
HAL Id: hal-04064149
https://hal.science/hal-04064149

Submitted on 11 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike 4.0 International
License

Evaluating the L4S Architecture in Cellular Networks
with a Programmable Switch

Bertrand Mathieu, Stéphane Tuffin

To cite this version:
Bertrand Mathieu, Stéphane Tuffin. Evaluating the L4S Architecture in Cellular Networks with a
Programmable Switch. 2021 IEEE Symposium on Computers and Communications (ISCC), Sep
2021, Athens, Greece. pp.1-6, �10.1109/ISCC53001.2021.9631539�. �hal-04064149�

https://hal.science/hal-04064149
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://hal.archives-ouvertes.fr

Abstract—Low-latency applications, such as cloud gaming

or cloud robotics are very demanding in terms of network

latency. The IETF defines the L4S (Low Latency Low Loss

Scalable throughput) architecture, to enable the delivery of

high-bitrate low-latency applications without degrading the

quality of other services. To deploy and upgrade L4S in network

equipment to follow the transport protocols entering an age of

quick evolutions, P4 (Programming Protocol-Independent

Packet Processor), a programmable data plane concept, can

help since it facilitates the deployment of networking software.

In this paper, we propose a P4-based L4S solution and the

performed evaluation proves our system behaves as expected.

Furthermore, to be largely deployed, L4S should also be

efficient under real cellular network conditions, which can vary

over time and where the main network bottlenecks are.

However, our evaluation shows limitations of L4S in providing

high throughput while ensuring low latency delivery with time

varying network conditions.

Keywords— L4S, P4, Low-Latency, AQM, Programmable

I. INTRODUCTION

Network latency is known to be a pain point for a broad

family of applications including cloud gaming [1], cloud

robotics [2] and tele-robotics [3]. While the amount of

information exchanged is highly variable among

applications, the delay at which this information is

transmitted by networks is a shared issue. End-to-end latency

can be improved at different points of the delivery chain:

endpoints, network links or network equipment [4]. Existing

network solution like prioritization such as with DiffServ [5],

or resource reservation can help for managed networks,

however these approaches reveal intractable with high bitrate

traffic as they starve the other traffic sources. Latency-aware

congestion controls are endpoint based solutions, but they are

unable to control the latency and can be starved in presence

of latency unaware traffic. Another option consists in

assisting the traffic source to react to network congestion,

like with ECN (Explicit Congestion Control) [6][7], but it

needs distinct queues for low-latency applications and other

traffic types, leading to possible unfair throughput sharing.

To improve the coexistence of different traffic types, the

IETF proposes the promising L4S (Low Latency Low Loss

Scalable throughput) architecture [8], together with the

DualQ Coupled AQM [9], which enables the fair sharing of

bandwidth of the low-latency (LL) traffic and other best

effort (BE) traffics, via a coupling between the two queueing

algorithms. For ensuring low latency, L4S relies on Accurate

ECN [10], an evolution of ECN, which allows the sender to

react more finely according to the congestion level, but

which requires an adapted transport stack, such as DCTCP,

designed for data centers, or TCP-Prague, adapted from

DCTCP to be deployed over the Internet [11]. Moreover we

anticipate that other transport protocols such as QUIC (Quick

UDP Internet Connections) and RTP (Real-Time Transport

Protocol) and other congestion controls such as RMCAT

(RTP Media Congestion Avoidance) will also support L4S

in the future.

The L4S system requires upgrades on endpoints but also in

network equipment, where evolutions can take a very long

time to be deployed. To speed it, the programmable network

paradigm was adopted with technologies such as SDN

(Software Defined Networking) and NFV (Network Function

Virtualisation) and more recently, the P4 (Programming

Protocol-Independent Packet Processor) concept [12][13].

This solution makes the network more agile by enabling the

quick deployment of data plane networking software that is

executed on network equipment hardware, and shortens the

update lifecycles.

In this paper, we advocate the use of such concepts, which

will be the corner stone of the future networks. We then

designed and implemented a L4S solution for a P4-based

programmable network equipment, which would allow fast

deployment of L4S evolutions, proving the feasibility to

make it. L4S is still recent and, to the best of our knowledge,

has been evaluated only for constant network conditions.

