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Abstract—Deep learning (DL) is characterised by its dynamic
nature, with new deep neural network (DNN) architectures and
approaches emerging every few years, driving the field’s advance-
ment. At the same time, the ever-increasing use of mobile devices
(MDs) has resulted in a surge of DNN-based mobile applications.
Although traditional architectures, like CNNs and RNNs, have
been successfully integrated into MDs, this is not the case for
Transformers, a relatively new model family that has achieved
new levels of accuracy across AI tasks, but poses significant
computational challenges. In this work, we aim to make steps
towards bridging this gap by examining the current state of
Transformers’ on-device execution. To this end, we construct a
benchmark of representative models and thoroughly evaluate
their performance across MDs with different computational
capabilities. Our experimental results show that Transformers
are not accelerator-friendly and indicate the need for software
and hardware optimisations to achieve efficient deployment.

Index Terms—Transformers, NLP, On-Device Execution,
Benchmarking, Accelerators, Quantisation

I. INTRODUCTION

Being the cornerstone of many artificial intelligence (AI)
tasks, DNNs are rapidly making their way into user-facing
mobile applications [1], imposing an increasing demand for
real-time inference with low latency and high accuracy. To
achieve this, different execution options have been proposed,
including running DNN inference in the cloud, at the edge, and
on-device [2]. While cloud execution offers high performance,
it requires a stable network connection, and edge execu-
tion involves higher latency due to data transfer. On-device
execution, on the other hand, enables real-time inference
without network requirements, making it an attractive option
for applications that require low latency, privacy, and security.

For the past several years, convolutional neural networks
(CNNs) were the dominant DNN architecture and, thus, have
been extensively researched and optimised (e.g. with tech-
niques such as the depthwise separable convolution) for vari-
ous applications, leading to efficient on-device inference [3].
Since the introduction of BERT [4], however, Transformers
have gained immense popularity not only in natural language
processing (NLP) tasks [5], [6], but also in domains such as
computer vision [7] and speech recognition [8]. With such
versatility, there is an upcoming requirement for Transformer-
driven applications and their deployment close to the user.
Even so, the current focus of the research community is
primarily on server-based training and inference [9], leaving
the on-device execution of Transformers largely unexplored.

In this work, we argue that well-established practices and
findings for the on-device execution of CNNs cannot translate

directly to Transformer models. This paper makes the follow-
ing key contributions:

• A benchmark suite of diverse Transformer models and
the associated software infrastructure, which enables on-
device evaluation in a systematic and reproducible way.

• A thorough investigation of the current state of on-device
Transformer inference, which includes benchmarking a
wide range of models, exploring the compatibility of vari-
ous mobile processors, validating on-device accuracy, and
analysing the suitability of various quantisation methods.

• Suggestions for future optimisations, which can increase
hardware compatibility and reduce computational needs.

II. BACKGROUND

A. Challenges of On-Device DNN Inference
Despite the benefits of on-device execution, there are several

challenges that need to be addressed. MDs have limited
resources, while at the same time, on-device execution requires
a significant amount of memory and processing power, due to
the increasing complexity of neural network models. More-
over, the heterogeneity of MDs in terms of both software and
hardware often requires the deployment of a given model to
be manually tuned for each target device [10].

B. Transformers
The architecture of a Transformer is typically composed

of an encoder and a decoder [11]. The encoder produces a
vector representation of the input sequence, while the decoder
generates the output sequence one token at a time, using
the encoder’s representation as context. In a typical flow, a
Transformer’s sequence-to-sequence architecture is first pre-
trained on language modelling or next sentence prediction
tasks and, then, the encoder can be fine-tuned to a wide range
of downstream tasks [4]. The architectural parameters that
affect a Transformer model’s latency during the inference stage
are listed in Table II.

