, link bandwidth, QoS , economical profit,
network load, energy efficiency, security.. etc. In [7], authors
target reducing the energy consumption using a consolidation
algorithm based on a migration policy of chained VNFs. In
[8], the VNF placement problem is formulated as a series of
scheduling decision aims at minimising the latency of VNF
scheduling by assigning the execution time slots to different
services traversing the same VNF.

However, the distinct constraints related to security func-
tions such as, the granularity of the processed traffic are
neglected by most studies of the automatic management of
VNFs [9]. We explicitly address the requirements and con-
straints of security services which distinguish our work from
previous research in the management of virtualised services,
e.g., our work addresses the traffic constraints of security
functions which impose a restriction on allocation. We propose
the deployment of the security modules in-network and on
traffic path to reduces the overhead of having to resort to
non-shortest-path routing while most previous work proposes
to place NFs on DC servers [10], [11]. Furthermore, specific
security functionality that is based on building a behavioural

model for traffic such as, e.g., anomaly detection modules,
cannot be shared since each tenant will have a different normal
behavioural model. Therefore, work reduces the complexity
and security risks of deploying shared modules by adopting
the non-sharing strategy.

III. MULTI-TENANT SECURITY MANAGEMENT

In multi-tenant virtualised DCs, customised security is es-
sential where each tenant run different services; each service
requires a different security level. For instance, a typical web
server may require security modules to detect and mitigate
HTTP flood attacks and SQL injections while critical servers
may require a firewall, IDS and/or DPI to guarantee high
availability and data integrity. We focus on orchestrating
security services in multi-tenant virtualised DCs where they
are offered as software modules that are allocated throughout
the infrastructure as VNFs to process the required traffic. The
services are offered on a per-tenant basis, and each request
will result in deploying a function to process traffic of the
requesting tenant.

A. Fat-Tree Architecture

A multi-rooted tree is one of the most common virtualised
DC network architectures [12]. For example, a k=4 fat-tree
topology shown in Figure 1 with three layers of switches
(ToR, aggregation, and core). We assume routing is flow-
based Equal Cost Multiple Path (ECMP), where flows are
distributed over equal cost links. Security modules are allo-
cated to points collocated with switches at all layers. Traffic
is rerouted from switches to the security function and back
as shown in Figure 1. This approach will reduce the detour
length of the path that traffic has to take to pass through a
security function. The security function abstraction can be
implemented as a distinct namespace within a software switch
or on a separate, virtualised commodity x86 architecture that
physically connects to a traffic-forwarding switch.

B. Placement Strategy

For security function, traffic and resource constraints must
be considered in the process of selecting where the function
is going to be allocated in the infrastructure. The placement
strategy involves satisfies the security service request of a
tenant by selecting an allocation for the security functions
that provide the security service. Security functions can be
classified into two classes based on how traffic is processed
to detect threats and subsequently the level of aggregation
of traffic packets required for each. This classification will
specify the traffic constraints of the modules and guide the
placement algorithm to select the location where a security
function can accurately capture the required level of traffic
aggregation [9].

The Stateless class modules process traffic at the individual
flow or packet level. For example, a module of this class has
a set of signatures database or access list, and it operates
by finding a match when compared their databases with the
patterns of the packet or flow of the incoming traffic. The

matching process depends on the state of a single packet
or flow. Therefore, it can operate independently at different
links in case of per-flow routing. Consequently, VNF of
this class can be duplicated across network locations where
tenant’s traffic is being split, as long as the routing is per-flow.
Examples of this equivalence class are firewalls and signature-
based IDS.

The Stateful class modules process traffic to detect anoma-
lies based on a coarser traffic granularity such as,e.g., flow-
aggregation on the contradictory to the stateless class which
process traffic on fine granularity such as single packet or flow.
The stateful class modules depend on traffic features such as
volume where changes in traffic volume can indicate anoma-
lies. While others depend on deviations in traffic distribution
features such as Entropy or Histograms [13]. More compli-
cated modules will use statistical learning techniques. The
modules of this class start by constructing a normal behaviour
model to the traffic under inspection by extracting information
from flow aggregate features then under operation it will detect
anomalies based on deviations of current processed traffic
from the stored normal model. However, capturing an accurate
behaviour model will require all the flows of the monitored
traffic to be rerouted to one instance of the network function
of this type, and no replication can be allowed in case of traffic
distribution on multiple links.

