
Accepted by 2022 IEEE Symposium on Computers and Communications, ©2022 IEEE

Deep Reinforcement Learning-based Radio
Resource Allocation and Beam Management under

Location Uncertainty in 5G mmWave Networks
Yujie Yao, Hao Zhou, and Melike Erol-Kantarci, Senior Member, IEEE

School of Electrical Engineering and Computer Science
University of Ottawa

Emails:{yyao016,hzhou098, melike.erolkantarci}@uottawa.ca

Abstract—Millimeter Wave (mmWave) is an important part
of 5G new radio (NR), in which highly directional beams are
adapted to compensate for the substantial propagation loss based
on UE locations. However, the location information may have
some errors such as GPS errors. In any case, some uncertainty,
and localization error is unavoidable in most settings. Applying
these distorted locations for clustering will increase the error of
beam management. Meanwhile, the traffic demand may change
dynamically in the wireless environment. Therefore, a scheme
that can handle both the uncertainty of localization and dynamic
radio resource allocation is needed. In this paper, we propose
a UK-means-based clustering and deep reinforcement learning-
based resource allocation algorithm (UK-DRL) for radio resource
allocation and beam management in 5G mmWave networks. We
first apply UK-means as the clustering algorithm to mitigate the
localization uncertainty, then deep reinforcement learning (DRL)
is adopted to dynamically allocate radio resources. Finally, we
compare the UK-DRL with K-means-based clustering and DRL-
based resource allocation algorithm (K-DRL), the simulations
show that our proposed UK-DRL-based method achieves 150%
higher throughput and 61.5% lower delay compared with K-DRL
when traffic load is 4Mbps.

Index Terms—Beam management, UK-means, Localization
Uncertainty, Radio Resource allocation, Deep reinforcement
Learning

I. INTRODUCTION

Fifth-generation (5G) network is characterized by multi-
scenario applications, a considerable number of devices and
huge data volume. Millimeter Wave (mmWave) communica-
tion is developed to overcome a number of obstacles of mobile
networks, especially the high data rate challenge and low
latency requirement [1]. It provides users with rich bandwidth
which allows for a higher transmission rate. However, one vital
shortcoming of mmWave is the substantial propagation loss,
which greatly limits its coverage range.

To this end, highly directional beams which can provide
large antenna array gains with less inter-beam interference are
adopted to solve this problem [2]. Beam management is per-
formed to align the beam pairs between user equipment (UE)
and base station (BS). A typical way of beam management
is to have all users divided into numerous clusters, and each
cluster is served by a separate beam [3]. In 5G, the network
traffic will experience rapid change, which prompts BS to
dynamically adjust beams to cover active UEs. Consequently,

the UE localization becomes a key pre-requisite for clus-
tering. There are various technologies proposed for outdoor
localization with the assistance of BS to replace traditional
global positioning system, such as ToA positioning method
[?] and AoA-based positioning techniques [4]. Although each
algorithm has its own advantages, they all bring localization
errors, which will decrease the performance of the network.
As such, a radio resource allocation method that can handle
both the localization and traffic demand uncertainty of users
need to be developed.

On the other hand, the wireless network nowadays is
faced with heterogeneous service requirements, and machine
learning becomes an ideal solution for intelligent and flexible
allocation of network resources [5]. Specifically, reinforcement
learning (RL) is designed to exploit the current environment
without any prior knowledge, which avoids the complexity
of building a dedicated optimization model [6]. Moreover,
combined with a deep neural network, deep reinforcement
learning (DRL) overcomes the limitations of tabular-based
RL, which has been generally applied for wireless network
optimizations [7].

In this paper, we consider a 5G NR network using mmWave
which serves multiple single-beam UEs, and we proposed
a UK-means-based clustering and DRL-based resource al-
location algorithm (UK-DRL). Firstly, we apply the UK-
means algorithm to tackle the localization uncertainty [8].
More specifically, instead of the exact position, UK-means
uses the probability distribution function (PDF) of objects for
clustering, which is designed to handle the clustering with data
uncertainty. Then, we employ a DRL-based algorithm for radio
resource allocation, which jointly considers the Quality-of-
Service (QoS) requirements of different types of users [9]. We
compare our proposed method with K-means-based clustering
and DRL-based resource allocation algorithm (K-DRL) that
clusters UEs with localization uncertainty. Our results show
that our proposed method has 150% higher throughput and
61.5% lower delay under high load. Meanwhile, we feed
K-DRL with exact data as an ideal optimal baseline, and
simulations show that our UK-DRL presents a comparable
performance with the ideal results where exact location in-
formation is available.

