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Abstract—This work examines deep quantile regression for
quality-of-transmission (QoT) estimation and accurate decision
making in optical networks. Quantile regression is applied to
approximate QoT models capable of inferring QoT bounds
for any future lightpath, according to a predefined level of
certainty, for confident decision making, without the need to
consider traditional margins at decision time. It is shown, that
quantile regression automatically accounts for such margins, in a
discriminative fashion, leading to a significant margin reduction
and subsequently to more accurate inference of the QoT of un-
established lightpaths, when compared to the traditional margin-
based decision approaches. Specifically, deep quantile regression
for QoT estimation ensures that lightpaths with insufficient QoT
will be accurately identified and rejected, while also identifying
correctly lightpaths with sufficient QoT, making it a confident
decision making tool for the planning of optical networks.

Index Terms—QoT estimation; margin reduction; deep quan-
tile regression; machine learning.

I. INTRODUCTION

Traditional estimation of QoT in optical networks involves
the utilization of static Q-factor models that consider the phys-
ical layer impairments (PLIs) [1] (e.g., crosstalk, polarization
mode dispersion, amplifier noise), that however may lead to a
waste of spectrum resources, mainly due to the overestimation
of the non-linear PLIs [2]. To address this issue, machine
learning (ML) techniques have been proposed for the inference
of QoT models [3]–[5].

Regression is often applied to estimate a QoT model in order
to conduct inference about the QoT value of any unestablished
lightpath. Commonly, with regression, a least squares loss
function is minimized to find a QoT model, which is, in
essence, an approximation of the relationship between the
input variables (i.e., lightpaths) and the output variables (i.e.,
QoT values). By definition, the output of the QoT model
is an estimate or an approximation, hence containing some
uncertainty. In fact, this estimate is the mean response value,
with the variability around that mean representing the uncer-
tainty resulting from the errors in the model itself and the
noise in the input data. Obviously, in order to make confident
decisions regarding the QoT of unestablished lightpaths in
optical networks, a point estimate is not enough, as it may
lead to the establishment of lightpaths with true QoT values
that violate some acceptable threshold. Thus, it is necessary to
measure the certainty level of an estimate, essentially building
prediction intervals [6].

A prediction interval is an interval (i.e., range of values)
in which a single future observation will fall, with a certain
probability, based on the existing model (i.e., given what has
already been observed). In ML, several approaches exist for
building prediction intervals, including conducting Bayesian
inference, Monte Carlo dropout inference [7], and through
the estimation of conditional quantile functions (e.g., deep
quantile regression) [8]. In this work, as a first step towards
the investigation of prediction intervals for QoT-based decision
making, a deep quantile regression framework is adopted. In
this framework, deep neural networks (DNNs) are trained to
estimate conditional quantile functions (i.e., models). Each
quantile function is estimated by minimizing an asymmetri-
cally weighted sum of absolute errors [9]. This information
can be subsequently used for confident decision making.
While regression analysis has been previously explored for
QoT model estimation [10], a mathematical framework for
appropriately quantifying the model and input data uncertainty
towards confident decision making has not been investigated.

Related work has demonstrated the ability of ML to find
QoT models of sufficient accuracy [4], [11], ultimately leading
to margin reduction [12], [13] compared to the margins
considered in traditional physical layer models (PLMs) [1],
[14], [15]. In both PLMs and ML-aided QoT models, the usage
of a margin aims to fix model inaccuracies (i.e., uncertainty)
by shifting the model estimates accordingly; that is, the QoT
values considered in decisions making are worst than the
model estimates to reduce or even alleviate the possibility
of establishing into the network lightpaths with insufficient
QoT (i.e., the estimated Q-factor is decreased by this margin).
In that case, however, the possibility of over-provisioning a
lightpath is increased, effectively wasting spectrum resources.
Clearly, margin estimation has a significant impact on both de-
cision making (regarding the QoT of unestablished lightpaths)
and network efficiency, hence it must be treated with care.