C. Mobile Processors
Mobile processors are a core component of modern smart-

phones, tablets and other portable devices, as they directly
impact factors such as battery life and response time. In
the context of DNN inference, the central processing unit
(CPU) is the baseline processor, while the rest are considered
accelerators, as they can provide execution speedup and energy
efficiency. The most common mobile accelerators at the mo-
ment are the graphics processing unit (GPU), the digital signal
processor (DSP) and neural processing units (NPUs) [12].
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TABLE I
TRANSFORMER MODELS

Task Embeddings Encoder Overall Model Accuracy (%)
Vocab E #Params Name L A H I #Params FLOPs #Params FP32 FP16 DR8 FX8

50265 24 1.21 M BERT Tiny 6 2 24 16 0.02 M 3.53 M 1.23 M 90.05 90.05 90.05 89.85
30522 128 3.91 M ELECTRA Tiny 6 2 24 16 0.03 M 4.19 M 3.94 M 90.25 90.30 90.15 90.50
30522 256 7.81 M XDistil-L6-H256 6 8 256 1024 4.75 M 0.49 G 12.57 M 93.20 93.25 93.00 30.95

Sequence 30522 384 11.72 M MiniLM-L3 3 12 384 1536 5.35 M 0.54 G 17.07 M 93.25 93.25 93.00 91.95
Classification 30522 128 3.91 M MobileBERT 24 4 128 512 20.42 M 2.06 G 24.33 M 93.30 93.30 93.10 -
on Emotions 30522 384 11.72 M XDistil-L6-H384 6 12 384 1536 10.67 M 1.09 G 22.39 M 93.35 93.35 93.10 82.30

Dataset 30522 384 11.72 M MiniLM-L12 12 12 384 1536 21.32 M 2.18 G 33.04 M 93.45 93.45 92.65 78.40
28996 512 14.85 M RoBERTa Tiny 4 8 512 2048 12.64 M 1.28 G 27.49 M 93.50 93.50 93.40 92.30
30522 128 3.91 M ELECTRA Small 12 4 256 1024 9.55 M 0.98 G 13.46 M 93.55 93.55 93.30 92.25
30522 768 23.44 M DistilBERT 6 12 768 3072 43.16 M 4.30 G 66.60 M 94.50 94.50 94.55 77.85

Text 50257 768 38.60 M DistilGPT2 6 12 768 3072 42.69 M 10.47 G 81.29 M 46.85 - - -
Generation 50257 768 38.60 M GPT2 Small 12 12 768 3072 85.28 M 15.99 G 123.88 M 51.41 51.41 - -

TABLE II
TRANSFORMER ARCHITECTURAL PARAMETERS

Parameter Description

Sequence Length (S) Maximum number of tokens in one input sample.
Embedding Size (E) Width of a token’s embedding.
Hidden Size (H) Dimensionality of the model’s internal vector space.
Attention Heads (A) Number of parallel heads for the attention mechanism.
Intermediate Size (I) Width of the FFN Network.
Layers (L) Number of layers in the model.

III. RELATED WORK
On-device execution and evaluation of Transformer models

for NLP remains largely unexplored. Previous works [13],
[14] have limitations, as they consider a small number of
models, lack on-device accuracy evaluation and compression
applicability, and do not consider all possible accelerators
and execution configurations. Conversely, extensive research
has been conducted to benchmark Vision Transformers and
compare them to CNNs for use on MDs [15], [16], thus we
do not include them in our work.

IV. EXPERIMENTAL METHODOLOGY

For our evaluation infrastructure, we chose TensorFlow
(v2.11.0), because of its extensive range of quantisation meth-
ods and its support for mobile deployment through TensorFlow
Lite (nightly builds). For the benchmarked models, we used
Hugging Face’s Hub and Transformers (v4.27.4). Our exper-
iments were conducted using Android devices and a custom-
built Android application with a simple UI in order to examine
how a model would perform in a real-life scenario.

A. Models and Tasks
Table I presents the benchmarked Transformer models along

with their architectural parameters, workload, size, and accu-
racy. In order to further optimise our models, we applied three
of TFLite’s post-training quantisation1 methods: half-precision
floating-point (FP16), 8-bit dynamic range (DR8), and 8-bit
fixed-point (FX8). Quantisation is one of the simplest and
fastest compression methods presently available, with benefits
not only in model size, but also latency and memory.

