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Abstract—Low-latency applications, such as cloud gaming 

or cloud robotics are very demanding in terms of network 

latency. The IETF defines the L4S (Low Latency Low Loss 

Scalable throughput) architecture, to enable the delivery of 

high-bitrate low-latency applications without degrading the 

quality of other services. To deploy and upgrade L4S in network 

equipment to follow the transport protocols entering an age of 

quick evolutions, P4 (Programming Protocol-Independent 

Packet Processor), a programmable data plane concept, can 

help since it facilitates the deployment of networking software. 

In this paper, we propose a P4-based L4S solution and the 

performed evaluation proves our system behaves as expected. 

Furthermore, to be largely deployed, L4S should also be 

efficient under real cellular network conditions, which can vary 

over time and where the main network bottlenecks are. 

However, our evaluation shows limitations of L4S in providing 

high throughput while ensuring low latency delivery with time 

varying network conditions. 

Keywords— L4S, P4, Low-Latency, AQM, Programmable 

I. INTRODUCTION 

Network latency is known to be a pain point for a broad 

family of applications including cloud gaming [1], cloud 

robotics [2] and tele-robotics [3]. While the amount of 

information exchanged is highly variable among 

applications, the delay at which this information is 

transmitted by networks is a shared issue. End-to-end latency 

can be improved at different points of the delivery chain: 

endpoints, network links or network equipment [4]. Existing 

network solution like prioritization such as with DiffServ [5], 

or resource reservation can help for managed networks, 

however these approaches reveal intractable with high bitrate 

traffic as they starve the other traffic sources. Latency-aware 

congestion controls are endpoint based solutions, but they are 

unable to control the latency and can be starved in presence 

of latency unaware traffic. Another option consists in 

assisting the traffic source to react to network congestion, 

like with ECN (Explicit Congestion Control) [6][7], but it 

needs distinct queues for low-latency applications and other 

traffic types, leading to possible unfair throughput sharing. 

To improve the coexistence of different traffic types, the 

IETF proposes the promising L4S (Low Latency Low Loss 

Scalable throughput) architecture [8], together with the 

DualQ Coupled AQM [9], which enables the fair sharing of 

bandwidth of the low-latency (LL) traffic and other best 

effort (BE) traffics, via a coupling between the two queueing 

algorithms. For ensuring low latency, L4S relies on Accurate 

ECN [10], an evolution of ECN, which allows the sender to 

 
 

react more finely according to the congestion level, but 

which requires an adapted transport stack, such as DCTCP, 

designed for data centers, or TCP-Prague, adapted from 

DCTCP to be deployed over the Internet [11]. Moreover we 

anticipate that other transport protocols such as QUIC (Quick 

UDP Internet Connections) and RTP (Real-Time Transport 

Protocol) and other congestion controls such as RMCAT 

(RTP Media Congestion Avoidance) will also support L4S 

in the future. 

The L4S system requires upgrades on endpoints but also in 

network equipment, where evolutions can take a very long 

time to be deployed. To speed it, the programmable network 

paradigm was adopted with technologies such as SDN 

(Software Defined Networking) and NFV (Network Function 

Virtualisation) and more  recently, the P4 (Programming 

Protocol-Independent Packet Processor) concept [12][13]. 

This solution makes the network more agile by enabling the 

quick deployment of data plane networking software that is 

executed on network equipment hardware, and shortens the 

update lifecycles. 

In this paper, we advocate the use of such concepts, which 

will be the corner stone of the future networks. We then 

designed and implemented a L4S solution for a P4-based 

programmable network equipment, which would allow fast 

deployment of L4S evolutions, proving the feasibility to 

make it. L4S is still recent and, to the best of our knowledge, 

has been evaluated only for constant network conditions. 