ML-aided QoT models have been shown to provide mar-
gin reductions, as compared to traditional PLMs, positively
impacting lightpath provisioning decisions and resulting in
network capacity savings. However, QoT model margins are
rather roughly approximated, with the potential of ML to
achieve further improvements in decision making remaining
greatly unexplored. Specifically, margin estimation is currently
based on worst-case performance criteria of the obtained QoT
model, with decision making inheriting a tendency to largely
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underestimate the true QoT (e.g., Q-factor) of a lightpath.
Briefly, a common practice is to approximate a QoT model
by minimizing the mean squared error (MSE) loss function
over a training dataset, with a test dataset used to evaluate
the performance accuracy and error spread of the model [12],
[13]. Error spread information is subsequently used for margin
estimation, with the estimated margin being applied in decision
making for all unestablished lightpaths; that is, a constant
margin is considered for all lightpaths during decision making
(i.e., non-discriminative decision making) .

In this work, it is shown how prediction intervals, and
specifically deep quantile regression can be used to achieve
discriminative decision making (i.e., having a different margin
treatment for different lightpaths), resulting in an overall
margin that is significantly reduced, yet leading to accurate
decisions for both possible classes of lightpaths; that is, the
class of lightpaths with a true QoT that is sufficient, and the
class of lightpaths with a true QoT that is insufficient. In con-
trast, it is shown that existing (traditional) margin estimation
methods [12], [13] lead to accurate decisions only in the latter
class, significantly reducing the accuracy of the former; an
indicator that existing methods highly underestimate the true
QoT of the lightpaths.

II. DEEP QUANTILE REGRESSION FOR QOT INFERENCE

The proposed framework is based on learning conditional
quantile functions with DNNs. These functions can then be
used for building prediction intervals, estimating appropriate
margins for each unestablished lightpath, and ultimately uti-
lizing this information for confident decision making. This
section provides the preliminaries of this work by first formally
defining the conditional quantile functions and then describing
how such functions are learned by means of deep regression.

A. Conditional Quantile Function

Let X and Y be random variables with a conditional
cumulative distribution function F (y|X) = Pr(Y ≤ y|X).
For 0 < τ < 1, the conditional quantile function of Y given
X is defined as [9]

QY (τ |X) = inf{y : F (y|X) ≥ τ}, (1)

that is, conditional quantile function QY (τ |X) returns the
minimum value of y from amongst all those values whose
conditional cumulative distribution function value exceeds τ .
Equivalently, QY (τ |X) returns the y value such that

F (y|X) := Pr(Y ≤ y|X) = τ. (2)

Like the conditional distribution function (F (y|X)), QY (τ |X)
provides a complete description of the statistical properties of
the random variable Y given X and it is referred to as the
τ quantile which in essence determines the percentage of a
population that is above or below a certain threshold.

In the QoT estimation problem, let Y be the random variable
of the QoT values (i.e., measured in dB) for a set of lightpaths
(i.e., a population), and X be the random variable of the
lightpath observations. Then, the τ quantile returns, for any

given lightpath X = x, a QoT value y such that the probability
that the true QoT value of x will be less than or equal to y
is equal to τ (Eq. (2)). In general, it is desirable that this
probability is low (i.e., τ → 0) to provide a lower bound
for the estimations. In contrast, as τ → 1, upper bounds are
derived; that is, the probability that the true QoT value of x
will be above y is close to zero.

B. Calculating Prediction Intervals

A prediction interval is therefore calculated between τu and
τl quantiles, where τu > τl, with each quantile returning yu
and yl values, respectively, given a lightpath x. According to
these quantiles the probability of the true QoT value, yt, of
lightpath x to fall between yu and yl is given by

Pr(yl ≤ yt ≤ yu) = τu − τl. (3)

Depending on the use case, these calculated predictions inter-
vals must be able to support confident decision making. For
example, for the QoT decision making problem, it is important
that the lower τl quantile is estimated according to a small
value. Nevertheless, the optimal τl value, cannot be known
a-priori, as it depends on how each selection affects decision
making. Specifically, it depends on the impact that each τl
selection has on the classification accuracy of lightpaths within
each class of interest and the targeted performance accuracies.