For our downstream classification task, we used Emotions,
a small dataset consisting of English Twitter messages with
six emotions as classes. The reported accuracy corresponds

1https://www.tensorflow.org/lite/performance/post training quantization

TABLE III
TARGET SMARTPHONES

Device Samsung A71 Samsung S20 FE

Date 2020, January 2020, October
SoC Snapdragon 730 Exynos 990

CPU 2×2.2 GHz Kryo 470 Gold 2×2.73 GHz Exynos M5

6×1.8 GHz Kryo 470 Silver 2×2.5 GHz Cortex-A76
4×2.0 GHz Cortex-A55

GPU Adreno 618 @700 MHz Mali-G77 MP11 @800 MHz
NPU Qualcomm Hexagon 688 ✓

RAM 6 GB @1866 MHz 6 GB @2750 MHz
TDP 5 W 9 W

to the top-1 accuracy on the dataset’s test set of 2000 sam-
ples when using 50 tokens as the input sequence length.
We obtained the majority of models pre-trained on various
large datasets, such as Reddit comments and 2ORC citation
pairs, and subsequently fine-tuned them on Emotions. Selected
models include optimised architectures, such as XtremeDis-
til [17], MiniLM [18] and MobileBERT [19], as well as light
versions of the RoBERTa [6] and ELECTRA [20] original
implementations. Exceptions to these are DistilBERT [21],
whose Emotions-fine-tuned version was obtained directly from
Hugging Face, and BERT and ELECTRA Tiny which were
trained from scratch. The training/fine-tuning configuration
involves a batch size of 64 and the RMSProp optimiser with
initial learning rate in the order of 10−4 and exponential decay.

In addition to the above models, we also include GPT2 [22]
for text generation in its small and distilled versions, which
we obtained already converted into the tflite format from
Hugging Face. We report accuracy in the context of the next
token prediction task using LAMBADA’s test set of 5000
passages and 64 input sequence and output prediction tokens.

B. Mobile Devices

To cover devices with different capabilities, we target two
smartphones: Samsung Galaxy A71, representing the mid-tier
category, and Samsung Galaxy S20 FE, representing the high-
end category of modern mobile phones (Table III).

In order to specify an accelerator to handle part or all
of the computation graph in Android with TFLite, delegates
can be used. In our experiments, we use the XNNPACK,
GPU, NNAPI and HEX (Hexagon) delegates.2 Each of the

2https://www.tensorflow.org/lite/performance/delegates

https://www.tensorflow.org/lite/performance/post_training_quantization
https://www.tensorflow.org/lite/performance/delegates


considered quantisation schemes performs differently on each
processor. For instance, running an FP16 model on the GPU
is expected to result in the highest speedup compared to
other processors, whereas integer models are best suited for
the Hexagon DSP. Table IV shows the average percentage
of the evaluated models’ nodes that are delegated through
each delegate for the two target devices. N/S values mean that
execution is not supported by default, whereas zeros mean that
the given model could not be executed due to unsupported
operations. Of the available accelerator delegates, only the
GPU one has potential to speedup execution in both devices.

TABLE IV
DELEGATE COMPATIBILITY

Samsung A71 Samsung S20 FE
Variant CPU GPU DSP NPU CPU GPU NPU

XNN GPU NNAPI HEX NNAPI NNAPI XNN GPU NNAPI

FP32 74.1 99.8 72.6 N/S N/S N/S 74.1 99.8 0
FP16 77.6 81.8 0 N/S N/S N/S 77.6 81.8 0
DR8 67.6 99.8 71.3 N/S N/S N/S 67.6 99.8 2.6
FX8 64.0 99.8 0 24.9 0 1.4 64.0 99.8 1.1

C. Benchmarking Details

For the CPU measurements, we tested the XNNPACK
library and multithreading, while for the GPU and NNAPI
delegates, we used 16 bits for computation, when possible.
Prior to taking any measurements, we run the model for a few
iterations (1-5) to warm up the processor and decrease mea-
surement variations. In order to keep the device’s temperature
as constant as possible and prevent overheating, we run fewer
inferences for larger models (≈ 20 runs) than for relatively
smaller models (≈ 100 runs). We also maintained a device
idle period of 2-3 minutes between measurements.