The rest of this paper is organized as follows. Section II
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discusses the related work, and Section III introduces the
system model. Section IV describes the clustering methods
and DRL algorithm. Section V presents simulation settings
and results. Lastly, Section VI concludes the paper.

II. RELATED WORK

Localization and clustering are generally considered as an
important part of resource allocation, since the network per-
formance is directly related to UE locations. In [9], Density-
Based Spatial Clustering of Applications with Noise (DB-
SCAN) is adopted to cluster users, then a DRL algorithm is
introduced to allocate radio resource. Considering the Non-
orthogonal multiple access (NOMA) system, a hierarchical
clustering scheme is proposed in [10] to obtain the optimal
number of clusters, which enables the BS to form the optimal
steering direction of mmWave beams and achieves higher
throughput. Two schemes of location-aided power allocation
optimization are proposed in [11]. The authors firstly deter-
mined the optimal power allocation to each cluster and then
optimized the intra-beam power allocation. Authors of [12]
developed a power allocation policy to maximize the sum rate
in a millimeter-wave non-orthogonal NOMA system, and a
K-means-based clustering algorithm is applied to reduce the
computational complexity.

Most aforementioned studies assume the BS can observe
the exact location of UEs, then they implement the beam-
forming and resource allocation accordingly. However, this
is an unrealistic assumption in practice, and the localization
uncertainty is unavoidable due to obstacles, interference and so
on. Different than previous studies, we include the localization
uncertainty of UEs in this paper. The UK-means algorithm is
implemented to handle the uncertainty of UE locations. The
algorithm uses distribution functions for clustering. Compared
with traditional clustering algorithms such as K-means, UK-
means can obtain clustering results that are more consistent
with the real locations.

III. SYSTEM MODEL

A. Network Model

As shown in Fig. 1, here we assume there is a gNB that
serves several users denoted by U, and each user is represented
by Ui. The gNB will observe the location information of
users, and perform clustering to group the users. Based on the
observed location, each cluster is served by a separate beam
denoted by bi ∈ B.

However, the UE U2 suffers from a localization error, which
may be caused by band channel conditions or UE mobility.
The exact location of U2 is between two formed clusters,
which means U2 is not served by any of the two formed
beams. As a result, the transmission of U2 may experience
a long delay, which proves that the localization uncertainty
affects the network performance. In this work, we address this
problem by applying a UK-means clustering algorithm, which
aims to mitigate the effect of localization uncertainty.

Moreover, in the resource allocation phase, we assume
each beam serves its users via Orthogonal Frequency Division

Fig. 1. System model of mmWave networks with highly directional beams.

Multiple Access (OFDMA), and intra-beam interference can
be avoided. The available bandwidth wi for beam bi is split
into Resource Blocks (RBs), each of which has 12 subcarriers.
A Resource Block Group (RBG) is formed by combining
contiguous RBs together, which is considered as the smallest
radio resources that can be allocated [9].

B. Channel Model

Here we assume the gNB is equipped with Nt antennas.
Compared with the gain of Line-of-Sight (LoS) path, the gain
of non-Line-of-Sight (nLoS) paths can be neglected. As a
result, the mmWave channel can be modeled using a single
LoS path model [12]. According to [13], the mmWave channel
between the gNB and the uth UE can be represented by

Hu =

√
Nt
Mu

Mu∑
l=1

αu,lau(θu,l)agNB(ϕu,l) (1)

where Mu denotes the number of paths between gNB and
UE, αu,l is the complex gain of lth path. θu,l denotes the
angle of arrival (AOA) and ϕu,l denotes the angle of departure
(AOD). Moreover, au(θu,l) and agNB(ϕu,l) are the antenna
array response vectors of the gNB and uth UE respectively.

If a Uniform Linear Array (ULA) is considered, agNB(ϕu,l)
can be represented by

agNB(ϕ) =
1√
Nt

[1, ej2π
d
λ sin(ϕ), ..., ej(Nt−1)2π

d
λ sin(ϕ)]T

(2)
where d denotes the distance between gNB’s antennas and λ
denotes the wavelength.