However, in current networks, the main bottleneck is the 

access network where congestion can often happen because 

of the limited and varying capacity of the link. Cellular 

networks, where latency can greatly change, are then a key 

issue for L4S and it is therefore crucial to evaluate it in such 

conditions. The evaluations we performed showed that, under 

time varying network conditions, L4S does not perform as 

well as in constant bitrate conditions, since it can hardly 

achieve a good throughput while ensuring low latency, 

because of the transmission time intervals. 

In Section II, we present some works related to ours. In 

Section III, we describe the L4S solution for a P4-based 

network switch. The evaluation of the solution and the 

evaluation of L4S under time varying network conditions is 

detailed in section IV, before we conclude this paper in 

section V. 

II. RELATED WORK 

The relevance of P4 for different use-cases and amongst 

them for assisting the delivery of low-latency services is 
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explored in some papers [14]. As the reduction of queuing 

delays is reckoned to have one of the most performance-gain-

to-deployment-cost ratio for end-to-end latency [15], we 

focus in this paper on this type of solutions. AQM (Active 

Queue Management) algorithms [16] are used to prevent 

network congestion, by deciding to drop or to mark packets 

depending on the filling level of the queue.  

Few published papers deal with P4 and AQM, and we can 

mainly cite three. Noticing the lack of modern AQM, such as 

CoDel and PIE, in deployed network equipment, the authors 

of [17] demonstrate and evaluate the implementation of 

CoDel using P4. Their objective is to fight bufferbloat for any 

type of traffic rather than to distinguish the LL traffic from 

the classic traffic. Assuming that programmable traffic 

management at the data plane can lead to great benefits for 

QoS, the authors of [18] implement in P4 the PI2 AQM [19] 

for reducing queuing delay. They proved that implementing 

a modern AQM in P4 is not tricky and requires only basic bit 

manipulations at the data plane. A P4-based framework, 

using DPDK (Data Plane Development Kit), for evaluating 

AQM algorithms is proposed in [20]. Their goal is focused 

on the evaluation framework and they demonstrated it using 

the PIE and RED AQMs. This is then complementary with 

our approach which is focused on L4S but ours integrates the 

possibility to emulate time varying network conditions. 

An interesting work is the self-tuning queuing delay 

regulation system proposed in [21]. The objective is to design 

an AQM system that adapts itself to the network and traffic 

conditions. This AQM seems promising but the bandwidth 

sharing is not fully ensured and it is not yet available for 

programmable switch. Porting it onto a P4 framework could 

be beneficial to our goal, as we did for L4S.  

Regarding the work related to L4S, few papers worth being 

mentioned. The L4S concept has been first submitted and 

evaluated with a Linux-based implementation in [22] and 

refined in [23], where the main concepts of a dual coupled 

AQM for bandwidth sharing are introduced. It has initiated 

the creation of an IETF working group [8] aiming at 

standardizing a L4S architecture. In [24], additional tests are 

performed to evaluate the Linux-based L4S solution with 

DCTCP for Datacenters networks and with TCP-Prague for 

use in operators’ networks. In this paper, we reproduce tests 

similar to [24] in order to prove the P4-based L4S solution 

behaves as expected and similarly to the Linux-based 

implementation, but we also performed tests under time 

varying network conditions, which has not yet been done. 

In [25], the authors argue that existing L4S schedulers are 

not able to handle the fairness degraded by heterogeneous 

RTTs, and propose the Virtual Dual Queue Core Stateless 

AQM. Our P4S-based implementation does not have this 

limitation thanks to our WRR (Weighted Round Robin) 

optimized scheduler. Furthermore, they did not evaluate the 

proposed AQM under variables networks conditions. 

III. P4-BASED DESIGN & IMPLEMENTATION OF L4S  

This section describes the P4-based network equipment 

which implements the IETF L4S architecture (Fig. 1). 

The use of the P4 environment is motivated by the possibility 

to have an open network equipment allowing operators to 

quickly deploy programs in response to the coming fast 

evolution of applications, transport protocols or algorithms. 

