
MultiTASC: A Multi-Tenancy-Aware Scheduler for
Cascaded DNN Inference at the Consumer Edge

Sokratis Nikolaidis†, Stylianos I. Venieris‡, and Iakovos S. Venieris†
†National Technical University of Athens, Athens, Greece, ‡Samsung AI Center, Cambridge, UK

Email: sokratisnikolaidis@mail.ntua.gr, s.venieris@samsung.com, venieris@cs.ece.ntua.gr

Abstract—Cascade systems comprise a two-model sequence,
with a lightweight model processing all samples and a heavier,
higher-accuracy model conditionally refining harder samples to
improve accuracy. By placing the light model on the device side
and the heavy model on a server, model cascades constitute
a widely used distributed inference approach. With the rapid
expansion of intelligent indoor environments, such as smart
homes, the new setting of Multi-Device Cascade is emerging
where multiple and diverse devices are to simultaneously use
a shared heavy model on the same server, typically located
within or close to the consumer environment. This work presents
MultiTASC, a multi-tenancy-aware scheduler that adaptively
controls the forwarding decision functions of the devices in
order to maximize the system throughput, while sustaining
high accuracy and low latency. By explicitly considering device
heterogeneity, our scheduler improves the latency service-level
objective (SLO) satisfaction rate by 20-25 percentage points (pp)
over state-of-the-art cascade methods in highly heterogeneous
setups, while serving over 40 devices, showcasing its scalability.

I. INTRODUCTION

In recent years, there has been significant progress in the
field of on-device execution of deep learning (DL) inference
tasks [1]. At the same time, with the rapid expansion of
indoor intelligent environments [2], such as smart homes and
offices, DL is poised to enable new use-cases by expanding
to a greater variety of smart devices, such as IoT cameras
and AI speakers. Nevertheless, due to their form-factor and
energy-efficiency constraints, most of these devices lie on the
low end of the computational spectrum. In contrast to modern
high-end smartphones, which host powerful processors and
accelerators (GPUs, NPUs) [3], low-end devices are not able to
deploy state-of-the-art deep neural networks (DNNs), resorting
to lightweight, but lower-accuracy models.

Given that offloading data to the cloud for inference can
incur significant costs in terms of bandwidth, latency and
privacy, an alternative scheme is emerging that places the
server inside or closer to the consumer environment in the form
of a dedicated AI hub that assists the surrounding devices [2].
In this context, a prominent deployment approach are the
cascade architectures [4]–[9]. Cascade architectures make use
of the fact that not all samples are of the same difficulty and
choose to process only the more challenging cases with a
powerful model deployed on the server, while letting easier
samples, which usually form the majority of the data, to be
processed on-device with a light model. A lot of research has
been conducted on such architectures, mainly focusing on the
forwarding decision criterion and selection of model pairs,
progressing the potency of the scheme.

Despite the progress, the majority of these works have solely
focused on the setting where the server is used by a single
device at any given time. Such an assumption no longer holds
in upcoming intelligent environments where multiple devices
execute DL inference tasks simultaneously under the support
of the same AI hub [10]. This gives rise to the new setting of
Multi-Device Cascade, where multiple devices use the same
model on a shared edge-based server. Such a system needs
to be scalable in terms of number of devices, balancing fast
response time and high accuracy across them. In this con-
text, status-quo approaches, which treat each model cascade
independently, would either lead to brute-forcing inference
requests through the server’s resources, resulting in the system
being overwhelmed, or force all devices to fallback to on-
device execution, negating any accuracy benefits. Therefore,
there is an emerging need for novel methods that explicitly
target the challenges of a Multi-Device Cascade.

In this work, we propose MultiTASC, a multi-tenancy-aware
scheduler that allows the Multi-Device Cascade architecture
to adapt to dynamic conditions by reconfiguring on-the-fly
the forwarding criterion of the cascades, thus controlling the
server’s inference request rate at run time. To sustain smooth
operation under device heterogeneity, we further introduce
a heterogeneity-aware prioritization scheme that selectively
adapts each device’s operation depending on its capabilities.
Overall, MultiTASC sustains high responsiveness, throughput
and accuracy while the number of assisted devices scales in
both homogeneous and heterogeneous device ecosystems. The
key contributions of this paper are the following:

• A system model of the Multi-Device Cascade architec-
ture. By expanding the cascade architecture to accom-
modate multiple devices, our parametrization exposes
the tunable parameters and enables system designers to
systematically investigate its trade-offs.