This approach has been widely adopted and involves all the
data continuously pushed to a central point for analysis [14],
others propose that computational, transmission and storage
cost of monitoring traffic for anomaly detection can be reduced
by mapping the traffic to less dimensional space by extracting
features and only transmit these features in case of distributed
nodes monitoring [15]-[18]. We adopt the latter approach in
allocating functions of the stateful security class, instead of
steering traffic to one instance, monitoring nodes will be de-
ployed wherever traffic is distributed. These nodes will extract
the needed features from the traffic and share this information
with the main node that takes the detection decision.

The resource constraint of a security function will guarantee
that the required resources for the function operation are
available. Each available locations has a predefined capacity
of resources. Each module in the system pool will have two
vectors that represent the required resources. The first vector
is the baseline requirement represent the resources required
for initial deployment of the module and the second vector is
the traffic requirement which represents the resource required
to process a unit of the traffic.

IV. CONSTRAINT PROGRAMMING APPROACH

A. Problem Description

The placement of the virtualised functions of security
modules to satisfy the security services requested by tenants
is a resource allocation problem. It allocates the security
functions in distributed locations in virtualised DC which each
location has a limited capacity. We address the static placement
of the two security classes introduced in Section III. The

placement will ensure the traffic constraint is satisfied in case
of allocations where traffic is distributed over multiple links.

For example, in the k=4 fat-tree shown in Figure 1, a
stateless class module deployed for a tenant in the server in
red has three available locations, the first allocation is where
one instance will be allocated to the TOR switch. Second al-
location, where two instances will be allocated to aggregation
level switches (shown in red). Third allocation, where four
instances will be allocated to all core level switches. For the
stateful class, ToR level is the same as the stateless one, while
for aggregation level allocation deployed for a tenant on the
server shown in green, the main instance will be deployed in
one switch and a monitoring instance will be deployed on the
other switches (shown in green in Figure 1). There will be no
steering of traffic, however, shared data will be directed from
the monitoring instance to the main instance shown by the
orange links. The same applies for the core level where the
main instance will be deployed in one of the four core switches
and monitoring instances in the other three with communicate
with the main instance to share information. Moreover, the
proposed placement strategy can be applied to any network
architecture as it consider traffic split on links due to ECMP
routing and .

When more than one allocations satisfy the resource and
traffic constraints of a request, the one that optimises the
placement objective will be selected. We design the placement
algorithm to optimise the resources usage. We accomplish
this with two objectives, the first objective is to maximise
the residual resources of the framework, which represents the
spare computing resources of the locations after the placement
has been completed. The second objective is to minimise the
communication overhead of the allocation which represents
the communication bandwidth overhead due to the allocation
and targeting minimise bandwidth usage for the placement.

B. Problem Formulation

B stateless Internet

M stateful

Core

.
.
Security - - 2 § —P Aggregation
><i".ﬁ‘;{'::ﬂ o T >< e 45 Marrg
Luﬁ LA Y“

=4 f _ =7 s TOR

VAN A NYA AN _A_ _A_ _A_ AN

g ad g daad dg e

Fig. 1. Fat Tree Cloud Data Center; Size k=4

We represent the placement problem of security functions
in virtualised DCs as an instance of a variable cost — variable
size bin packing problem (VSBPP) [9], [19]. Therefore, every
request will be associated with a tenant and a security function
requested by that tenant. Every location available for allocation
has two dimensions of resources, switches dimension and
links dimension. The switches dimension will represent the

required resources of the set of switches for a request to be
allocated relative to function required resources, while the
links dimension will be the required bandwidth capacity of
the links relative to the function communication overhead to
allocate the request in the switches. Locations that represent
allocating requests in TOR switches can be used to allocate
both types of security functions and has empty links dimen-
sion, while locations represent higher layers allocations are
designed for only one type. Therefore, every request can be
only associated with locations that could allocate its function
type. To minimise cost, allocation will reduce duplicates and
subsequently keeping allocation in the lower levels of the
hierarchy while maintaining resources and traffic constraint
of allocating the functions satisfied.