Further, regarding the upper τu quantile, clearly, this in-
formation does not directly add any value in QoT decision
making. However, in this work an upper quantile is considered
for completeness and to illustrate the extend of variability
between the prediction intervals derived for each individual
lightpath. This information can be used in future research
efforts to investigate the reasons why the possible QoT values
of some lightpaths are bounded according to small predic-
tion intervals, while others are bounded according to larger
intervals (i.e., the reasons why some lightpaths are subject to
higher uncertainty). Identification of lightpaths that are subject
to higher uncertainty may lead to further improvement in
QoT estimation and decision making (e.g., such lightpaths can
be characterized by certain qualities that the model was not
trained to learn/does not know).

C. Learning Quantiles with DNNs

In general, quantile regression is an extension of classical
least squares estimation of conditional mean models to the
estimation of an ensemble of models for several conditional
quantile functions. Specifically, conditional quantile functions
are estimated by minimizing the asymmetrically weighted sum
of absolute errors [9]:

Lτ =
1

n

n∑
i=1

ρτ
(
yit − Q̂Y (τ |xi)

)
, (4)

where

ρτ (z) =

{
τz, if z ≥ 0,
(τ − 1)z, if z < 0,

(5)
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n is the number of observed lightpaths, xi ∈ Rd is a vector
describing the i-th lightpath of X , yit ∈ R is the true QoT
value of this lightpath, and Q̂Y (τ |xi) is an approximation of
the τ quantile returning QoT estimate (i.e., prediction) ŷiτ for
lightpath i, ∀ i = 1, .., n. Note that a special case of Eq. (4)
is the median regression estimator which minimizes the mean
absolute error (MAE) loss function (i.e., τ = 0.5).

In this work, the τ quantile is parameterized by a DNN
model that is trained to estimate Q̂Y (τ |X,Θ), where Θ are the
unknown parameters of the quantile DNN model. Specifically,
the model is optimized to minimize the loss function of Eq. (4),
given a training dataset D = (X,Y ) = {xi, yit}ni=1. For
training, the Adam optimization algorithm [16] was used.

III. DATASET GENERATION

The dataset was generated for the Deutsche Telekom (DT)
network topology (Fig. 1), with the link distances scaled
down three times to match the specifications of the Q-factor
tool [14], [17] used for generating the ground truth QoT values
of the lightpaths. The network capacity was set to 32 C-band
wavelengths for each link in the network. Two thousand uni-
cast and multicast lightpath requests were randomly generated,
with a varying multicast group size of up to 3 destination
nodes. Requests were generated according to a Poisson process
with exponentially distributed holding times with a unit mean,
for a network load of 100 Erlangs.

Fig. 1. DT network topology.

Multicast requests were routed according to the Steiner
tree heuristic, unicast requests were routed according to the
Dijkstra’s algorithm, and the first-fit algorithm was applied
for wavelength allocation. All provisioned light-trees were
decomposed to a set of lightpaths, creating, together with the
unicast connections, a dataset D with n = 5497 lightpaths in
total. For each lightpath i, vector xi = [xi1, x

i
2, .., x

i
m] ∈ X

was created according to the set of features considered in [3],
[18] (i.e., xi1 represents path length, xi2 represents maximum
link length, xi3 represents allocated wavelength, etc.), shown to
sufficiently describe a lightpath for ML-aided QoT modeling.
The ground truths yit ∈ Y were computed by the Q-factor tool
(i.e., having values in dB).

It is worth mentioning that while the dataset was synthet-
ically generated, this does not affect the scope of this work,

which is to demonstrate the potential of quantile regression
to achieve margin reduction and accurate decisions making,
compared to the state-of-the-art least-square regression and
error spread-based margin estimation approaches. In essence,
to demonstrate the potential of quantile regression to capture
model and input uncertainty, subsequently utilizing this in-
formation in decision making. All approaches are evaluated
and compared on the same dataset. As uncertainty is expected
to be higher with datasets obtained utilizing real networks
(e.g., due to noisy inputs in optical performance monitoring
and/or outliers), such frameworks are expected to be even more
important in practical real-world scenarios.