• A multi-tenancy-aware scheduler optimized for the Multi-
Device Cascade architecture. The proposed scheduler
aims to maximize throughput and accuracy while satisfy-
ing a latency constraint. This is accomplished through
the adaptive manipulation of the forwarding decision
functions of the devices that control the inference request
flow to the server. By introducing a new metric, Capacity,
our scheduler estimates the maximum amount of samples
that can be processed on the server within a given latency
constraint and utilizes it to dynamically reconfigure the
forwarding decision functions on the assisted devices.

ar
X

iv
:2

30
6.

12
83

0v
1

 [
cs

.L
G

]
 2

2
Ju

n
20

23

II. BACKGROUND & RELATED WORK

On-Device DNN Inference. In recent years, the on-device
deployment of DL models has rapidly gained ground [1].
Although on-device training remains a distant possibility,
inference has been achieved on computationally constrained
devices through the utilization of various methods, such as
lightweight model design [11], quantization [12], pruning [13],
knowledge distillation [14], and optimized scheduling [15].
Still, despite the maturity of these techniques, upcoming
intelligent spaces, such as smart homes and offices, are often
populated with small-form factor, resource-constrained devices
(e.g. smart cameras, AI speakers), which lack the processing
power to support high-accuracy, computationally intensive
models. This fact has motivated the development of distributed
collaborative inference approaches.
Distributed Collaborative Inference. Distributed inference
systems employ a server to assist mobile and embedded
devices in performing DNN inference tasks. This approach
has given rise to two main schemes: offloading and cascading.
Offloading [16]–[18] leverages the server’s resources to alle-
viate part of the computational load on the device by splitting
the DNN model into two parts; the first part is executed on the
device, with the intermediate results forwarded to the server
to proceed with the execution of the second part.

In the cascade scheme, samples are fed into a two-model
sequence of DNNs, with progressively increasing complexity
and accuracy. Once the input is processed by a model, its
output is evaluated by a forwarding decision function, which
determines whether the inference ends using the current result
or proceeds to the next model. Several works have been
conducted on this area. [4] proposes to analyze the difference
between the best and the second best softmax result in order
to determine which inputs can be processed only by the light
model and which require the heavy model. [5] introduces a
trainable forwarding criterion by training a neural head on the
light model’s feature extractor. [6] explores the idea of using
more than two DNN models and compares different decision
metrics. Finally, [7] and [8] propose solutions for deploying
cascades under tight energy constraints.
Multi-Device Cascades. Previous works on cascades [4]–[8]
have focused on an isolated setting, where a single device has
exclusive access to a server. Nonetheless, with an increased
rate of AI-enabled applications deployed in indoor environ-
ments, this assumption is unrealistic; instead, multiple devices
will require support from the same server at any given time.
Such a setting requires principled investigation, since a brute-
force deployment, where devices run independently of each
other, would lead to either an overloaded server, and in turn to
long response times, or significant drop in accuracy by falling
back to local execution. The Multi-Device Cascade setting
remains unexplored and is the focus of this work.

III. MULTI-DEVICE CASCADE OF CLASSIFIERS

Fig. 1 presents the system architecture of a Multi-Device
Cascade, where IoT devices are running DL inference tasks.
All devices perform the same task, e.g. object detection, but

Forwarding
Decision

Forwarding
Decision

Forwarding
Decision

Request
Queue

Server

Results

Yes

Yes

Yes

No

No

No

Fig. 1: System architecture of Multi-Device Cascade.

may host different models. The output predictions of each
sample are passed on to a Forwarding Decision function that
determines whether the DL model of the device is confident
about its output. Depending on the decision, either the result
remains as is, or the sample is forwarded to a server to be
processed by a more accurate model. The forwarded samples
from all devices are put into a Request Queue from where
they are drawn to form the input of the server-hosted model;
as such, the server-side model is shared among all devices.
Finally, the results produced on the server are sent back to
their corresponding devices.
Single-Device Cascade. Let x∈X be the input of a DL
inference task performed on an IoT device and y∈{1, ...,K}
the classification label produced by the model, where K is
the number of classes. By using a decision function, d(·), on
the output of the light device model, we can decide whether
the result is satisfactory (d(·)=0) or we should forward the
sample to the heavier model for further processing (d(·)=1).
Denoting the classification function of the light model by
fl : X → [0, 1]K that yields the softmax ouput vector of the
model whose maximum value is the predicted class, and the
classification of the heavy model by fh : X → [0, 1]K , we
formally define a collaborative cascade system as:

cascfl ,fh ,d(x) =

{
fl(x) if d(fl(x)) = 0

fh(x) if d(fl(x)) = 1
(1)