Indeed, our system works with IP/TCP and ECN flags, but 

we might imagine evolutions or other transport protocols 

with different headers (e.g., QUIC could soon support ECN, 

as it has already been implemented in the picoquic stack, RTP 

could later support it as well), which can easily be taken into 

account with P4 (i.e. by changing the parser of the P4 

program). Similarly, we might think that a better solution 

than L4S can emerge and implementing it in P4 will allow its 

fast deployment in network equipment. The possible 

modifications, changes or upgrades of the parser, classifier or 

AQMs, and the genericity of the solution are the reasons why 

we opt for the P4 framework. 

 

The following describes how the P4 program processes 

packets and explains the role of the L4S modules, shown in 

Fig. 1, on top of the P4 pipeline (as described by [13]).  

• The first component is the P4 parser which extracts the 

IP and TCP headers of the packet, to evaluate the ECN bit.  

Then the packet classifier, implemented in the ingress part of 

the P4 program assigns the packet either to the LL or BE 

queue, depending on the ECN value. In the current version, 

this module is simple and just parses the ECN bit of the 

Diffserv field of the IP header to detect if the packet belongs 

to an “Accurate ECN” flow or not. When ECN-capable 

applications agreed with network operators, such a 

classification can provide sufficient security. Furthermore, 

since the program is aimed at being deployed in a network 

equipment processing packets at line-rate, we should 

implement a fast and efficient solution. However, we might 

imagine a classifier adapted to less controlled environment, 

based on flow patterns analysis (with Machine Learning 

techniques for instance), which could more securely classify 

traffic, avoiding malicious applications to play with the ECN 

flag. If this processing is too complex to be programmed in 

P4, an option we envision is to deport this network function, 

which might be deployed as a Virtual Network Function and 

connect it to a lightweight classifier module developed in P4, 

running in the network element, remotely configurable by the 

main module.  

We base our implementation on the P4 Linux BMv2 software. 

However, it is not fully adapted to our needs, since it 

currently implements a strict priority queueing mechanism 

(i.e., a lower priority queue is only served if all 

higher priority queues are empty) and with such a policy, the 

LL traffic will starve the BE traffic. It is then necessary to 

rethink the queue management policy of the BMv2 software 

to have two distinct queues, and we implement a weighted 

round robin (WRR) scheduler, configured with a 1/16 weight 

as recommended by the IETF [9] to dequeue packets and 

achieve the desired bandwidth sharing policy between the LL 

and BE queues. We also have to add throttling at the queue 

level since BMv2 only throttled the packet rate at the output 

port level thus creating an unmanaged bottleneck defeating 

the purpose of the two AQMs. It should be noted that these 

modifications have currently to be done in the BMv2 switch 

because the P4 traffic manager is not yet programmable [17] 

and we expect next P4 releases to change that. 



 

 

 

 

 
 

 
Fig. 1: P4-based implementation of L4S 

 

• We implement the AQMs of L4S in the egress part of 

the P4 program. The P4 framework offers an API 

(Application Programming Interface) to retrieve the time 

spent by one packet in a queue, which is used as input value 

to the AQMs. P4 also offers registers to store/retrieve data 

common to the switch i.e. not specific to the packet being 

processed. They are used for the last update time, the last 

mark/drop probability and the last delay in the queue, 

required by PI2. Finally, the PI2 parameters (Update time, α, 

β) are stored in a table of the P4 program and configurable by 

a controller. The latter can then dynamically modify those 

values to change the behavior of the PI2 AQM. We implement 

a linear AQM and a PI2 AQM as suggested by the IETF, but 

if other AQMs were known to be better suited, it would be 

possible to update network devices with another P4 program. 

After AQM computations, based on their respective 

probability, a decision for the LL and BE packets is taken: 

forward as is, mark or drop. The LL probability is the 

maximum between the probability output of the native AQM 

(LL traffic) and the probability of the base AQM (BE traffic) 

multiplied by a factor K (2 by default). This is where the 

"coupling" feature is, leading not to penalize the BE traffic. 