V. RESULTS

A. On-Device Accuracy
The reported accuracy in Table I comes from evaluation

conducted with Python’s TFLite Interpreter on an Intel®

Xeon® CPU. By evaluating the models on-device, we found
that all of the delegate-processor combinations (columns in
Table IV) deliver the accuracy presented in Table I, except for
the GPU delegate, where only MobileBERT retains its original
accuracy, while for the rest of the discriminative models the
accuracy drops drastically (below 35%).

B. CPU Performance
Figures 1 and 2 show the impact of the XNNPACK and CPU

multithreading on the throughput of all FP32 models for the
two devices. Each model’s five bars correspond to XNNPACK,
1, 2, 4 and 8 CPU threads when viewed from top to bottom.
We observe the following:

• Even though XNNPACK is enabled by default in the
TFLite Interpreter, it is not the optimal configuration for
the majority of models in both devices.

• There is no optimal configuration across models or de-
vices. For instance, on S20 FE, the best CPU configu-
ration for ELECTRA Tiny is enabling the XNNPACK
delegate, whereas for RoBERTa Tiny, 4 threads will lead
to the optimal latency. On A71, instead of enabling the

XNNPACK delegate, the best configuration for ELEC-
TRA Tiny is 2 threads. This observation is also valid for
the quantised variants of the models.

0 10 20 30 40 50 60 70 80

BERT Tiny

ELECTRA Tiny

XDistil-L6-H256

MiniLM-L3

MobileBERT

XDistil-L6-H384

MiniLM-L12

RoBERTa Tiny

ELECTRA Small

DistilBERT

DistilGPT2

GPT2 Small

1426.8
1619.9

1304.5
1491.2

40.4
50.2

40.4
49.2

13.5
19.2

19.5
23.9

10.2
12.5

17.8

22.2
18.8

22.4

5.5
7.1

2.8
4.4

1.8
2.8

XNNPACK
Multi-threading
Optimal number of threads

Fig. 1. CPU throughput (input samples / sec) for Samsung A71.
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Fig. 2. CPU throughput (input samples / sec) for Samsung S20 FE.

Table V shows the effects of quantisation on latency and
memory. The memory needed for each FP32 model is also
shown in MB for comparison. The values are averaged across
the two devices as they were very close. FP16 models achieve
the same latency as FP32 models and require at least 70% more
memory. In contrast, integer models accelerate the execution
and at the same time reduce the memory requirements for the
majority of the architectures.

TABLE V
IMPACT OF QUANTISATION ON CPU

Model Latency Speedup RAM RAM Reduction
FP16 DR8 FX8 FP32 FP16 DR8 FX8

BERT Tiny 0.97× 0.97× 0.42× 4.7 0.41× 0.89× 1.28×
ELECTRA Tiny 0.99× 0.99× 0.39× 5.1 0.18× 0.91× 1.13×
XDistil-L6-H256 0.99× 1.62× 1.51× 26.2 0.32× 2.54× 3.03×
MiniLM-L3 1.05× 1.86× 1.64× 30.4 0.28× 2.84× 2.54×
MobileBERT 1.03× 1.72× - 89.4 0.59× 2.93× -
XDistil-L6-H384 0.99× 1.82× 1.75× 52.9 0.37× 3.07× 3.27×
MiniLM-L12 1.02× 1.89× 1.77× 95.2 0.47× 3.41× 3.47×
RoBERTa Tiny 0.99× 1.65× 1.81× 65.0 0.37× 3.34× 3.94×
ELECTRA Small 1.01× 1.53× 1.82× 44.7 0.51× 3.01× 3.01×
DistilBERT 1.06× 2.27× 2.32× 191.9 0.46× 3.31× 3.51×
DistilGPT2 - - - 585.2 - - -
GPT2 0.98× - - 673.0 0.59× - -