The constraint programming (CP) formulation of problem is
as follows: Let the overall framework include a set of ¢ > 0
requests Q={r1,ro,....rq} with each request r representing
a function requested by a tenant each with attribute r.type
that represents the type of security function requested in r,
r.type can be stateless or stateful, set of m > 0 switches
S={s1, 2,, Sm } each with attribute s.c as the resources
capacity of s, a set of n > 0 links L= {ly, ls,l,,} each with
attribute [.b as the bandwidth capacity of link [and attribute
l.w as the link weight, a set of k locations P={py, pa,pk }
each with attribute p.type that represent the type(s) of security
functions that be allocated in p, switches and links dimensions
for locations for different request presented in the following
two metrics. A matrix u of size k X ¢ X m representing the
switches resources cost of allocation where u,, , s is location
p required resources to be allocated in switch s to satisfy
request 7; or zero if location p can not accommodate request
r due to function type or does not require any resources to be
allocated in switch s. A matrix v of size k X g X n representing
the communication cost of allocations where vy, ,.; is location
p required bandwidth to be allocated in link ! to satisfy
request 7; or zero if location p can not accommodate request
r due to function type or does not require any bandwidth
to allocated in link [. We have two objectives: the first
objective is to maximise the residual resources (RS) which
is represented the spare resources in switches after placement.
The second objective is to minimise Communication Overhead
(CO) which the communication cost of the placement that is
represented as the sum of communication overhead traffic rate
on each link multiplied by the link weight.

The allocation is represented as a binary variable x of size
pxk where x, ,=1 when request r is allocated to location p;
0 otherwise. The CP formulation is as follows:

max.{ Z s.c — Z Z Z Typ - up,r,s} (1)

VsesS VreQ VpeP VseS

S DIDIP BETEE @)

VreQ VpeP VIEL

Z Z Trp Uprs <5.c Vs€S 3)

VreQ vpeP

Z Z Trp Uprl <1b VlEL 4)

VreQ VpeP
xr,p = O’ Vr € Q7 vp S P ’lf T.type ¢ ptyp@ (5)
Z Trp=1 Vreq (6)

VpeP

Note: the first objective function of the CP formulation
is represented in (1) as maximising the residual resources
after the placement. The Second objective function of the CP
formulation is represented in (2) as minimising the commu-
nication overhead after the placement. The constraint in (3)
represents the switches capacity constraints. The constraint
in (4) represents the links capacity constraints. The constraint
in (5) represents the location-validity for requests where the
function type of the request must be satisfied by the location.
The constraint in (6) ensures that each request is allocated to
one location.

Two versions of the Constraint Programming (CP) model
was considered, the first version called CP_RS+CO which
optimise for the sum of both function with equal weights for
each as stated in the following function and with the objective
in equation 1 converted to minimise consumed resources
instead of maximising residual resources. This method gives
both functions equal weight in the optimisation. The second
version called CP Two-pass which consists of a two-pass
method optimisation. First, it optimises the placement of the
stateful requests for the objective in equation 2 and then it
optimises for the objective in equation 1 against the stateless
requests after encoding the optimal solution obtained in the
first optimisation as a hard constraint. This method optimises
the objective in equation 2 as a primary goal to the problem,
while the objective in equation 1 is considered a secondary
goal.