Multi-Device Cascade. To capture Multi-Device Cascade
architectures (Fig. 1), we extend the single-device cascade
system modeling as follows. Let D be the set of devices
that use the server as a collaborator. Then, the Multi-Device
Cascade system is defined as:

cascf i
l ,fh ,d

i (x i) =

{
f i
l (x

i) if di(f i
l (x)) = 0 ∀i ∈ {1, ..., |D|}

fh(x
i) if di(f i

l (x)) = 1

where xi∈X i is a sample processed by the i-th device, f i
l the

classification function of the DL model deployed on the i-th
device, fh the shared heavy model on the server, and di(f i

l (x))
the forwarding decision function of the i-th device.
Congestion Problem. When a single device is using the
server as the collaborator, it has exclusive access to the
server’s computational resources and hence the response time
is minimized. With the proliferation of IoT devices, such a

server should be utilized by many devices at the same time, to
amortize its cost and provide maximum utility. Nonetheless,
depending on the conditions, if the arrival rate of incoming
requests exceeds the attainable processing throughput of the
server, the server will be overloaded and the requests will
experience severe waiting times in the request queue.

Given the number of devices |D|, we express the arrival
rate of requests to the server as ARserver =

∑|D|
i = 1

pi
casc/tiinf

where tiinf is the average inference latency of a sample on
the i-th device and picasc is the probability of a sample giving
di(f i

l (x
i)) = 1. Given the attainable throughput Tserver of the

server, we distinguish between three different states:
• ARserver < Tserver: the server’s processing rate is larger

than the arrival rate, resulting in the server being under-
utilized. A larger number of difficult samples could be
sent to the server to achieve higher accuracy.

• ARserver = Tserver: equilibrium is attained. Requests are
processed upon arrival without accumulating and the
server’s processing power is fully utilized.

• ARserver > Tserver: the requests arrive faster than the server
can process. If this state lasts, the request queue will be
large, resulting in unwanted latency.

Since the probability picasc of the forwarding decision function
is not static, but changes during inference, such an architecture
could benefit by dynamically adapting its state depending on
the current conditions. Since tiinf and Tserver are fixed based on
the device and server-side processors, we opt to manipulate
picasc by changing the parameters of di(f i

l (x
i)) in order to

introduce adaptability to the system.
Problem Optimization. We formulate the aforementioned
problem as a multi-objective optimization problem, aiming
to maximize accuracy and throughput subject to a latency
service-level objective (SLO). The next section describes our
proposed scheduler that tackles this problem.

IV. PROPOSED SOLUTION

To combat the accumulation of requests or underutilization
of server resources, we propose MultiTASC, a multi-tenancy-
aware scheduler that dynamically adapts the forwarding de-
cision functions on assisted devices in order to control the
arrival rate of samples. Fig. 2 depicts its internal design. The
scheduler monitors the state of the request queue, communi-
cates with the assisted devices and tunes the flow of incoming
requests based on the current conditions. To this end, we in-
troduce four techniques: i) reconfigurable forwarding decision
functions, ii) the Capacity metric on the server, iii) fractional
update, and iv) device heterogeneity-aware prioritization for
effectively communicating updates to the devices.

A. Reconfigurable Forwarding Decision Function

Research effort has been invested into quantifying the pre-
diction confidence of DNNs, leading to several approaches [6],
[19]. In this work, we adopt the Best-versus-Second-Best
(BvSB) metric [20], using the difference between the two
highest values of the softmax outputs of the model as

In
it

ia
li
za

ti
o
nInference

Latencies

Latency SLO

R
u

n
ti

m
e

Capacity
Threshold
 Update

Scheduler

Mean Batch Size Queue Length

Fig. 2: MultiTASC’s internal architecture.