• Finally, the deparser of the P4 program has to 

reconstruct the final packet before forwarding it, if the packet 

has not to be dropped. 

IV. EVALUATION 

A. Testbed 

For the evaluation, we set up a tested, consisting of a P4-

based L4S network switch (or Linux-based L4S program), 1 

client and 1 server for a LL connection (using TCP-Prague 

and Accurate ECN) and 1 client and 1 server for a BE 

connection (using classic TCP with the Cubic congestion 

control algorithm). The 5 entities are hosted on the same 

laptop (a HP Elitebook 840, i5 bi-core and 8 GB RAM), each 

one in a KVM virtual machine. 

We instrument the switch to measure the time spent by 

packets in each queue, the number of packets being in the 

queues after the one just sent, and the number of unused 

transmission opportunities. For bandwidth sharing, we 

measure the throughput received by each client and the 

senders’ congestion window. 

We perform the tests with Iperf3 (during 300sec) and with a 

HTTP download (using lighttpd/Wget and content files of 

10Mb and 100Mb). The sender tries to send as much packets 

as it can and based on the received ECN marks (indicating 

congestion) for the LL traffic or on the detection of lost 

packets for the BE one, it reduces its bitrate. 

We configure delay (5ms, 10ms, 20ms, 50ms and 100ms as 

done in [24]) with NetEm to emulate RTT between the 

servers and the switch. On the client side, we perform tests 

with constant bitrate configurations at 4 Mbps, 12 Mbps, 24 

Mbps, 40 Mbps and with Mahimahi [26] for emulating time 

varying access network conditions. The 2 clients share the 

bandwidth. Finally we configure the P4-based switch to start 

notifying possible congestion for LL traffic with a low 

threshold at 3ms. For the BE traffic (PI2 AQM), this value is 

configured at 15ms. 

For space issues and because some behaviors are similar 

irrespective of the bandwidth or of Iperf3 or HTTP 

downloads, we do not present the results of all tests 

performed, but simply focus on the most noticeable results.  

B. P4-based L4S vs Linux-based L4S 

In this section, our goal is to validate the P4-based 

implementation of L4S by comparing its results with the ones 

obtained by the Linux-based reference implementation [23], 

also validated by [24]. 

As we can see on Fig. 2 and Fig. 3, bandwidth sharing 

between the LL traffic and the BE traffic is very fair (almost 

the same bitrate, ratio close to 1) for our P4 implementation. 

Our solution is very stable and even better than the Linux-

based one, where the ratio decreases as the delay increases. 

One reason can be that the scheduler is different. For Linux, 

the authors implemented a Time-Shifted FIFO scheduler, 

whereas we implement a Weighted Round-Robin one, 

assumed more stable, as recommended by the IETF [9]. 

For the time spent by the packets in the two queues (Fig. 4), 

we can see that our solution ensures that LL packets are 

delivered in a very short time as L4S requires. Our 

implementation is a bit less stable than the Linux-based 

software, but this is not crucial. This is due to the linux L4S 

software running in the kernel space, while our P4 program 

runs in the user space, having thus longer and more variable 

processing times.  Indeed, we roughly measured a processing 

time of a few micro-seconds for the linux L4S module and a 

time of hundreds of micro-seconds for our P4 

implementation. Since the final goal is to deploy such a P4 

program onto hardware P4 switch, this issue would be 

avoided as processing times would be much shorter. 

For the BE traffic, the delivery is a bit longer but in a 

reasonable time, in line with the PI2 configuration of L4S. In 

our solution, the BE delay in the queue is a bit shorter than 

the Linux one. This is due to our WRR scheduling 

implementation, modified to optimize the transmission 

opportunities. Indeed, if there is no packet in the LL queue 

while it is scheduled to send one, we send one (if any) of the 

BE queue so as not to lose this transmission time. 

To conclude this comparison, we can say that our P4-based 

implementation of L4S works very well and offers the 

expected behavior for both types of traffic. 

