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Abstract—Low Earth orbit (LEO) satellite mega-constellation
networks aim to address the high connectivity demands with a
projected 50,000 satellites in less than a decade. To fully utilize
such a large-scale dynamic network, an air network composed
of stratospheric nodes, specifically high altitude platform station
(HAPS), can help significantly with a number of aspects including
mobility management. HAPS-LEO network will be subject
to time-varying conditions, and in this paper, we introduce
an artificial intelligence (AI)-based approach for the unique
channel estimation and synchronization problems. First, channel
equalization and carrier frequency offset with residual Doppler
effects are minimized by using the proposed convolutional neural
networks based estimator. Then, the data rate is compounded
by increasing spectral efficiency using non-orthogonal multiple
access method. We observed that the proposed AI-empowered
HAPS-LEO network provides not only a high data throughput
per second but also higher service quality thanks to the agile
signal reconstruction process.

Index Terms—Non-orthogonal multiple access (NOMA), CNN
networks, high altitude platform station (HAPS), Satellites, CFO
estimation, channel estimation.

I. INTRODUCTION

Air/space networks are becoming a part of alternative
solutions to non-terrestrial networks (NTN) of next generation
wireless systems (6G). Satellites are common NTN elements
that benefit from line of sight (LOS) propagation with a wide
coverage. Specifically, low Earth orbit (LEO) constellations,
which have lower latency and can work cooperatively and
share the workload are experiencing a rejuvenated interest.
Cost barrier is decreasing day by day, it is expected that
many constellations such as Starlink and Lightwave will
become fully operational. [1] estimates that nearly 50,000
active satellites will be placed within a decade.

Even though mega-constellations are expected to bring solid
advantages to aerial networks, they also lead to mobility
management and congestion issues by handoffs [2]. As
mega-constellation elements need to be seamlessly connected
to terrestrial networks, a support infrastructure is required to
relieve the load in these networks. [3] offers a flexible and
scalable solution by making use of high altitude platform
station (HAPS), stratospheric platforms that are located around
20km altitude. A HAPS provides an efficient and promising
solution to handoff load [4] in the low complexity nodes
(e.g. drone mounted unmanned aerial vehicles (UAVs) and
mobile users by taking care of computational weight [5]).
While a study [6] shows promising performance results for
both uplink (UL) and downlink (DL) in aerial networks, 3rd

Fig. 1: A CNN-aided HAPS-LEO NOMA network.

Generation Partnership Project (3GPP) Release 17 highlights
HAPS based networks [7] in the sense of NTN. For the
recent studies regarding HAPS, the new model was added as
a part of a revision to the International Telecommunication
Union Radiocommunication Sector Recommendation ITU-R
P.1409-2 [8].

In this paper, we focus on HAPS-LEO network’s main
technical problems (Fig. 1), varying channel gains and
the residual Doppler related carrier frequency offset (CFO)
effect. Observing that the use of a neural network with an
error-minimizing architecture for the solution of non-convex
problems is quite functional where unpredictability is
implacable [9], we propose a convolutional neural networks
(CNN) based approach to detect these parameters as
their accurate estimation will be essential for the required
performance of HAPS systems that bridge the satellite and
terrestrial networks. The contributions of this study to the
literature can be summarized as follows:

1) The usability of a HAPS supported satellite constellation
in solving mobility and overloading problems is
proposed and the flexibility it provides is investigated.

2) Frequency selective fading channels and
non-synchronous carrier frequency reasoned degradation
are analyzed for both uplink and downlink.

3) A CNN based sequential channel and CFO estimation is
proposed and the benefit of the novel model investigated
in terms of mean square error (MSE) and bit error
rate (BER) for a wide signal-to-noise ratio (SNR) range
along with common estimation techniques.
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4) Emphasizing the capacity needs of large-scale networks,
the power domain non-orthogonal multiple access
(NOMA) method is tested on the proposed setup and
the performance of the CNN powered NOMA method
was compared with orthogonal multiple access (OMA)
systems.