However, in current networks, the main bottleneck is the

access network where congestion can often happen because

of the limited and varying capacity of the link. Cellular

networks, where latency can greatly change, are then a key

issue for L4S and it is therefore crucial to evaluate it in such

conditions. The evaluations we performed showed that, under

time varying network conditions, L4S does not perform as

well as in constant bitrate conditions, since it can hardly

achieve a good throughput while ensuring low latency,

because of the transmission time intervals.

In Section II, we present some works related to ours. In

Section III, we describe the L4S solution for a P4-based

network switch. The evaluation of the solution and the

evaluation of L4S under time varying network conditions is

detailed in section IV, before we conclude this paper in

section V.

II. RELATED WORK

The relevance of P4 for different use-cases and amongst

them for assisting the delivery of low-latency services is

Evaluating the L4S Architecture in Cellular

Networks with a Programmable Switch

Bertrand Mathieu, Stéphane Tuffin

Orange Labs

2 Av. Pierre Marzin – 2300 Lannion – France

{bertrand2.mathieu, stephane.tuffin}@orange.com

explored in some papers [14]. As the reduction of queuing

delays is reckoned to have one of the most performance-gain-

to-deployment-cost ratio for end-to-end latency [15], we

focus in this paper on this type of solutions. AQM (Active

Queue Management) algorithms [16] are used to prevent

network congestion, by deciding to drop or to mark packets

depending on the filling level of the queue.

Few published papers deal with P4 and AQM, and we can

mainly cite three. Noticing the lack of modern AQM, such as

CoDel and PIE, in deployed network equipment, the authors

of [17] demonstrate and evaluate the implementation of

CoDel using P4. Their objective is to fight bufferbloat for any

type of traffic rather than to distinguish the LL traffic from

the classic traffic. Assuming that programmable traffic

management at the data plane can lead to great benefits for

QoS, the authors of [18] implement in P4 the PI2 AQM [19]

for reducing queuing delay. They proved that implementing

a modern AQM in P4 is not tricky and requires only basic bit

manipulations at the data plane. A P4-based framework,

using DPDK (Data Plane Development Kit), for evaluating

AQM algorithms is proposed in [20]. Their goal is focused

on the evaluation framework and they demonstrated it using

the PIE and RED AQMs. This is then complementary with

our approach which is focused on L4S but ours integrates the

possibility to emulate time varying network conditions.

An interesting work is the self-tuning queuing delay

regulation system proposed in [21]. The objective is to design

an AQM system that adapts itself to the network and traffic

conditions. This AQM seems promising but the bandwidth

sharing is not fully ensured and it is not yet available for

programmable switch. Porting it onto a P4 framework could

be beneficial to our goal, as we did for L4S.

Regarding the work related to L4S, few papers worth being

mentioned. The L4S concept has been first submitted and

evaluated with a Linux-based implementation in [22] and

refined in [23], where the main concepts of a dual coupled

AQM for bandwidth sharing are introduced. It has initiated

the creation of an IETF working group [8] aiming at

standardizing a L4S architecture. In [24], additional tests are

performed to evaluate the Linux-based L4S solution with

DCTCP for Datacenters networks and with TCP-Prague for

use in operators’ networks. In this paper, we reproduce tests

similar to [24] in order to prove the P4-based L4S solution

behaves as expected and similarly to the Linux-based

implementation, but we also performed tests under time

varying network conditions, which has not yet been done.

In [25], the authors argue that existing L4S schedulers are

not able to handle the fairness degraded by heterogeneous

RTTs, and propose the Virtual Dual Queue Core Stateless

AQM. Our P4S-based implementation does not have this

limitation thanks to our WRR (Weighted Round Robin)

optimized scheduler. Furthermore, they did not evaluate the

proposed AQM under variables networks conditions.

III. P4-BASED DESIGN & IMPLEMENTATION OF L4S

This section describes the P4-based network equipment

which implements the IETF L4S architecture (Fig. 1).

The use of the P4 environment is motivated by the possibility

to have an open network equipment allowing operators to

quickly deploy programs in response to the coming fast

evolution of applications, transport protocols or algorithms.