V. METHODOLOGY

Heuristic algorithms are proposed as a solution to the
NP-hard bin-packing problems [20]. The widely used Best
Fit Decreasing (BFD) algorithm can solve the problem within
polynomial time [21]. We have adopted a modified version
of BFD to allocate virtual machines (VM) to locations
that result in the least increase in power consumption [19].
We previously proposed a computing resources version
of that algorithm to solve the stateless function allocation
problem [9] . In the resource-aware BFD algorithm, @ is a
set of initial requests, each represent a tenant’s request to
certain module, L is a set of locations available for allocating
requests and the set A refers to the set of allocated requests
in certain locations, the function sort(Q) sorts the requests
from @ by a decreasing order of baseline resources required;
capacity(A,r,l) ensures the resources required in location [
in allocation A is enough to accommodate a give request r;
validation(r,l) constrains the location to those who satisfy
the traffic constraints such as for a stateful class request
r, only locations that associated with communication links

are valid, while total_cost(r,l) calculates the total cost
of allocating the request r to location [which represented
of computing cost plus communication cost if any in the
contrary to the work in [9] which only consider computing
resources cost, as illustrated by the following algorithm

Input: Set of requests @, set of locations L
Output: Set of requests allocated to locations A
1. A < (0 // initialisation
2: Q* < sort(Q) // sort request w.r.t. resources
3: for all r € Q* do
4 for all [€ L do
5: if (capacity(A,r,1)=TRUE) A (validation(r,l)=TRUE) then
6.
7
8
9

I* = argminy ¢ 1, total_cost(r,l")
end if
if (I* # 0) then
: A+ AU{(r,1*)} // allocate request r to location [*

10: end if
11: end for
12: end for
13: return Set of allocated requests A

VI. PERFORMANCE EVALUATION
A. Performance metrics

To demonstrate the efficiency of the resource allocation
algorithms, we introduce two metrics that represent our objec-
tives presented in Section IV. The first metric is the Residual
Resources (RS) of the network, which is the ratio of the spare
resources (after placement) to the total amount of resources
available and is calculated by adding the residual resources at
each location after placement. RS is a normalisation of our
first objective presented in Section IV. The second metric
is Communication Overhead (CO) of the allocation as the
total of the communication overhead resulting from sharing
information by the stateful class which represent the sum of
communication overhead traffic rate on each link multiplied by
the link weight. CO is a normalisation by the total consumed
bandwidth to represent our second objective presented in
Section IV.

B. Models Comparison

We compare the proposed BFD algorithm two resource
allocation algorithms: First Fit (FF), and First Fit Decreasing
(FFD) [22]. Specifically, in FF, the unordered requests are
allocated to the first level that will fit them. In FFD, the
requests are ordered in decreasing order based on resource
consumption and are allocated to first fit (module types with
high resource consumption allocated first). In BFD, the re-
quests are ordered the same way as in FFD, and then they are
allocated to the best-fit location where the total cost is min-
imised. In addition, two variants of constraint programming
solutions were modelled using the CPLEX optimizer [23] and
then used as a baseline for comparison with other solutions.
The two modelled are the RS+CO model and the two-pass
model previously discussed in IV. Furthermore, we compare
the proposed BFD algorithm with one_instance_BFD of the
algorithm. The one_instance version simulates the legacy
allocation of hardware middleboxes where in case of traffic
distributed over multiple links, all traffic must are steered to
one instance of the module.

C. Performance Assessment

Without loss of generality, we assume traffic is uniformly
distributed on all servers and each server represents one
tenant. To test our allocation strategy overhead on the network
structure on all levels, we assign switches an initial capacity
that enough to accommodate the same number of requested in
each level. Because duplication will increase allocation cost
in higher levels, switches initial capacity will increase based
on duplication cost expected at each level. We simulated six
different security function. A security function will have a
probability p to be stateless and (1 — p) to be stateful. The
resources requested and the communication overhead for each
module are drawn for a normal distribution. The tenant request
rate is the number of functions requested by a tenant.