A. Related Literature

A recent study [10] highlights the necessity of a more
robust and versatile synchronization for LEO constellation
and proposes to use the rotational invariance technique. A
study [11] proposes a CNN based channel estimation in tapped
delay line (TDL) channel model and it shows the performance
increment in terms of various estimation techniques. Another
study [12] states that long short-term memory of recurrent
neural network (LSTM-RNN) structure has potential use
for multiple input multiple output (MIMO) sparse channel
estimation problems. Regarding synchronization, [13] finds
packet arrival time using CNN architecture to drop false
detection rates. An RNN approach to both CFO estimation
and packet detection is shown and tested with software defined
radios (SDR) in [14]. Yet, a CNN-based sequential CFO and
channel estimation study has not been conducted before.

B. Organization of this paper

The outline of the study is as follows: In Section II, channel
and CFO effect on orthogonal frequency-division multiplexing
(OFDM) signal is analyzed and improved by CNN algorithm.
In Section III, the advantages and applicability of the NOMA
technique over the current HAPS-LEO system are mentioned.
In Section IV, CNN aided NOMA HAPS-LEO system is
compared with OMA. As a conclusion, the inference of the
authors’ regarding the subject are shared in Section V.

II. ESTIMATION ANALYSIS OF A RECEIVER

A. CFO Model and Estimation

There is a substantial amount of CFO among space units
because of the velocity of free falling nodes, causing Doppler
shift. The speeds of the satellites vary depending on their
orbital positions, so does the CFO. In addition to these
reasons that exacerbate the shift, effects arise from the
hardware difference of the receiver and transmitter and the
time reference mismatch. Hence, it is necessary to examine an
independent CFO model with the randomness on this system.

Orthogonal frequency-division multiplexing (OFDM) is a
digital transmission technique for encoding data on several
subcarrier frequencies to achieve a system less susceptible to
interference while providing more efficient data bandwidth.
It is frequently used in cellular networks, mobile broadband
standards and the next generation wireless LAN applications.

Using OFDM waveform for a single input single output
system case, κ is the total number of subcarriers, k denotes
the subcarrier index and n is the sample index of N -point
IFFT taken signal. Index of OFDM symbol is denoted with
l whereas the total number of the packet is L. Denoting
{xl[n]}N−1n=0 as transmitting samples and yl[n] is the received

OFDM symbol, the effect of normalized CFO with subcarrier
interval (|ε| ≤ 0.5) in the time domain can be formulated as

yl[n] = xl[n]ej2πε/N , (1)

For simplicity, exposing the discrete Fourier transformed
(DFT) of an OFDM signal Yl[k] to the channel can be
done easily in the frequency domain where H is the channel
frequency response (CFR) of the received signal and F is DFT
operator, yl[n] = F−1{Yl[k]} can be obtained as following

yl[n] =
1

N

N−1∑
k=0

Hl[k]Xl[k]ej2π(k+ε)n/N + zl(n). (2)

The CFO effect on the OFDM symbol is clearly signified at
the receiver in the time domain. It is possible to examine this
frequency change and residual effects in the frequency domain
expressed as

F{yl[n]} =

N−1∑
n=0

1

N

N−1∑
m=0

Hl[m]Xl[m]ej2π(m+ε)n/N+

N−1∑
n=0

zl[n]e−j2πkn/N ,

(3)

The closed expression of (3) results in

Yl[k] =
sin(πε)

N sin(πε/N)
ejπε(N−1)/NHl[k]Xl[k] + Il[k] +Zl[k].

(4)
While the first element of Yl[k] shows the weakening in power,
the second element shows the cyclic shift of the received data.
In the meantime, Il[k] is the element of the residual shift in
subcarriers leading to intercarrier interference, and Zl[k] is the
additive white gaussian noise with i.i.d. CN (0, N0) elements.

In this study, instead of use of cyclic prefix or pilot tones, it
was found more appropriate to use the ||P|| length preamble
segment, with the same logic of primary synchronization
signal (PSS) and Shcmidl & Cox [15] algorithm. As in this
case, εl can be defined as

εl = ε̂l + ξl, (5)

where ε̂ normalized estimation of CFO and ξ is the normalized
residual CFO. P1[k] and P2[k] are the two repetitive identical
sequences of n-th OFDM symbols to find the ε̂ ∈ R1×1 as

P2[k]

P1[k]
= ej2πε̂, (6)

and obtaining normalized angle by

ε̂l =
1

2π
arctan

{∑N−1
k=0 =[P∗1 [k]P2[k]]∑N−1
k=0 <[P∗1 [k]P2[k]]

}
. (7)

B. Channel Model and Estimation

In a practical manner, the least-squares (LS) estimation
technique is a highly effective and common method in
the OMA case. The channel model of the HAPS-LEO
network containing aerial communication link is considered
as Rice fading channel due to LOS propagation [16]. Hence,
throughout the study, this channel model has been used to
illustrate HAPS-LEO channel condition.