Indeed, our system works with IP/TCP and ECN flags, but

we might imagine evolutions or other transport protocols

with different headers (e.g., QUIC could soon support ECN,

as it has already been implemented in the picoquic stack, RTP

could later support it as well), which can easily be taken into

account with P4 (i.e. by changing the parser of the P4

program). Similarly, we might think that a better solution

than L4S can emerge and implementing it in P4 will allow its

fast deployment in network equipment. The possible

modifications, changes or upgrades of the parser, classifier or

AQMs, and the genericity of the solution are the reasons why

we opt for the P4 framework.

The following describes how the P4 program processes

packets and explains the role of the L4S modules, shown in

Fig. 1, on top of the P4 pipeline (as described by [13]).

• The first component is the P4 parser which extracts the

IP and TCP headers of the packet, to evaluate the ECN bit.

Then the packet classifier, implemented in the ingress part of

the P4 program assigns the packet either to the LL or BE

queue, depending on the ECN value. In the current version,

this module is simple and just parses the ECN bit of the

Diffserv field of the IP header to detect if the packet belongs

to an “Accurate ECN” flow or not. When ECN-capable

applications agreed with network operators, such a

classification can provide sufficient security. Furthermore,

since the program is aimed at being deployed in a network

equipment processing packets at line-rate, we should

implement a fast and efficient solution. However, we might

imagine a classifier adapted to less controlled environment,

based on flow patterns analysis (with Machine Learning

techniques for instance), which could more securely classify

traffic, avoiding malicious applications to play with the ECN

flag. If this processing is too complex to be programmed in

P4, an option we envision is to deport this network function,

which might be deployed as a Virtual Network Function and

connect it to a lightweight classifier module developed in P4,

running in the network element, remotely configurable by the

main module.

We base our implementation on the P4 Linux BMv2 software.

However, it is not fully adapted to our needs, since it

currently implements a strict priority queueing mechanism

(i.e., a lower priority queue is only served if all

higher priority queues are empty) and with such a policy, the

LL traffic will starve the BE traffic. It is then necessary to

rethink the queue management policy of the BMv2 software

to have two distinct queues, and we implement a weighted

round robin (WRR) scheduler, configured with a 1/16 weight

as recommended by the IETF [9] to dequeue packets and

achieve the desired bandwidth sharing policy between the LL

and BE queues. We also have to add throttling at the queue

level since BMv2 only throttled the packet rate at the output

port level thus creating an unmanaged bottleneck defeating

the purpose of the two AQMs. It should be noted that these

modifications have currently to be done in the BMv2 switch

because the P4 traffic manager is not yet programmable [17]

and we expect next P4 releases to change that.

Fig. 1: P4-based implementation of L4S

• We implement the AQMs of L4S in the egress part of

the P4 program. The P4 framework offers an API

(Application Programming Interface) to retrieve the time

spent by one packet in a queue, which is used as input value

to the AQMs. P4 also offers registers to store/retrieve data

common to the switch i.e. not specific to the packet being

processed. They are used for the last update time, the last

mark/drop probability and the last delay in the queue,

required by PI2. Finally, the PI2 parameters (Update time, α,

β) are stored in a table of the P4 program and configurable by

a controller. The latter can then dynamically modify those

values to change the behavior of the PI2 AQM. We implement

a linear AQM and a PI2 AQM as suggested by the IETF, but

if other AQMs were known to be better suited, it would be

possible to update network devices with another P4 program.

After AQM computations, based on their respective

probability, a decision for the LL and BE packets is taken:

forward as is, mark or drop. The LL probability is the

maximum between the probability output of the native AQM

(LL traffic) and the probability of the base AQM (BE traffic)

multiplied by a factor K (2 by default). This is where the

"coupling" feature is, leading not to penalize the BE traffic.

• Finally, the deparser of the P4 program has to

reconstruct the final packet before forwarding it, if the packet

has not to be dropped.

IV. EVALUATION

A. Testbed

For the evaluation, we set up a tested, consisting of a P4-

based L4S network switch (or Linux-based L4S program), 1

client and 1 server for a LL connection (using TCP-Prague

and Accurate ECN) and 1 client and 1 server for a BE

connection (using classic TCP with the Cubic congestion

control algorithm). The 5 entities are hosted on the same

laptop (a HP Elitebook 840, i5 bi-core and 8 GB RAM), each

one in a KVM virtual machine.

We instrument the switch to measure the time spent by

packets in each queue, the number of packets being in the

queues after the one just sent, and the number of unused

transmission opportunities. For bandwidth sharing, we

measure the throughput received by each client and the

senders’ congestion window.