We simulated the increase of workload over the network
in two dimensions the modules required resources and the
traffic demand of tenant. The former represented as the mean
of the normal distributed which resources requirements of
the modules are drawn from. The later represented as the
mean of the normal distributed which traffic demand rate
of tenants is drawn from. We consider resources as a one-
dimensional vector. All results are computed over an average
of 10 runs. We present results of the RS and CO for the
following experiments.

-
o
o
o

—— BFD
FFD

— FF

<~ One_instance_BFD

—— CPRS+CO

—i— CP Two-Pass

o
IS

o
©

°
N

—— BFD
FFD

— FF

<= One_instance_BFD

—— CPRS+CO

—— CPTwo-Pass

Residual Resources (RS)

Communication Overhead CO
°
A

0.0+ L=
01 02 03 04 05 06 07 08 09
Modules mean (1)

.0
01 02 03 04 05 06 07 08 09
Modules mean ()

(a) Residual Resources (b) Communication Overhead

Fig. 2. Residual Resources and Communication Overhead of BFD, FFD, FF,
and CP algorithms when k=6

The first experiment shows the effect of the modules sizes
workload on the performance metrics in case of traffic demand
rate parameters are u=50% and 0=10% of maximum value of
flow rate, tenant request rate equal 1, communication overhead
parameters are ©=50% and 0=10% of max value of flow rate
between shared nodes, base_part to traffic_part percentage is
50%. The results of RS and CO metrics for a k=6 Fat-tree are
shown in Figure 2. Figure 2(a) shows the objective function
Residual Resources (RS) starts decreasing linearly with the
workload, where the increase of requested resources will result
in a reduction in spare resources. While all algorithms suffer
from such reduction, Best-fit Decreasing BFD shows less
reduction in RS than (FFD and FF). This can be attributed
to Best-fit algorithms utilise resources by selecting locations
which cost the least increase in resource consumption, allow-
ing more resources to the allocation process, and leading to
an increase in RS that can reach 50% of other algorithms.
Additionally, Figure 2(a) shows the middleboxes one instance

legacy allocation strategy where requests are allocated to one
instance of requested function and all traffic must be steered
to that instance. For comparison reasons, we adapt the BFD
version of the one_instance algorithm. The results show that
one_instance_ BFD algorithm has more spare resources than
other algorithms which are a result of only one instance are
deployed for each request and no duplication is endured. CP
RS+CO are showing more RS than CP two-pass because it
balances between the two objectives while CP two-pass gives
priority to CO over RS, however, CP RS+CO only show 10%
more RS than BFD.

Figure 2(b) shows the Communication Overhead (CO)
objective function after the allocation is complete and, the
results show that at low workload, less than 0.3, best-fit algo-
rithms (BFD and one_inctance_ BFD) show no communication
overhead while FFD and FF show increased overhead. This
is a result of the FFD and FF allocate requests in random
locations which will result in allocations in higher layers of the
network which cause a communication overhead while Best-
fit algorithm allocates requests to less resource consuming
location first which are TOR switches which have no com-
munication overhead. In higher workload, CO increases with
modules required resources which indicate that more requests
are allocated to higher layers which impose a communication
overhead of shared information between main and monitoring
instances of the stateful class. However, BFD algorithm still
shows less communication overhead than other algorithms due
to the best-allocation strategy that can reduce communication
overhead up to 80% of the consumed bandwidth. Opposite to
RS one_instance_ BFD show, there is a linear increase in CO
as traffic steered to the centralised instance will cause a sig-
nificant communication overhead compared to the distributed
allocation strategy adopted by other algorithms while CP Two-
pass shows the least communication overhead compared to
other algorithms where is priorities CO over RS functions. The
Figure also shows that BFD has less communication overhead
than CP RS+CO. However, it shows less than 10% more
communication overhead than CP Two-pass.