IV. UK-MEANS-BASED DEEP REINFORCEMENT LEARNING
FOR RADIO RESOURCE ALLOCATION AND BEAMFORMING

To handle localization uncertainty in clustering, we adopted
the UK-means for clustering [8]. The clustering results will
be transformed into a set of beams with UEs they serve. Then
the DRL is adopted in each beam to allocate physical resource
blocks.

A. UK-means-based Clustering and Beamforming

The classical K-means algorithm consists of 4 steps:
Step 1: Assign initial centers of clusters.
Step 2: Compute the distance between the data and centers,
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assign them to the cluster with minimum distance.
Step 3: Recalculate cluster centers.
Step 4: Repeat 2-3 until the algorithm converges.
The UK-means algorithm follows the same steps as K-

means. But the differences are that it applies different formulas
to calculate distance and update cluster centers with the
assistance of PDF. UK-means enables us to get the most
similar clustering results with distorted position information
compared to the results with exact position information.

Let us assume we need to form n clusters, and the jth

cluster is denoted by Cj . The center of the cluster is denoted
by cj . For each user position xi, the uncertainty is represented
by a known PDF f(xi).

In K-means, the Euclidean distance between data point xi

and cluster center cj is calculated by:

||xi − cj || =

√√√√ V∑
i=1

|xi − cj |2, (3)

where V represents the dimension of data. In this paper, we
consider two-dimensional space.

The center point update formula is as follows:

cj =
1

Cj

∑
i∈Cj

xi (4)

where |Cj | represents the number of users that are assigned
to cluster |Cj |.

The two formulas applied in UK-means are as follows [8]:

E(||xi − cj ||2) =
∫
||xi − cj ||2f(xi)dxi (5)

cj =
1

|Cj |
∑
i∈Cj

∫
xif(xi)dxi (6)

In equations (5) and (6), the distance is an expected distance
between the cluster center and uncertain data. It is computed
from the double integral over the uncertainty region. The
center of one cluster is computed as the mean of the expected
values over the PDFs of the uncertain data in the same cluster.

In this paper, we assume the uncertainty region is specified
as a circle with center xi and radius R. Node positions are
distributed uniformly within the circle. To make the calculation
easier, polar coordinate system is applied. The PDF for a
uniformly distributed circle is:

f(r, θ) =
r

πR2
, (7)

where r ∈ [0, R] and π ∈ [0, 2π].
In this way, equation (5) can be rewritten as:

E(||xi − cj ||2) =
∫ R

0

∫ 2π

0

||xi − cj ||2f(r, θ)rdrdθ (8)

Fig. 2. Diagram of LSTM-based Deep Q-learning.

For a data point xi, its Cartesian coordinate is (xi, yi).
Assume the coordinate of center cj is (cjx, c

j
y), then:

||xi − cj ||2 = (xi + r cos θ − cjx)2 + (yi + r sin θ − cjx)2

= 2r sin θ(xi − cjx) + 2r cos θ(yi − cjy)
+ (xi − cjx)2 + (yi − cjy)2 + r2,

(9)
where (xi+r cos θ, yi+r sin θ) denotes the distorted location.
The error is represented in the form of cylindrical coordinate
system.

B. Deep Reinforcement Learning-based Radio Resource Allo-
cation

After the UK-means-based clustering, we assume each
mmWave beam will cover a cluster of UEs within a specific
angle. Then we applied the DRL algorithm in each beam to
allocate radio resources to intra-beam UEs, aiming to maintain
high QoS requirements for both ultra-reliable low latency
communications (URLLC) and enhanced mobile broadband
(eMBB) users. The Markov decision process of DRL is defined
as follows:

1) Actions: In bth beam, the action is denoted by allocating
ith RBG to jth user, which is defined by

abi = ubj (10)

2) States: States are specified as the channel quality indica-
tor (CQI) feedback provided by the user. As a result, the state
of ith RBG in the bth beam can be expressed as

sbi = qbi (11)

where qbi is the CQI of ith RBG in the bth beam.
3) Reward: The reward function needs to consider the QoS

requirements for both URLLC and eMBB users. URLLC users
require high reliability and low latency, while eMBB users
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desire a high data rate. The reward function of ith RBG in the
bth beam can be written as:

rb,i =

{
sigm( Si

SQoS
), eMBB user

sigm( Si
SQoS

TQoS

T qu
), URLLC user

(12)

where Si is the signal-to-noise ratio (SINR) of the link
allocation of ith RBG to a user in the bth beam, SQoS is
the SINR requirement of eMBB users, TQoS is the latency
requirement of URLLC users, and T qu is the queuing delay.
sigm means the sigmoid function, which will keep the reward
between the interval [0,1]:

sigm(x) =
1

1 + e−x
(13)

In equation (12), the reward of eMBB users depends on the
SINR ratio, which means a higher throughput will lead to a
higher reward. On the other hand, the URLLC reward consists
of two terms, in which the TQoS

T qu
indicates that a lower delay

will bring a higher reward, and Si
SQoS

indicates the requirement
for higher reliability.