Considering a usual OMA scenario, pilot tones X = diag(ν):
ν ∈ R N , H is the channel coefficients and Y = [Y [1] Y [2]
. . . Y [D]]T is the received signal vector in FD, received data
can be written as

Y = XH + Z, (8)

Z is the noise for each subcarrier belonging to unique users.
In a case where the pilot tone ratio is fp, the result of the
channel coefficients estimated to minimize the loss function
through N/fp length H can be found

∂||Y− XH’||2

∂H’
= 0, (9)

which concludes with the solution of LS estimator as

H’LS = (XHX)−1XHY = X−1Y. (10)

By using H’LS, the received signal is equalized with the
zero forcing method, and data reconstruction processes are
completed. In addition, the minimum mean square error
method, which performs channel estimation by exploiting the
SNR value, is not very practical due to its high complexity.

C. CNN Based Channel and CFO Estimation Model

Signal denoising is the motivation of neural network usage
for estimation purposes. In order to take full advantage
of the power of neural networks and to keep complexity
to a minimum, the use of CNN has been considered. 2D
CNN structure is not only a powerful algorithm to capture
spatial and temporal dependencies, but also has a light
computation capability without losing high level features
thanks to convolution layers. Layers including pq × pq
convolution kernels take input with pq−1 × pq−1 size. Every
convolution layer results with:

Ce = Conv(Ap, wp) + bp, (11)

where Conv() is the convolution operator, A is the input layer,
w is the weight and b is the bias. After each convolution layer,
the ReLU is used to regulate the outputs by setting negative
values “0”

R(z) = max{0, z}. (12)

Since each channel coefficient is complex, real and imaginary
parts gets involved in the training and evaluation procedure
separately as input of the training sets are

XCNN
H = {<{H’x},={H’x}}, (13)

XCNN
ε = {ε̂x}, (14)

Fig. 2: The proposed CNN Diagrams

and similarly the output

YCNN
H = {<{HCNN},={HCNN}}, (15)

YCNN
ε = {εy}. (16)

Approximation process with training to obtain Θ that reach
output vector as close as possible in terms of Euclidian
distance metric as

f(Θ,XCNN,YCNN) =
1

T

T∑
t=1

||yCNNt − f̂(xCNNt ; Θ)||2, (17)

where f̂ is the generalization function, estimation of perfect
estimator f , XCNN = [x1 x2 ... xt] and YCNN = [y1 y2 ... yt].

Independency of ε̂x and H’x lets CNN estimators lead the
solution by updating one parameter at a time. For these two
parameters, the network minimizes the F (ε̂, H̆) operation
by solving variable optimization problem for each vector of
variables where H̆ is ε deduced estimated channel that ε=ε̂opt

and finalizing process with H=Ĥopt.
As in training case, two parameters estimation starts with

ε̂x using its ground truth as prior knowledge ε and completes
with finding H ∈ HCNN by obtaining each loss parameters Θ
as following

Θ̂ε = argmin
ε̂∈R

f(Θε, ε̂x, ε), (18)

and
Θ̂H = argmin

Ĥ∈C
f(ΘH , Ĥx, H), (19)

Subsequently, the evaluation section makes use of Θ̂ε,H by
using ε̂ and H̆ with εnδ = f(ε̂ ; Θ̂ε) and H

κ
= f(H̆ ; Θ̂H).

CFO-CNN and channel estimation using CNN (CE-CNN)
architectures with their kernel sizes can be seen from Figure
2.

1) Optimization of Gradient Descent: Although SGD
computation performs just as regular gradient descent
algorithm, it behaves poorly for high learning rate. Adaptive
moment estimation (Adam) optimizer [17] uses the first (m)
and second (ν) moment of gradient to adapt learning rate for
each t iteration

mt+1 = β1mt + (1− β1)
∂Θ̂

∂wt
, (20)

νt+1 = β2νt + (1− β2)(
∂Θ̂

∂wt
)2, (21)

where moving average and exponential moving average are
controlled by the gradient decay factors β1 and β2. Since
initial points m0 and v0 are “0”, instant zero biases show
up. Therefore, a bias controller takes place

m̂t =
mt

1− βt1
, (22)

ν̂t =
νt

1− βt2
, (23)

With the found momentums, Adam weight update rule is
applied instead of SGD

wt+1 = wt − m̂t
η√
ν̂ + ε

, (24)

where ε is the constant that keeps the bias from going to “0”
and η is the step size.