IV. MODEL TRAINING AND INFERENCE ACCURACY

Several QoT models were trained, with each model opti-
mized according to a different loss function. Specifically, for
quantile regression the loss function in Eq. (4) was applied
for τl = 0.1 and τu = 0.95, to create the lower (ŷ∗l ) and
upper (ŷ∗u) estimates, respectively, for any unseen lightpath
pattern x∗ (i.e., a lightpath pattern that was not used during
training). Additionally, a QoT model was trained to minimize
the MSE function to generate the estimate (i.e., prediction)
ŷ∗. These predictions correspond to the mean response of the
model, commonly considered in the QoT estimation literature.
In this work these predictions are utilized to estimate the
margins and perform decisions in the conventional way, hence
allowing us to compare with the proposed approach (i.e., used
as benchmarks).

Both the quantile and least squares QoT models were
parameterized by a DNN model with 3 hidden layers of 64, 64,
and 32 hidden units. The rectified linear unit (ReLU) activation
function [19] was used for all hidden units. Training was
performed according to 40 epochs, with a batch size equal
to 100, and a learning rate equal to 0.001. Before training,
validation, and testing, dataset D was scaled for the input
features to be standard normally distributed. Seventy percent
(70%) of the patterns in D were used for training from which
20% was used for model validation, with the remaining 30%
of the patterns in D used for testing (i.e., 1650 test patterns
in total).

Figure 2 illustrates the L0.1 loss, L0.95 loss, and MSE
loss performance as training evolves. Clearly, the loss for
both training and validation datasets reduces and eventually
converges as the number of epochs increases for all loss
functions considered. Specifically, performance accuracy (for
the test dataset) is 0.0259 for the L0.1 loss function, 0.0195
for the L0.95 loss function, and 0.0258 for the MSE loss
function. Note that all models achieved to similarly reduce
their respective loss function.

The resulting prediction interval, formed by the 0.95 and 0.1
quantile models, was validated according to the test patterns
resulting in 90% of the QoT ground truths falling within the
inferred 0.85 prediction interval, 99% falling below the in-
ferred upper quantile, and 91% falling above the inferred lower
quantile. Note that even though upper and lower quantiles
were trained to infer a 0.85 prediction interval, our validation
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Fig. 2. Loss vs number of training epochs; L0.1 loss function, L0.95 loss function, and MSE loss function.

exceeded this probability. This is mainly due the fact that the
quantiles are just approximations.

It should be mentioned that a large number of lightpaths
was utilized for model training and testing. This was done
to ensure that all models will converge by sufficiently mini-
mizing their respective loss function, hence leading to a fair
comparison between the models. As in practice, however, a
large number of patterns may not readily available, especially
at the deployment stage of the network, active and transfer
learning techniques have emerged as promising techniques
towards reducing the size of dataset required for QoT model
training [20].

Furthermore, several other τ quantiles were trained, espe-
cially for estimating the lower τl quantile. In these preliminary
results we opted to examine further only the 0.1 quantile
that achieved significant margin reduction in conjunction with
accurate QoT related decisions, as compared to the benchmark
methods. Nevertheless, since further improvements may be
possible by better fine tuning τl, examining the impact of
various τl quantiles on margin reduction and decision accuracy
is planned for future work.

V. MARGIN ESTIMATION AND COMPARISONS

Typically, a design margin is considered to compensate for
the inaccuracies of ML-aided QoT models, approximated ac-
cording to least squares techniques. Specifically, this margin is
used to deal with the predictions overestimating the true QoT
of lightpaths, hence penalizing accordingly all predictions. The
two following approaches, reported in the literature for such
margin estimation, are used as benchmarks:
•Worst Error Margin (Mw): is the maximum error resulting
between the true and predicted QoT amongst all lightpaths
with their true QoT overestimated by the predictions [13]:

Mw = max
yit<ŷ

i
{|yit − ŷi|}n

′

i=1, (6)

where n′ is the number of patterns in the test dataset, and ŷi

is the QoT prediction (i.e., mean response of the model).
• Empirical Rule Error Margin (Me): is based on the
empirical rule error stating that 99.7% of the data (i.e., errors)
will be within three standard deviations of the mean error (i.e.,
µ±3σ), provided that the errors follow a Gaussian distribution.
Hence, to account for the worst error [12],

Me = µ+ 3σ, (7)

where µ = 1
n′

∑n′

i=1 |yit − ŷi| is the mean absolute error
resulting between the true and predicted QoT values in the

test dataset, and σ =
√

1
n′

∑n′

i=1(yit − ŷi)2 is the standard
deviation of the error.