C. Accelerators

Taking into consideration Table IV, we consider execution
on the NPUs purposeless, so we calculate the latency speedups
provided by the GPU and DSP only, for the floating-point and
fixed-point models, respectively, compared to the best CPU
configuration of each model. Table VI shows the achieved
speedups, as well as memory increases (underlined) for each
model, except for GPT2, which was found to be accelerator-
incompatible.

TABLE VI
ACCELERATOR LATENCY SPEEDUP AND MEMORY INCREASE

Model Samsung A71 Samsung S20 FE
GPU(FP32/16) DSP(FX8) GPU(FP32/16)

BERT Tiny 0.08× 7.31× 0.44× 0.06× 13.41×
ELECTRA Tiny 0.09× 6.12× 0.49× 0.06× 18.16×
XDistil-L6-H256 0.86× 3.52× 0.83× 0.90× 5.65×
MiniLM-L3 0.69× 3.49× 0.72× 1.06× 4.57×
MobileBERT 0.97× 3.52× - 1.06× 4.46×
XDistil-L6-H384 1.24× 3.34× 0.86× 1.20× 4.09×
MiniLM-L12 1.22× 3.33× 0.92× 1.29× 4.12×
RoBERTa Tiny 1.19× 2.79× 0.87× 1.91× 3.43×
ELECTRA Small 1.37× 3.63× 0.85× 1.56× 4.69×
DistilBERT 1.22× 2.80× 0.71× 2.77× 3.10×

As expected, the DSP is not able to provide any acceleration
due to its small compatibility ratio. The use of quantisation
does not affect the performance of GPU, since all model vari-
ants are executed using fp16 arithmetic. Hence, the GPU can
only accelerate floating-point models, with the CPU providing
higher speedup for integer models (compare with Table V).

VI. DISCUSSION AND FUTURE WORK

In the previous section, several conclusions were drawn
which provide insights into how execution can be optimised
for higher performance. These optimisations can be broadly
categorised into two levels: system-level and model-level.

At the system-level, improvements are needed due to three
main reasons: (a) the absence of a global optimal configu-
ration, which stems from the heterogeneity of models and
devices, (b) the dynamic environment of MDs, e.g. available
resources at runtime, other processes’ competing demands, dy-
namically changing factors (temperature, battery), and (c) the
diverse application performance needs, in terms of accuracy,
latency, memory or energy consumption. Future advancements
may include software solutions which are device-dependent
and take both model characteristics and performance objec-
tives into account [23]. Additionally, due to the dynamic
environment of MDs, it is important for the system to have
access to as many different processors as possible. This en-
ables switching between processors in cases when significant
changes in resource availability are observed [24].

In our analysis, we found that Transformers are not
accelerator-compatible; the GPU can offer marginal speedups
but damages accuracy and the DSP and NPUs are mostly
not Transformer-compatible. Influenced by the MobileBERT
model, an interesting direction is to consider model-level sub-
stitutions, i.e. replace complex layers / operations with simpler
ones, which have been proved to be more mobile-friendly, such

as the replacement of (a) the GELU activation function (e.g.
with ReLU), and (b) Layer Normalisation layers (e.g. with
elementwise linear transformations or Batch Normalisation).

VII. CONCLUSION

Our benchmarking results show that despite the increasing
adoption of dedicated hardware in modern devices, general-
purpose processors, like the CPU, remain highly utilised due
to their flexibility in supporting new workloads. Our findings
highlight the importance of (a) research into optimising the
Transformer architecture, and (b) developing accelerators that
are more Transformer-friendly. We also stress the need for
device- and model-dependent system-level optimisations, since
default configurations (e.g. XNNPACK) are almost never the
optimal choice. We hope our observations and insights can
assist future research and development efforts in the area.
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