III. NOMA FOR HAPS-LEO LINKS

With the expectation of incoming mega constellation
networks, a quite serious factor that will limit the connectivity
performance of HAPS-LEO systems is congestion. Number
of mega constellation nodes that share work or fully satellite
network dependent overcrowded systems may require more
than HAPS aided network in an emergency event. Considering
limited queueing models, the performance of HAPS-LEO
networks that are utilized for use cases with high connectivity
density can be restrained by data rate, in parallel with this,
low channel capacity might become a threat. In the solution
of this issue, the use of NOMA is an eye-catching method
that will increase the efficiency of the spectrum by power
allocation according to the channel structure of the users
and increase the throughput. By using the same frequency
and time domain by providing spectrum efficiency, power
domain NOMA, is a strong candidate for multiple access
methods for large coverage network models that serve different
purposes. Furthermore, the biggest disadvantage of NOMA is
eliminated by CNN estimation technique for this system by
the reduction of user detection imperfection depending on the
channel state information (CSI) quality. It has been noticed
that HAPS-LEO network capacity and data throughput can
be increased opportunistly and resulting with

∑M
i=1 log2(1 +

SNRi) total sum rate that makes a HAPS-LEO network
immensely both power and spectral efficient where M is the
total number of users and i is the users’ index.

Strong users with their own power coefficient knowledge
need a multiuser detection algorithm to extract their data.
For this study, this algorithm was chosen as the conventional
successive interference cancellation (SIC). Therefore, the
strong user’s quality of SIC operation is directly related to the
CSI knowledge and synchronization quality. The fundamental
order of NOMA steps is based on the authors’ previous
experimental study that accommodates 4 NOMA users [18]
and the NOMA parameters are selected in accordance with
this deployment.

A. NOMA Downlink

NOMA is a contemporary method that creates band and
energy efficiency, establishes user fairing by power allocation.
While low power is assigned to the user (strong user) whose
channel performance is above the appropriate criteria, high
power is assigned to the user with poor channel condition
(weak user). After modulation, the merged M users in the
transmitter creates a single superimposed signal as follows

yt =

M∑
i=1

√
aiPtxi, (25)

where xi is the modulated data of the users, ai is the power
coefficient of i’th user and Pt is the total power at the source
that will be distributed to each user afterward. Defining the
channel impulse response of any user as h, received signal at
any user x̃ is

x̃ = yt + z =

M∑
i=1

√
aiPtxihi + zi, (26)

TABLE I: Training Parameters

Parameters CE-CNN CFO-CNN
Training function SGD(Adam) SGD(Adam)
Maximum number of epoches 10 60
Mini-batch size 32 8
Gradient Decay Factors (β1, β2) 0.9, 0.999 0.9, 0.999
Learning Rate (η) 0.0005 0.0005
Bias constant (ε) 10−8 10−8

Validation from XCNN
H 15% 15%

Number of training samples (Ti) 10000 10000

where i is the NOMA user index and z ∈ CN (0, N0).
The received x̃ gets equalized with H’LS, obtaining xi which

is the received signal by the i-th user in the same manner. The
weak user passes through the decoding stage without being
exposed to any SIC, meaning x1=x1. Yet, notating U2 detected
first user as x̂2, strong users extract their data from the received
signal as following

x2 =
x2 − x̂1

√
α1√

(1− α1 − α3)
, (27)

and U3 cancels the remaining users interference with one step
forward

x3 =
x3 − x̂1

√
α1 − x̂2

√
α2√

(1− α1 − α2)
. (28)

Note that, as the nature of NOMA, the more SIC layers results
with higher computational complexity in users.

B. NOMA Uplink

Uplink communication occurs by combining the signals of
users with unique channels in the BS and extracting the data of
each user using SIC. In case of user signal output is

√
aiPtxi,

the received signal at the BS can be modeled as

xt =

M∑
i=1

√
aiPtxihi + zi, (29)

where hi ∈ CN×1 is the i-th user’s channel impulse response.
On the contrary of DL, UL NOMA signal includes M amount
of channel with possibly different distributions.