In the proposed framework, in essence, the τl quantile
model automatically predicts a lower QoT estimate for each
individual lightpath. Hence, in practice, margin estimation is
not required, as the outputs of the lower quantile model can be
directly used for decision making. However, for comparison
purposes, to evaluate whether the proposed approach reduces
the margins considered in the benchmark approaches, the
quantile equivalent margin is utilized:
• Equivalent Average Quantile Margin (M̄q): is the mean
difference between the predicted and the lower quantile QoT
values of all lightpaths in the test dataset. Specifically,

M̄q =
1

n′

n′∑
i=1

(ŷi − ŷil). (8)

For each lightpath, the Mq margin is different, thus M̄q

is computed. Hence, just like Mw and Me, M̄q indicates
the (average) equivalent penalty applied to a least squares
prediction (i.e., indicates how much, on average, a prediction
is reduced to reach the lower quantile value considered for
decisions making).

Table I, reports the margin values estimated according to
the different approaches, given the trained models and the test
dataset. Clearly, M̄q outperforms both benchmarks, resulting
in a 75% margin reduction (on average) when compared
to Mw, and in a 66% margin reduction (on average) when
compared to Me. Insights on why M̄q achieves such a reduc-

TABLE I
ESTIMATED MARGINS (IN dB)

Mw Me M̄q ± std

0.832 0.5938 0.2± 0.15

tion are given by observing Fig. 3, illustrating the prediction
intervals between quantile estimates ŷ∗l and ŷ∗u, mean response
predictions ŷ∗, and ground truths y∗t , for a small number of
lightpaths randomly selected from the test dataset. Clearly,
ground truths of some lightpaths are tightly bounded by the
quantiles (i.e., by a small prediction interval), while for others
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the prediction intervals are larger. In general, the prediction
intervals vary, depending on the uncertainty level of the model,
for each input lightpath. The lower quantile estimate is capable
of capturing exactly this fact, by distinguishing between the
different inputs, hence returning a QoT estimate that is not
lower than necessary, given the desired certainty level (i.e..,
the τ value).

On the other hand, both Mw and Me margins, have no way
of distinguishing between the input patterns, unnecessarily
penalizing all lightpaths. As an example, the Mw margin
will unnecessary reduce the predictions of several lightpaths
(e.g., lightpaths 1, 4, 8, 9, 10, 17 in Fig. 3) by a large constant
margin to mitigate the error of lightpath 11 (i.e., the maximum
error occurs for lightpath 11). The same holds true for the
Me margin which is lower than Mw, but still unnecessarily
reduces the predictions of these lightpaths. Specifically, the
lower quantile for these lightpaths suggests that the probability
that such (low) values will occur is below 10%.

Nevertheless, lower quantile estimates still have a probabil-
ity of failing, depending on the τ quantile selected. This is
clearly shown for lightpaths 11 and 18 in Fig. 3, where their
ground truths fall below the 0.1 (lower) quantile estimates.
As τ → 0, this probability will reduce to zero. However, in
decision making, having this probability go to zero is not
of the utmost importance. Instead, it is more important to
sufficiently reduce this probability to the point where decision
accuracy, for both classes of interest, is the best possible;
that is, the probability to accurately identify the lightpaths
with insufficient QoT is close to 1, without significantly
reducing the probability to accurately identify the lightpaths
with sufficient QoT.

Fig. 3. QoT prediction intervals, ground truths, and predictions for a number
of lightpaths.

VI. DECISION ACCURACY AND COMPARISONS

To investigate how each margin estimation approach affects
decision accuracy, the QoT models’ outputs have been utilized
to classify the estimated QoT of lightpaths in the two classes
of interest, namely Class 1 and Class 2, that correspond to
the lightpaths with insufficient QoT and with sufficient QoT,
respectively.

Specifically, a lightpath belongs to Class 1 if its QoT is
above a given QoT threshold (or equal to it) and to Class 2
otherwise. Several QoT thresholds are considered (Table II),
with the accuracy evaluated on the lightpaths of the test
dataset. Hence, decisions are taken according to the inferred
QoT values reduced by the margin considered, and accuracy
is tested against the ground truths in the test dataset. For the
Mw and Me margins, inference is performed according to the
obtained least squares QoT model with the estimates reduced
by Mw/Me, while for the lower quantile approach, QoT
estimates can be directly used for decision making, without
any further reduction.