We perform the tests with Iperf3 (during 300sec) and with a

HTTP download (using lighttpd/Wget and content files of

10Mb and 100Mb). The sender tries to send as much packets

as it can and based on the received ECN marks (indicating

congestion) for the LL traffic or on the detection of lost

packets for the BE one, it reduces its bitrate.

We configure delay (5ms, 10ms, 20ms, 50ms and 100ms as

done in [24]) with NetEm to emulate RTT between the

servers and the switch. On the client side, we perform tests

with constant bitrate configurations at 4 Mbps, 12 Mbps, 24

Mbps, 40 Mbps and with Mahimahi [26] for emulating time

varying access network conditions. The 2 clients share the

bandwidth. Finally we configure the P4-based switch to start

notifying possible congestion for LL traffic with a low

threshold at 3ms. For the BE traffic (PI2 AQM), this value is

configured at 15ms.

For space issues and because some behaviors are similar

irrespective of the bandwidth or of Iperf3 or HTTP

downloads, we do not present the results of all tests

performed, but simply focus on the most noticeable results.

B. P4-based L4S vs Linux-based L4S

In this section, our goal is to validate the P4-based

implementation of L4S by comparing its results with the ones

obtained by the Linux-based reference implementation [23],

also validated by [24].

As we can see on Fig. 2 and Fig. 3, bandwidth sharing

between the LL traffic and the BE traffic is very fair (almost

the same bitrate, ratio close to 1) for our P4 implementation.

Our solution is very stable and even better than the Linux-

based one, where the ratio decreases as the delay increases.

One reason can be that the scheduler is different. For Linux,

the authors implemented a Time-Shifted FIFO scheduler,

whereas we implement a Weighted Round-Robin one,

assumed more stable, as recommended by the IETF [9].

For the time spent by the packets in the two queues (Fig. 4),

we can see that our solution ensures that LL packets are

delivered in a very short time as L4S requires. Our

implementation is a bit less stable than the Linux-based

software, but this is not crucial. This is due to the linux L4S

software running in the kernel space, while our P4 program

runs in the user space, having thus longer and more variable

processing times. Indeed, we roughly measured a processing

time of a few micro-seconds for the linux L4S module and a

time of hundreds of micro-seconds for our P4

implementation. Since the final goal is to deploy such a P4

program onto hardware P4 switch, this issue would be

avoided as processing times would be much shorter.

For the BE traffic, the delivery is a bit longer but in a

reasonable time, in line with the PI2 configuration of L4S. In

our solution, the BE delay in the queue is a bit shorter than

the Linux one. This is due to our WRR scheduling

implementation, modified to optimize the transmission

opportunities. Indeed, if there is no packet in the LL queue

while it is scheduled to send one, we send one (if any) of the

BE queue so as not to lose this transmission time.

To conclude this comparison, we can say that our P4-based

implementation of L4S works very well and offers the

expected behavior for both types of traffic.

Fig. 2: Bandwidth sharing (in Mbps) with Throughput=12Mbps, with delay=5, 20 and 100ms for top) Linux L4S implementation; bottom) P4-based L4S

implementation

Fig. 3: Bandwidth sharing with delay=5, 10, 20, 50 and 100ms for left)

Linux implementation; right) P4 implementation

Fig. 4: CDF of latency in queue (LL & BE) with Bandwidth=12Mbps and

delay=5, 10, 20, 50 and 100ms for top) Linux; bottom) P4

C. L4S under time varying network conditions

To our knowledge, L4S has been evaluated only under

constant network conditions. However, in real cellular

networks, the bitrate is not constant and can greatly vary. L4S

behavior then needs to be evaluated under such time varying

conditions.

Mahimahi [26] offers a tool named Link Shell which allows

to schedule the transmission of packets at a given interface,

based on the transmission opportunities (txops) specified in a

file. Several such files, generated from measurements on real

cellular networks, are available as open data in Mahimahi’s

github [27].

To use the same time varying behaviour as in Mahimahi with

our P4-based L4S solution, we modified the scheduling

process of the P4 BMv2 switch to reproduce the Link Shell

behavior and send packets according to the transmission time

provided by the files capturing real txops measurements.