One of the important points is that the strong user (for our
case U3) cannot go beyond being noise to the user with weak
and high power coefficients. This means that while the channel
estimation of the already weak user is vital, the strong user
whose signal strength is reduced by the power distribution
should also make an effective estimation.

As in the UL-NOMA case with a single CFO term, Eq.
(7) and (10) are valid as ε̂i,l = ε̂l. Regarding the UL-NOMA
channel estimation case, gathered data from M users channel
considered as a single artificial channel

...
H at the BS and the

estimation can be found just as a single user OMA user by
LS estimator as in Eq. (9). The BS utilizes same channel for
all users as x1=x2=x3. Hence, every user posseses different
channels, the SIC error is expected to be significant.

IV. NUMERICAL RESULTS

A. Performance Analysis for CFO and Channel Estimation

Two independent CNN are used to regression prediction
with stochastic gradient descent (SGD) approach. CE-CNN



and CFO-CNN input data is produced separately. The receiver,
which is exposed to HAPS-LEO defined channel and εx,
estimates each OFDM symbol channel H’x for using the
LS estimator for the CE-CNN case. Moreover, normally
distributed pseudorandom input bits are considered as data and
the OFDM subcarriers are generated with IDFT of modulated
input data. As can be seen, both estimators use a common
kernel structure, which is simple enough in both training and
model output.

Both designs are trained with premade synthetic data with
uniformly random SNR values between 5 to 15 dB. As in
the CE-CNN case, 10,000 H’x ∈ C128×2 were taken as input
with assigning 15% of it as validation data. The input passed
through 64 units of 9×9 Conv filters using ReLU with 1 unit of
zero padding, resulting in 128×2×64 in the first convolution
layer output. As in the output layer, the single regression layer
computes the mean squared error right after the latest ReLU
activation to end the training session.

Similar to CE-CNN, CFO-CNN case input of 10,000 ε̂x
∈ R 1100×1 is generated with by obtaining ε̂x in a trial
simulation under Rician fading and ε CFO. Unlike CE-CNN,
since the dynamic state of ε, the epoch iteration number is
increased for the CFO-CNN process. In order to simulate a
time varying space environment, ε ∈

∑U
i=1 φi×N (µi,Σi) is

created as time varying with a gaussian mixture distribution
with random φ weights. All parameters for CNN structure and
link design is shown in Table I and II. Rician fading channel is
considered in all cases with K=10 factor. Frequency selective
L=3 taps channel structure was used instead of flat fading
which is another challenge that is thought to be important in
benefiting from CNN. Unit power pilot tones are interleaved
into the OFDM symbols regularly with pf=1:8. Preambles of
alternating repetitive sequence lengths are ||P1|| = ||P2|| = 160.

Figure 3 shows that MSE for CFO and channel exposed
environment CNN supported signal gets to equalize with
H where σ2

H
< σ2

Ĥ
for a wide SNR range. A noteworthy

observation, in the fast fading points of the channel, CNN can
adapt the interpolated intermediate channel coefficient values
better than the LS method. The vitality of the aforementioned
ξ effect can be seen in the practical scenario of Figure
4 involving it, the SNR loss caused by ξ itself and the
effect of the channel estimation error it causes. Reflections
of accumulated CNN estimation errors to bit errors are lower
than the LS-Preamble case shown in Figure 4.

The density of CFO magnitudes, which are thought to

Fig. 3: Comparison of simulations and theoretic MSE.

Fig. 4: The effect of the channel on the ε and the comparison
of CNN with the Preamble method in terms of BER.

exceed half of the subcarrier interval, and packet losses are
seen in 3-dimensional Figure 5 where 5(a) represents the CNN
aided CFO estimations for each OFDM symbols and 5(b)
shows the only LS/Preamble ε̂ results. It can be seen that
packet losses in the low SNR region are reduced by using
CNN.
B. NOMA-OMA Comparison

UL-NOMA and DL-NOMA network built on the foregoing
OMA scenario has been simulated for M=3 users. Fixed power
coefficients are selected as [18] states. MSE and BER results of
NOMA tests using the same OMA simulation parameters were
obtained for both CNN and non-CNN cases. Figure 6, shows ε
for 1100 sample test symbols. As a result of our observations,
residual CFO (ξ) seems to be negligible for signals reached
above 10 dB, while the amount of error dramatically increases
for all cases below 10 dB.