TABLE II
CLASSIFICATION ACCURACY FOR SEVERAL QOT THRESHOLDS

Threshold 9.5 dB Threshold 9 dB

Mw Me Mq Mw Me Mq

Accuracy 0.92 0.93 0.96 0.88 0.91 0.95

Class 1 Accuracy 1 1 0.99 1 1 1

Class 2 Accuracy 0.82 0.87 0.93 0.79 0.84 0.9

Threshold 8.5 dB Threshold 8 dB

Mw Me Mq Mw Me Mq

Accuracy 0.89 0.92 0.96 0.93 0.95 0.97

Class 1 Accuracy 1 1 1 1 1 0.99

Class 2 Accuracy 0.82 0.88 0.93 0.89 0.93 0.96

Threshold 7 dB Threshold 7.5 dB

Mw Me Mq Mw Me Mq

Accuracy 0.74 0.76 0.86 0.67 0.82 0.96

Class 1 Accuracy 1 0.99 0.99 1 1 1

Class 2 Accuracy 0.7 0.73 0.84 0.66 0.82 0.95

Clearly, the classification accuracies of Table II indicate
that while both Mw and Me margin approaches succeed to
accurately classify lightpaths in Class 1, this is done by highly
underestimating the true QoT of all lightpaths, leading to low
accuracy in Class 2. The quantile approach (i.e., Mq) similarly
succeeds in Class 1 classification, yet it outperforms both Mw

and Me approaches in Class 2 classification; an indicator that
Mq underestimates less the true QoT of lightpaths compared
to the benchmarks. Specifically, the quantile approach outper-
forms benchmarks Mw/Me up to 30%/14% in total accuracy,
and up to 30%/13% in Class 2 accuracy, with up to 1% loss
in Class 1 accuracy. Nevertheless, as previously mentioned,
in the quantile approach, it is possible that this loss can be
further reduced by fine tuning the τl value.

It should be noted that quantile regression has an additional
advantage arising from the fact that the inferred quantiles (i.e.,
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future observations combined with margins) do not depend on
the statistical analysis of the error observed amongst the test
patterns. Instead, it directly outputs QoT estimates combined
with margins, for every future lightpath. In contrast, Mw and
Me, that depend on the statistical analysis of the error, may
not yield appropriate margins, as future lightpaths may behave
differently, radically changing the values of these margins
(e.g., the worst error deviation possible may not be observed in
the test patterns). Furthermore, Me is based on the assumption
that the error follows the Gaussian distribution, which may not
be the case, especially for data obtained in the field which are
subject to noisy observations.

Finally, it is important to be mentioned that quantile regres-
sion and decision making is not equivalent to the traditional
classification approach previously applied in the literature for
QoT related decisions [3], [10], [21]–[23]. The classification
approach in essence combines prediction and decision making,
which may lead to premature decisions. Specifically, while it
has been shown in these works that high classification accu-
racies can be achieved, in total and in both classes of interest
as well, traditional classification techniques tend to balance
the classification error within the classes of interest, especially
when enough observations (history) are present in both classes.
On the other hand, in general, quantile regression has the
advantage of controlling the classification error, depending on
what is critical in decision making for the underlying use case.

VII. CONCLUSION

Deep quantile regression is a promising approach for accu-
rate QoT decision making, without the need of significantly
underestimating the QoT of all future lightpaths. Specifi-
cally, it is shown that quantile QoT models can achieve
accurate decisions for the critical Class 1 (close or up to
100% accuracy), yet outperforming traditional margin-based
approaches in total accuracy and in accuracy obtained within
the class of lightpaths with sufficient QoT (Class 2). The latter
improvement is based on that fact that quantile regression
achieves to significantly reduce the traditional margins con-
sidered for QoT-related decisions. As margin reduction and
accurate decision making ultimately save network capacity,
an interesting future direction is the examination of capacity
savings in conjunction with fine tuning the certainty level of
the lower quantile (i.e., the probability τ ) that is considered
for decision making.
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