We performed tests with two Mahimahi txops files (Verizon

and TMobile dataset) but the L4S system reduced the low-

latency traffic to a very low bitrate, sometimes leading to

connections resets. Analyzing the datasets showed the mean

bitrate is low since the duration between two txops (inter-

txops time) is sometimes long, much more than the

configured L4S threshold (3ms) and that very few packets

could be sent during txops. We think these txops files,

extracted from network captures dated from 2016, are no

more representative of current cellular bitrates and decided

to make our own captures, using the saturator tool [28][29].

This new dataset shows an average bitrate of almost 19 Mbps,

shorter inter-txops times and more packets sent during txops.

Fig. 6 shows the CDF of inter-txops time and the CDF of the

number of packets transmitted per txop for the Verizon and

Orange datasets. We can see that with the Orange traces,

about 80% of the inter-txops times are less than 3ms, whereas

it is below 70% for Verizon, and that 3 or more packets can

be sent per txop about 50% of the times, whereas Verizon

offers it for only 5% of the time.

With the Orange file, we were able to perform tests but even

if the file corresponds to a higher capacity cellular network,

the results of the L4S system is far from being satisfactory,

compared to the tests performed with a constant bitrate.

Indeed, although the Orange file leads to a mean bitrate of

about 19 Mbps, the L4S system behaves less efficiently (Fig.

5-top) than the tests performed with a constant bitrate at 12

Mbps (Fig 2-bottom), the LL traffic throughput being far

Fig. 5: Bandwidth sharing (in Mbps) with Orange traces, delay=5, 20 and 100ms, for top) L4S with Threshold=3ms; bottom) L4S with Threshold=9ms

Fig. 6: Analysis of Verizon & Orange Mahimahi traces file, left) inter txops

time; right) packets transmitted per txop

Fig. 7: CDF of the number of packets in queues for P4-based L4S with
Orange traces and delay=5ms, for left) L4S Threshold=3ms; right) L4S

Threshold=9ms

from the BE traffic throughput. The reason is that L4S very

often marks LL packets because the time spent by the packet

in the LL queue is frequently more than the configured 3ms

threshold. This marking leads to sender’s reduction of the

bitrate. This is a normal behavior looking at the CDF of the

Orange dataset (Fig. 6-left) where we can see than about 20

% of the dataset have an inter-txops time above 3ms.

Furthermore the LL queue can only hold a few packets so as

to ensure low latency. Indeed, more than 5 packets in the

queue leads to marked packets (with a rough estimation of a

constant 19 Mbps bitrate, one packet is sent every 0.65 ms,

thus 5 packets in the queue are enough to reach the 3ms

threshold before marking LL packets). This is confirmed by

Fig. 7-left, where the LL queue size contains more than 5

packets less than 5% of the time, while the Orange network

can simultaneously send more than 5 packets 20% of the time

(Fig. 6-right). Thus, the txops are wasted because there is no

packet in the LL queue.

Fig. 8: Number of unused txop for P4-based L4S with Orange traces, for

left) L4S Threshold=3ms; right) L4S Threshold=9ms

Fig. 9: Congestion Window for P4-based L4S with Orange traces, delay of

5ms for left) L4S Threshold=3ms; right) L4S Threshold=9ms

To confirm this, we measure on the P4 node the number of

unused transmission opportunities. We can see that this value

is huge for the LL traffic, about 140000 for a 5ms delay,

which is 28 % of all the txops (Fig. 8-left), while it is about

10000 (3% of txops) for a constant bitrate of 12 Mbps.

We also measure on the server’s side the congestion window

(with the linux ss tool), and Fig. 9-left highlights that the

congestion window is always quite low for the LL traffic, and

when it tries to increase, the sender quickly reduces it,

because of the marked packets. Contrarily, the congestion

window for the BE traffic is much higher.

To double-check that the current L4S architecture, with a low

threshold value for LL traffic, is not adapted to current time

varying network conditions, we perform the same tests but

with a LL threshold configured at 9ms (instead of 3ms). This

value is far from being satisfactory for a low-latency

application, but it just aims to confirm the effect of the

variability of the inter-txops time on the L4S system. With

such a threshold and with the same Orange dataset, the results

are much better. We can see that the LL traffic can be

transmitted at a higher bitrate, much closer to the BE traffic

(Fig 5-bottom), as with a constant bitrate. The number of

unused txops (Fig. 8-right), while still high, is lower than the

one with a threshold of 3ms (about 30% lower) and that the

number of packets in the LL queue size is more than 5 packets

about 20% of the time (Fig. 7-right). Looking at the servers’

congestion window (Fig. 9-right), we can see than the LL

server can increase much more its window, confirming higher

delivery rate because of less frequently marked packets.