 



 

 

 

 

 
 

 

 
Fig. 2: Bandwidth sharing (in Mbps) with Throughput=12Mbps, with delay=5, 20 and 100ms for top) Linux L4S implementation; bottom) P4-based L4S 

implementation  

 
Fig. 3: Bandwidth sharing with delay=5, 10, 20, 50 and 100ms for left) 

Linux implementation; right) P4 implementation 
 

 
Fig. 4: CDF of latency in queue (LL & BE) with Bandwidth=12Mbps and 

delay=5, 10, 20, 50 and 100ms for top) Linux; bottom) P4 

C. L4S under time varying network conditions 

To our knowledge, L4S has been evaluated only under 

constant network conditions. However, in real cellular 

networks, the bitrate is not constant and can greatly vary. L4S 

behavior then needs to be evaluated under such time varying 

conditions. 

Mahimahi [26] offers a tool named Link Shell which allows 

to schedule the transmission of packets at a given interface, 

based on the transmission opportunities (txops) specified in a 

file. Several such files, generated from measurements on real 

cellular networks, are available as open data in Mahimahi’s 

github [27].  

To use the same time varying behaviour as in Mahimahi with 

our P4-based L4S solution, we modified the scheduling 

process of the P4 BMv2 switch to reproduce the Link Shell 

behavior and send packets according to the transmission time 

provided by the files capturing real txops measurements. 

We performed tests with two Mahimahi txops files (Verizon 

and TMobile dataset) but the L4S system reduced the low- 

latency traffic to a very low bitrate, sometimes leading to 

connections resets. Analyzing the datasets showed the mean 

bitrate is low since the duration between two txops (inter-

txops time) is sometimes long, much more than the  

configured L4S threshold (3ms) and that very few packets 

could be sent during txops. We think these txops files, 

extracted from network captures dated from 2016, are no 

more representative of current cellular bitrates  and decided 

to make our own captures, using the saturator tool [28][29]. 

This new dataset shows an average bitrate of almost 19 Mbps, 

shorter inter-txops times and more packets sent during txops. 

Fig. 6 shows the CDF of inter-txops time and the CDF of the 

number of packets transmitted per txop for the Verizon and 

Orange datasets. We can see that with the Orange traces, 

about 80% of the inter-txops times are less than 3ms, whereas 

it is below 70% for Verizon, and that 3 or more packets can 

be sent per txop about 50% of the times, whereas Verizon 

offers it for only 5% of the time. 

With the Orange file, we were able to perform tests but even 

if the file corresponds to a higher capacity cellular network, 

the results of the L4S system is far from being satisfactory, 

compared to the tests performed with a constant bitrate. 

Indeed, although the Orange file leads to a mean bitrate of 

about 19 Mbps, the L4S system behaves less efficiently (Fig. 

5-top) than the tests performed with a constant bitrate at 12 

Mbps (Fig 2-bottom), the LL traffic throughput being far



 

 
 

 

 
Fig. 5: Bandwidth sharing (in Mbps) with Orange traces, delay=5, 20 and 100ms, for top) L4S with Threshold=3ms; bottom) L4S with Threshold=9ms 

 

 
Fig. 6: Analysis of Verizon & Orange Mahimahi traces file, left) inter txops 

time; right) packets transmitted per txop 

 
Fig. 7: CDF of the number of packets in queues for P4-based L4S with 
Orange traces and delay=5ms, for left) L4S Threshold=3ms; right) L4S 

Threshold=9ms 
 

from the BE traffic throughput. The reason is that L4S very 

often marks LL packets because the time spent by the packet 

in the LL queue is frequently more than the configured 3ms 

threshold. This marking leads to sender’s reduction of the 

bitrate. This is a normal behavior looking at the CDF of the 

Orange dataset (Fig. 6-left) where we can see than about 20 

% of the dataset have an inter-txops time above 3ms. 