-
o
o
[

o
kS

o
W

o
o

0.41 o gD
FFD

— FF

0.2 -+ One_instance_BFD
—— CPRS+CO

—+— CPTwo-Pass

Residual Resources (RS)
°

Communication Overhead CO

o
°
°
o

02 03 04 05 06 07 08 09
Flow mean (u)

o
N
o
W
o
S

05 06 07 08 09
Flow mean (u)

(a) Residual Resources (b) Communication Overhead

Fig. 3. Residual Resources and Communication Overhead of BFD, FFD, FF
and CP algorithms when k=6

The second experiment shows the effect of traffic demand
of tenant as workload on the performance metrics in case of
modules size/required_resources parameters are ©=50% and
0=10% of the maximum value of module size and the same

parameters for the previous experiment. The results of RS
and CO metrics for a k=6 Fat-tree are shown in Figure 3.
Figure 3(a) shows Residual Resources slightly decreases with
the workload, where the increase of traffic rate results in
increasing of required resources as the traffic part of functions’
required resources is depending on traffic rate and results in
a reduction in spare resources. While all algorithms suffer
from such reduction, Best-fit Decreasing algorithms BFD still
show less reduction than (FFD and FF) that reach up to
more than 20% in spare resources. Similar to Figure 2(a),
Figure 3(a) shows that one_instance_BFD algorithm has more
spare resources than other algorithms which are a result of one
instance per request are deployed. Furthermore, CP RS+CO
and CP Two-pass show the same trend as RS is slightly
affected by increasing network flow while they and BFD
still showing a significant higher RS compared to FF and
FFD. In Figure 3(b), the results show that CO shows steady
results for the BFD algorithm due to that CO is normalised
to the total consumed bandwidth which also increases with
the workload. On the other hand, FFD and FF algorithms
show a reduction in CO with workload increase and this can
be attributed to as all locations start to fill up, FFD and FF
will allocate more requests to lower layers of the network
which impose no communication overhead to the system. The
same as Figure 2(b), BFD shows less CO than (FFD, FF and
one_instance_ BFD) that reach up to 80%. The figure also
shows that CP two-pass has the least communication overhead
compared to other types including the CP_RS+CO due to it
prioritise CO over RS.

Based on the above results, the placement strategy of in-
network placement of security function with the adoption
of sharing information between instances presented in BFD
algorithm was able to minimise the communication overhead.
However, the computing resources have increased due to the
duplication strategy compared to the non-duplication algorithm
in a trade-off between computing resources and communi-
cation overhead. Additionally, the BFD showed optimisation
for our two objective functions compared to other heuristic
algorithms and the Legacy one_instance allocation adopted
from middleboxes.

VII. CONCLUSIONS

In this paper, we have studied the problem of In-Network
placement of security VNFs over multi-tenant Data Centers.
We have classified security functions based on the allocation
constraints as traffic constraints and computational resource
requirements. We have formulated the placement problem to
satisfy constraints as an instance of the NP-hard VSBPP bin
packing problem. We have defined the residual resources and
communication overhead as the objective functions for the
placement and we have subsequently formulated the problem
in CP and proposed a modified version of the Best-Fit De-
creasing greedy algorithm as a polynomial time solution. We
have implemented a one instance algorithm as a legacy ap-
proach. We have evaluated our approach against other Greedy
algorithms, the one_instance approach and the CP solution.

The results have shown that BFD significantly outperforms
the other models up to 50% while satisfying the corresponding
traffic and resource capacity constraints.

REFERENCES

[1] A. Ali, R. Cziva, S. Jouét, and D. P. Pezaros, SDNFV-Based DDoS
Detection and Remediation in Multi-tenant, Virtualised Infrastructures.
Cham: Springer International Publishing, 2017, pp. 171-196.

[2] J. G. Herrera and J. F. Botero, “Resource allocation in nfv: A comprehen-
sive survey,” IEEE Transactions on Network and Service Management,
vol. 13, no. 3, pp. 518-532, 2016.

[3] Silver peak. [Online]. Available: https://www.silver-peak.com/

[4] Snort. [Online]. Available: https://www.snort.org/

[5] Suricata. [Online]. Available: https://suricata-ids.org/

[6] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid,
S. Das, and A. Akella, “Opennf: Enabling innovation in network function
control,” SIGCOMM Comput. Commun. Rev., vol. 44, no. 4, pp. 163—
174, Aug. 2014.