This evaluation allows us to conclude that the L4S

architecture is sensitive to the inter-txops time of the network

and requires frequent txops. The number of packets that can

be transmitted during a transmission opportunity is less

critical since the small number of packets in the LL queue

limits its effect. In current cellular networks, L4S is then not

really effective and would require shorter time transmission

intervals, such as allowed by 5G New Radio numerology.

V. CONCLUSION & FUTURE WORK

In this paper, we have presented a programmable P4-based

network switch implementing a L4S solution. The evaluation

proved the feasibility of such a solution, which performs as

expected, i.e., ensure the forwarding of low-latency packets

(latency kept below the target value) while not penalizing

other best-effort traffic. We also showed that L4S under time

varying network conditions, such as in real cellular networks,

does not perform as well as in constant bitrate conditions,

since it can hardly achieve a good throughput while ensuring

low latency. We presented the recommendation for short

transmission time intervals in order to have L4S behaving

efficiently. Our future work will be 1) to modify L4S in order

to act separately on delays caused by the scheduling of txops

by the base station (e.g., influence the target queuing delay

objective) from delays imputable to the sending rate of the

source (e.g., to mark packets); 2) to implement our solution

into a P4 hardware switch (such as those with a Tofino

Chipset), prior steps towards possible deployment into real

cellular networks.

ACKNOWLEDGEMENT

This work is partially funded by the French ANR MOSAICO

project, No ANR-19-CE25-0012.

REFERENCES

[1] M. Carrascosa and B. Bellalta, "Cloud-gaming: Analysis of Google

Stadia traffic," in Computer Science ArXiv, 2020
[2] B. Kehoe, S. Patil, P. Abbeel and K. Goldberg, "A Survey of Research

on Cloud Robotics and Automation," in IEEE Transactions on

Automation Science and Engineering, vol. 12, no. 2, pp. 398-409,
April 2015

[3] Avgousti, S., Christoforou, E.G., Panayides, A.S. et al. Medical

telerobotic systems: current status and future trends. BioMed Eng
OnLine 15, 96, 2016

[4] X. Jiang et al., "Low-Latency Networking: Where Latency Lurks and

How to Tame It," in Proceedings of the IEEE, vol. 107, no. 2, pp. 280-
306, Feb. 2019

[5] Nichols, K., Blake, S., Baker, F., and D. Black, "Definition of the

Differentiated Services Field (DS Field) in the IPv4 and IPv6
Headers", RFC 2474, December 1998

[6] Ramakrishnan, K., Floyd, S., and D. Black, "The Addition of Explicit

Congestion Notification (ECN) to IP", RFC 3168, September 2001
[7] N. Khademi, G. Armitage, M. Welzl, S. Zander, G. Fairhurst and D.

Ros, "Alternative backoff: Achieving low latency and high throughput

with ECN and AQM," 2017 IFIP Networking Conference (IFIP

Networking) and Workshops, Stockholm, pp. 1-9, 2017.

[8] B. Briscoe, K. De Schepper, M. Bagnulo, and G. White. “Low

Latency, Low Loss, Scalable Throughput (L4S) Internet Service:

Architecture”. Internet-Draft draft-ietf-tsvwg-l4s-arch-08, Work in

Progress, 2020.
[9] K. De Schepper, B. Briscoe, and G. White. “DualQ Coupled AQMs

for Low Latency, Low Loss and Scalable Throughput (L4S)”.

Internet-Draft draft-ietf-tsvwg-aqm-dualq-coupled-14, Work in
Progress, 2021.

[10] B. Briscoe, M. Kuehlewind, and R. Scheffenegger, "More Accurate

ECN Feedback in TCP", draft-ietf-tcpm-accurate-ecn-11, Work in
progress, March 2020

[11] B. Briscoe, K. De Schepper, O. Albisser, J. Misund, O. Tilmans, M.