Furthermore the LL queue can only hold a few packets so as 

to ensure low latency. Indeed, more than 5 packets in the 

queue leads to marked packets (with a rough estimation of a 

constant 19 Mbps bitrate, one packet is sent every 0.65 ms, 

thus 5 packets in the queue are enough to reach the 3ms 

threshold before marking LL packets). This is confirmed by 

Fig. 7-left, where the LL queue size contains more than 5 

packets less than 5% of the time, while the Orange network 

can simultaneously send more than 5 packets 20% of the time 

(Fig. 6-right). Thus, the txops are wasted because there is no 

packet in the LL queue. 

 
Fig. 8: Number of unused txop for P4-based L4S with Orange traces, for 

left) L4S Threshold=3ms; right) L4S Threshold=9ms 

 
Fig. 9: Congestion Window for P4-based L4S with Orange traces, delay of 

5ms for left) L4S Threshold=3ms; right) L4S Threshold=9ms 
 

To confirm this, we measure on the P4 node the number of 

unused transmission opportunities. We can see that this value 

is huge for the LL traffic, about 140000 for a 5ms delay, 

which is 28 % of all the txops (Fig. 8-left), while it is about 

10000 (3% of txops) for a constant bitrate of 12 Mbps. 

We also measure on the server’s side the congestion window 

(with the linux ss tool), and Fig. 9-left highlights that the 

congestion window is always quite low for the LL traffic, and 

when it tries to increase, the sender quickly reduces it, 

because of the marked packets. Contrarily, the congestion 

window for the BE traffic is much higher. 

To double-check that the current L4S architecture, with a low 

threshold value for LL traffic, is not adapted to current time 

varying network conditions, we perform the same tests but 

with a LL threshold configured at 9ms (instead of 3ms). This 

value is far from being satisfactory for a low-latency 

application, but it just aims to confirm the effect of the 

variability of the inter-txops time on the L4S system. With 

such a threshold and with the same Orange dataset, the results 



 

 
 

are much better. We can see that the LL traffic can be 

transmitted at a higher bitrate, much closer to the BE traffic 

(Fig 5-bottom), as with a constant bitrate. The number of 

unused txops (Fig. 8-right), while still high, is lower than the 

one with a threshold of 3ms (about 30% lower) and that the 

number of packets in the LL queue size is more than 5 packets 

about 20% of the time (Fig. 7-right). Looking at the servers’ 

congestion window (Fig. 9-right), we can see than the LL 

server can increase much more its window, confirming higher 

delivery rate because of less frequently marked packets. 

This evaluation allows us to conclude that the L4S 

architecture is sensitive to the inter-txops time of the network 

and requires frequent txops. The number of packets that can 

be transmitted during a transmission opportunity is less 

critical since the small number of packets in the LL queue 

limits its effect. In current cellular networks, L4S is then not 

really effective and would require shorter time transmission 

intervals, such as allowed by 5G New Radio numerology. 

V. CONCLUSION & FUTURE WORK 

In this paper, we have presented a programmable P4-based 

network switch implementing a L4S solution. The evaluation 

proved the feasibility of such a solution, which performs as 

expected, i.e., ensure the forwarding of low-latency packets 

(latency kept below the target value) while not penalizing 

other best-effort traffic. We also showed that L4S under time 

varying network conditions, such as in real cellular networks, 

does not perform as well as in constant bitrate conditions, 

since it can hardly achieve a good throughput while ensuring 

low latency. We presented the recommendation for short 

transmission time intervals in order to have L4S behaving 

efficiently. Our future work will be 1) to modify L4S in order 

to act separately on delays caused by the scheduling of txops 

by the base station (e.g., influence the target queuing delay 

objective) from delays imputable to the sending rate of the 

source (e.g., to mark packets); 2) to implement our solution 

into a P4 hardware switch (such as those with a Tofino 

Chipset), prior steps towards possible deployment into real 

cellular networks. 
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