[71 V. Eramo, E. Miucci, M. Ammar, and F. G. Lavacca, “An approach
for service function chain routing and virtual function network instance
migration in network function virtualization architectures,” IEEE/ACM
Transactions on Networking, vol. 25, no. 4, pp. 2008-2025, Aug 2017.

[8] L. Qu, C. Assi, and K. Shaban, “Delay-aware scheduling and resource
optimization with network function virtualization,” IEEE Transactions
on Communications, vol. 64, no. 9, pp. 3746-3758, Sep. 2016.

[9]1 A. Ali, C. Anagnostopoulos, and D. P. Pezaros, “On the optimality of
virtualized security function placement in multi-tenant data centers,” in
2018 IEEE International Conference on Communications (ICC), May
2018, pp. 1-6.

[10] M. Ghaznavi, A. Khan, N. Shahriar, K. Alsubhi, R. Ahmed, and
R. Boutaba, “Elastic virtual network function placement,” in 2015 IEEE
4th International Conference on Cloud Networking (CloudNet), 2015.

[11] F. Wang, R. Ling, J. Zhu, and D. Li, “Bandwidth guaranteed virtual
network function placement and scaling in datacenter networks,” in 2015
IEEE 34th International Performance Computing and Communications
Conference (IPCCC), Dec 2015, pp. 1-8.

[12] X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of data
center networks with traffic-aware virtual machine placement,” in 2010
Proceedings IEEE INFOCOM, March 2010, pp. 1-9.

[13] P. Bereziski, B. Jasiul, and M. Szpyrka, “An entropy-based network
anomaly detection method,” Entropy, vol. 17, no. 4, 2015.

[14] A. Lakhina, M. Crovella, and C. Diot, “Diagnosing network-wide traffic
anomalies,” in ACM SIGCOMM Computer Communication Review,
vol. 34, no. 4. ACM, 2004, pp. 219-230.

[15] T. Huang, H. Sethu, and N. Kandasamy, “A new approach to dimen-
sionality reduction for anomaly detection in data traffic,” IEEE Trans.
on Netw. and Serv. Manag., vol. 13, no. 3, pp. 651-665, Sep. 2016.

[16] L. Huang, X. Nguyen, M. Garofalakis, M. 1. Jordan, A. Joseph, and
N. Taft, “In-network pca and anomaly detection,” in Advances in Neural
Information Processing Systems, 2007, pp. 617-624.

[17] R. Keralapura, G. Cormode, and J. Ramamirtham, “Communication-
efficient distributed monitoring of thresholded counts,” in Proceedings
of the 2006 ACM SIGMOD International Conference on Management
of Data, ser. SIGMOD ’06. New York, NY, USA: ACM, 2006, pp.
289-300.

[18] J.B.Predd, S. Kulkarni, and H. V. Poor, “Distributed learning in wireless
sensor networks,” IEEE Signal Processing Magazine, vol. 23, no. 4, pp.
56-69, 2006.

[19] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource
allocation heuristics for efficient management of data centers for cloud
computing,” Future Generation Computer Systems, vol. 28, no. 5, 2012,
special Section: Energy efficiency in large-scale distributed systems.

[20] D. S. Johnson, Bin Packing. New York, NY: Springer New York, 2016.

[21] K. Fleszar and C. Charalambous, “Average-weight-controlled bin-
oriented heuristics for the one-dimensional bin-packing problem,” Eu-
ropean Journal of Operational Research, vol. 210, no. 2, 2011.

[22] W. Leinberger, G. Karypis, and V. Kumar, “Multi-capacity bin packing
algorithms with applications to job scheduling under multiple con-
straints,” in Parallel Processing, 1999. Proceedings. 1999 International
Conference on. 1EEE, 1999, pp. 404—412.

[23] Cplex. [Online]. Available: https://www.ibm.com/products/ilog-cplex-
optimization-studio/