Fig. 2 shows the diagram of DRL-based intra-beam radio
resource allocation. In the tth time interval, the current state
and action are represented by st and at, respectively. The agent
will first select an action based on ε-greedy policy, and the
actions are implemented in the wireless environment. Then the
next state st+1 and reward rt+1 are calculated with the assist
of CQI and SINR from the users. The st, at, st+1 and rt+1

forms an experience tuple, which is saved in the experience
pool. The experience will be further used to train the neural
network which will predict the Q-values. Lastly, the agent will
determine the next action at+1 based on predicted Q-values.

In this work, we apply long short-term memory (LSTM)
network for Q-values prediction. As a special recurrent neural
network, LSTM can better capture the long-term data depen-
dencies than traditional neural networks, which makes it a
favourable choice to handle the complicated wireless envi-
ronment. A pack of experience tuples < st, at, st+1, rt+1 >
are sampled from the experience pool after several iterations,
which will be used to train the main network by gradient
descent algorithm:

L(w) = Er(rt + γmax
a

Q(st+1, a, θ
′)−Q(st, at, θ)) (14)

where θ and θ′ represent the weight of main and tar-
get LSTM networks, respectively. Er() indicates the error
function. rt + γmax

a
Q(st+1, a, θ′) shows that target network

will predict the target Q-values, and Q(st, at, θ) shows main
network will produce current Q-values. Then the network
weight will be copied to the target network after several
training iterations. Such late update of the target network will
provide a stable reference for the main network.

The steps of the proposed UK-DRL algorithm are presented
in Algorithm 1.

Fig. 3. Map of Rosslyn area in the applied dataset [15].

Algorithm 1 UK-DRL
1: Initialization: Wireless and learning parameters.
2: for TTI t = 1 to T do
3: Updating clustering queue and get location of users
4: Performing UK-means using equation (6) and (9). Gen-

erating beams based on clustering results.
5: for Each beam bi ∈ B do
6: Selecting an action at in each beam based on ε-

greedy algorithm.
7: for User uj ∈ bi do
8: Perform the action assigned by gNB.
9: Send uplink report (i.e. SINR) to gNB.

10: end for
11: Compute the reward rt+1 in equation (12).
12: Store the experience tuple in the experience replay

memory.
13: Sample randomly from experience replay memory

every C TTIs and apply equation (14).
14: Predict the Q-values for next action selection.
15: end for
16: end for

V. SIMULATION SETTINGS AND RESULTS

A. Simulation Settings

In the simulations, we consider an environment shown by
Fig. 3, which is given by a realistic dataset Raymobtime
s009 [14]. The data is generated according to Rosslyn, an
urban district in Arlington, Virginia. The blue regions represent
buildings. The red data points reflect vehicle distribution on
the streets. The dataset concludes episodes and scenes, where
one episode is composed of a series of scenes. Ray-tracing
data, lidar and camera images are included. The position
information it provides is used as exact locations in our
simulation.

Based on the dataset, we include one gNB and 6 UEs in our
simulation. The radius of the gNB is 160 meters. The traffic of
users follows Poisson distribution with λ inter-arrival time and
a packet size of 32 bytes. During our simulation, we assume
three beams with 20◦ angle are formed. The QoS requirement
of latency TQoS is equal to 1 ms, and the QoS requirement
for SINR SQoS is set to 15 dB [16]. Other settings of DRL
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TABLE I
SIMULATION PARAMETERS

Network Model
Number of URLLC per cluster 1
Number of eMBB per cluster 1
Number of clusters 3
Radius of cell 160m
Beam angle 20◦
Nt 1024
Q-Learning
Learning rate (α) 0.5
Discount factor (γ) 0.9
Exploration probability (ε) 0.1
LSTM
Size of input layer 1
Number of hidden units 20
Size of output layer 24
Size of mini-batch 20
Size of replay memory 60
Training Interval 60
Copy Interval 120
Simulation Parameters
Simulation time 0.2s
Number of TTIs in Every Run 1400
Number of Runs 5
Confidence Interval 95%

are shown in Table I. The total simulation time is 1400 TTIs.
The simulation is repeated 5 times, and the confidence interval
is 95%.