Figure 7(a) shows that a single CNN supported HAPS
BS outperforms the non-CNN case where the reconstruction
procedure utilizes only LS/Preamble algorithms. Figure 7(b)
illustrates the comparison of CNN used UL-NOMA and only
LS/Preamble estimated UL-NOMA cases. To briefly compare
with the DL-NOMA case, UL-NOMA data reconstruction
is highly critical because 3 different users were exposed to
independent Hi and εi. Fortunately, the CNN structure, as in
the case of DL-NOMA, lowered the BER by providing more
accurate ε and in all ranges from 0 to 30 dB SNR. NOMA
parameters are summarized in Table II.

V. CONCLUSION

The solutions that a communication network with
HAPS-LEO infrastructure can provide to mobility and load

Fig. 5: CNN vs Preamble estimation for for 0-24 dB SNR.



Fig. 6: OMA vs NOMA CNN Estimation Accuracy for 0-20
dB SNR range.

Fig. 7: CNN-aided Downlink NOMA System.

problems are discussed and the importance of channel
estimation and synchronization problems for both UL and DL
are justified by different proofs. To overcome this issues, a
CNN based solution is proposed. It has been observed that the
CNN, indeed, minimizes estimation errors and improves both
MSE and BER performances. The capacity problem required
for wide coverage systems was tried to be solved by using the
proven NOMA method and the installability of the 3 users
UL/DL-NOMA HAPS-LEO system was proven with BER
curves. Finally, the CNN-assisted performance of the NOMA
model was examined in comparison with OMA, and it was
shown that it achieved low BER for all users over a wide
range of SNR’s.

TABLE II: System Parameters

Design Parameters Values

NFFT (N ) 256
# of Subcarriers (κ) 128

CP Length 16
Modulation 4-QAM

# of Paths (L) 3
Preamble Length (||P ||) 160

OFDM Carrier Frequency 1.2 GHz
Pilot Ratio (fp) 1/8

# of Symbols (L) 105

Channel Model Rician Fading, K=10
CFO Model Gaussian Mixture
Noise Model Additive White Gaussian

# of NOMA users (M ) 3
NOMA NOMA Coefficients (αi) 0.761, 0.191, 0.048

User Detection SIC
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[10] R. V. Şenyuva and G. K. Kurt, “Harmonic retrieval of CFO and frame
misalignment for OFDM-based inter-satellite links,” in IEEE Int. Symp.
on Wireless Comm. Systems (ISWCS), 2021, pp. 1–5.

[11] A. Le Ha et al., “Deep learning-aided 5G channel estimation,” in Int.
Conf. on Ubiquitous Info. Man. and Comm. (IMCOM), 2021, pp. 1–7.

[12] T. Faghani et al., “Recurrent neural network channel estimation using
measured massive MIMO data,” in IEEE PIMRC, 2020, pp. 1–5.

[13] E.-R. Jeong et al., “Convolutional neural network (CNN)-based frame
synchronization method,” Applied Sciences, vol. 10, no. 20, 2020.

[14] V. Ninkovic et al., “Deep learning based packet detection and carrier
frequency offset estimation in IEEE 802.11 ah,” arXiv preprint
arXiv:2004.11716, 2020.

[15] T. M. Schmidl and D. C. Cox, “Robust frequency and timing
synchronization for OFDM,” IEEE Trans. on Communications, vol. 45,
no. 12, pp. 1613–1621, 1997.

[16] G. L. Stüber and G. L. Steuber, Principles of Mobile Communication.
Springer, 1996, vol. 2.

[17] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[18] M. A. Durmaz et al., “A four-user non-orthogonal multiple access system
implementation in software defined radios,” in IEEE Int. Black Sea Conf.
on Comm. and Networking (BlackSeaCom), 2020.


	I Introduction
	I-A Related Literature
	I-B Organization of this paper

	II Estimation Analysis of a Receiver
	II-A CFO Model and Estimation 
	II-B Channel Model and Estimation
	II-C CNN Based Channel and CFO Estimation Model 
	II-C1 Optimization of Gradient Descent


	III NOMA for HAPS-LEO Links
	III-A NOMA Downlink
	III-B NOMA Uplink

	IV Numerical Results
	IV-A Performance Analysis for CFO and Channel Estimation
	IV-B NOMA-OMA Comparison

	V Conclusion
	References