Kuehlewind, R. Scheffenegger, M. Bagnulo, and A. Ahmed.
“Implementing the 'TCP Prague' Requirements for L4S”. In Proc.

Netdev 0x13, 2019

[12] M. Budiu, C. Dodd. “The P4-16 Programming Language”, In ACM
SIGOPS Operating Systems Review (OSR), Vol. 51, no 1, August

2017.

[13] P4 Open Source Programming Language; p4.org
[14] Kfoury, Elie F. et al. “An Exhaustive Survey on P4 Programmable

Data Plane Switches: Taxonomy, Applications, Challenges, and

Future Trends.” ArXiv abs/2102.00643, 2021.
[15] B. Briscoe et al., "Reducing Internet Latency: A Survey of Techniques

and Their Merits," in IEEE Communications Surveys & Tutorials, vol.

18, no. 3, pp. 2149-2196, thirdquarter 2016
[16] R. Adams, "Active Queue Management: A Survey," in IEEE

Communications Surveys & Tutorials, vol. 15, no. 3, pp. 1425-1476,

Third Quarter 2013
[17] R. Kundel, J. Blendin, T. Viernickel, B. Koldehofe and R. Steinmetz,

"P4-CoDel: Active Queue Management in Programmable Data

Planes," 2018 IEEE Conference on Network Function Virtualization
and Software Defined Networks (NFV-SDN), Verona, Italy, 2018

[18] C. Papagianni and K. De Schepper, “PI2 for P4: an active queue man-

agement scheme for programmable data planes,” inProceedings of
the15th International Conference on emerging Networking

EXperimentsand Technologies, pp. 84–86, 2019.
[19] Rohit P. Tahiliani, Hitesh Tewari. 2017. Implementation of PI2

Queuing Discipline for Classic TCP Traffic in ns-3. In Proceedings of

Workshop on ns-3, Porto, Portugal, June 2017
[20] S. Laki, P. Vörös, and F. Fejes. “Towards an AQM Evaluation

Testbed with P4 and DPDK”. In Proceedings of the ACM SIGCOMM,

New York, NY, USA, pp 148–150, 2019
[21] Kahe, G., Jahangir, A.H. “A self-tuning controller for queuing delay

regulation in TCP/AQM networks”. Telecom Syst 71, pp 215–229,

2019
[22] K. De Schepper, O. Bondarenko, I. Tsang, and B. Briscoe. “PI2: A

Linearized AQM for both Classic and Scalable TCP”. In Proceedings

of the 12th International on Conference on emerging Networking
EXperiments and Technologies (CoNEXT), pp 105—119, Irvine,

California, USA, December 12-15, 2016

[23] O. Albisser, K. De Schepper, B. Briscoe, O. Tilmans, and H. Steen,
“DUALPI2 - Low Latency, Low Loss and Scalable (L4S) AQM”, . In

Proc. Netdev 0x13, 2019.

[24] D. BoruOljira, K-J. Grinnemo, A. Brunstrom, and J. Taheri.
“Validating the Sharing Behavior and Latency Characteristics of the

L4S Architecture”. SIGCOMM Comput. Comm. Rev. 50, 2, 37–44,

April 2020.
[25] S. Nádas, G. Gombos, F. Fejes, and S. Laki. “A Congestion Control

Independent L4S Scheduler”, In Proceedings of the Applied

Networking Research Workshop (ANRW '20). Association for
Computing Machinery, New York, NY, USA, 45–51, 2020.

[26] R. Netravali, A. Sivaraman, S. Das, A. Goyal, K. Winstein, J. Mickens,

and H. Balakrishnan. 2015, “Mahimahi: accurate record-and-replay
for HTTP”, In Proceedings of the USENIX Conference on Usenix

Annual Technical Conference (USENIX ATC '15), USA, 417–429,

2015
[27] Mahimahi github; https://github.com/ravinet/mahimahi/tree/master/

traces

[28] K. Winstein, A. Sivaraman, and H. Balakrishnan..”Stochastic
forecasts achieve high throughput and low delay over cellular

networks”. In Proceedings of the 10th USENIX conference on

Networked Systems Design and Implementation (nsdi'13), pp 459—
471, Lombard, IL, USA, April 2-5, 2013

[29] Saturator github; https://github.com/keithw/multisend/blob/master/

sender/saturatr.cc