We have three defined scenarios:
• Scenario 1: In this scenario, we adapt the predicted posi-

tion given by [15] as locations with error. [15] proposed a
cascaded image classification and deep learning technique
to localize users using images and ray-tracing data. The
root mean squared error is 8 m. We applied K-means to
cluster UEs with location error, and DRL for resource
allocation. The scenario is named by K-DRL+Location
with Error.

• Scenario 2: Compared with scenario 1, the only difference
in scenario 2 is that we use UK-means to group the UEs
with localization error. The scenario is named by UK-
DRL+Location with Error.

• Scenario 3: In scenario 3, we use the exact location
provided by Raymobtime s009 dataset for clustering,
which is considered as an optimal baseline. This scenario
is named by K-DRL+Exact Location.

B. Simulation Results

1) Results for Coverage Rate: In our experiment, we firstly
compare the number of beams to achieve full coverage and the
average coverage rate under different beam angles when the
number of beams is fixed to 4.

Fig. 4 shows the coverage rate under a different number
of beams when beam angle is 30◦. In order to achieve
full coverage, the third scenario needs 6 beams due to its
exact locations. When distorted locations are applied, the UK-
means approach requires 7 beams. However, the K-means-
based method needs 9 beams to fully cover all the UEs. On the
other hand, we investigate the coverage rate against different

Fig. 4. Coverage rate comparison under varying number of beams.

Fig. 5. Coverage rate comparison under varying beam angle.

beam angles in Fig. 5. The beam number is fixed to 4 beams.
Scenario 3 still has the best coverage rate because of the exact
location. When distorted locations are applied, the localization
error will decrease the coverage rate. Compared with K-means,
UK-means has an improvement of 7% when beam angle is
20◦. Fig. 4 and 5 demonstrate that we can achieve a better
coverage rate with the same number of beams by using UK-
means method when localization error exists.

2) Results for Resource Allocation: In this section, we
display the simulation results of the three scenarios under
different traffic loads. The network performance is evaluated
by the total data rate and average delay.

Fig. 6 and Fig. 7 present the sum rate and delay under
different traffic loads. As shown in the plots, scenario 3 has the
best performance. In scenario 3, since the gNB has the exact
position of UEs and the beams are formed according to exact
locations, the gNB can cover most of the UEs, leading to the
highest sum rate and lowest latency. Moreover, when location
error exists, UK-means proves its superiority over K-means in
both sum rate and delay. In scenarios 1 and 2, gNB only has the
knowledge of location with error, and the distorted positions
are used to identify the direction of beams, which will degrade
the system performance. However, our proposed UK-DRL can
mitigate the effect of localization uncertainty by using the
PDF, which will provide a more accurate clustering result,

5
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Fig. 6. Sum rate comparison under varying traffic loads.

Fig. 7. Delay comparison under varying traffic loads.

and consequently it achieves a better network performance.
For instance, when the traffic load is 4 Mbps, UK-DRL has
a 150% improvement in sum rate and 61.5% improvement in
latency.

However, as the traffic load increases, it will stress all three
algorithms. Another interesting point is that for each scenario,
the delay has not changed much as the traffic load grows. We
assume UEs to move every 10 TTIs. For the UE that is not
covered, after at least 10 TTIs, it will move to a new place
and is very likely to be covered.

VI. CONCLUSION

Machine learning has become a favourable technique to
enable 5G and beyond networks. In this paper, we proposed a
UK-means-based clustering and deep reinforcement learning-
based resource allocation algorithm for the joint beamforming
and radio resource allocation of 5G mmWave networks with
localization uncertainty. In particular, we deploy the UK-
means algorithm for clustering with localization uncertainty,
and long short-term memory-based deep reinforcement learn-
ing for the radio resource allocation for each beam. The UK-
means-based clustering and deep reinforcement-based resource
allocation algorithm is compared with K-means-based cluster-
ing and deep reinforcement learning-based resource allocation
algorithm, and the simulations show that UK-means-based

clustering and deep reinforcement learning-based resource
allocation algorithm results in higher data rate and lower delay
for network users. In the future, we aim to involve more
clustering algorithms to handle the localization uncertainty.
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