BvSB
∣∣∣
f(x)

=P1 − P2, where P1 and P2 are the maximum and

second maximum values, respectively, in the output softmax
vector of classifier f(x). Other metrics, such as top-1 softmax
or entropy, can be used with minimal modifications, potentially
leading to different latency-accuracy trade-offs.

The vast majority of existing cascade systems opts to select
a specific threshold at design time, which then remains fixed
upon deployment. In this work, to accommodate the adaptabil-
ity needs of our target system, we adopt an alternative scheme
where the decision function can be dynamically reconfigured.
The decision function di(·) is thus defined as:

di(f i
l (x)) =

0 if BvSB

∣∣∣
fi
l (x)

≥ ci,t

1 if BvSB
∣∣∣
fi
l (x)

< ci,t
(2)

where ci,t is the decision threshold of device i at time t.
The per-device decision thresholds are exposed to our server-
residing scheduler, which adapts them at run time.

B. The Capacity Metric

To fully take advantage of the server’s computational re-
sources and boost throughput, it is important to use batching,
i.e. processing multiple samples at the same time. To avoid the
latency that would arise from waiting for the request queue to
reach a specific batch size, we employ dynamic batching [21].
With dynamic batching, we use the maximum batch size that is
feasible with the current request queue length. Available batch
sizes are B={1, 2, 4, 8, 16, 32, 64}. Due to diminishing returns,
in some cases we use a lower maximum batch size, e.g. with
EfficientNetB3 a batch size of 16 provides higher throughput
and lower latency than a batch size of 32 and above.

To calculate the amount of samples that can be processed
by the server within a given latency constraint, we introduce
the Capacity metric. Based on the inference latency of each
batch size and a given latency SLO, the scheduler calculates
the maximum amount of samples that can be classified without
latency violations. We call that amount Capacity.

To obtain the value of the server’s Capacity, we cast the
problem as an unbounded variation of the Knapsack prob-
lem, where the batch size throughput is analogous to the
value/weight ratio. Since we know that the larger the batch
size the higher the throughput (up to the point where the
server’s processing power is saturated), we introduce a greedy

TABLE I: Evaluated DNN Models

Model Location Device Clock Rate Accuracy Latency FLOPs #Params

MobileNetV2 Low-end Sony Xperia C5 1.69 GHz 71.85% 31 ms 0.6 B 3.5 M
EfficientNetLite0 Mid-tier Samsung A71 2.20 GHz 75.02% 43 ms 0.8 B 4.7 M
EfficientNetB0 High-end Samsung S20 FE 2.73 GHz 77.04% 33 ms 0.8 B 5.3 M
InceptionV3 Server Tesla T4 GPU 585 MHz 78.29% 15 ms 11.4 B 23.8 M
EfficientNetB3 Server Tesla T4 GPU 585 MHz 81.49% 25 ms 3.7 B 12.2 M

* See Table 1 in [1] for the detailed resource characteristics of the target mobile phones.

algorithm that adds the largest batch size as many times as
possible. Let B be the pool of batch sizes, then:

C = max
n

|B|∑
j=1

bjnj , s.t.
|B|∑
j=1

L
bj
inf nj ≤ LSLO, nj ≥ 0 (3)

where C is the Capacity metric, bj is the j-th batch size, nj is
the amount of times the batch size is used, Lbj

inf is the inference
latency of the j-th batch size and LSLO is the latency SLO.

C. Fractional Update

Changing the thresholds of all devices at once could lead
to unwanted, sudden oscillations of the system. To achieve
a smoother operation of the system and give enough time
for each adaptation step to affect the execution, MultiTASC
introduces the fractional update technique. With fractional
update, MultiTASC updates the thresholds of only a certain
percentage, denoted by P , of the total number of devices for
each update. Thresholds are updated as dictated by Eq. (4).
We set the invocation rate of the scheduler to be once every
2 seconds, allowing for update results to affect the system.

TC =

−M if b̄ > α · C and QL > α · C
+M if b̄ ≤ β · C and QL ≤ β · C
0 otherwise

(4)

where M is the margin by which the threshold of the chosen
devices changes, b̄ the average of the last L batch sizes
used for inference on the server, C the Capacity metric and
QL the request queue length. Capacity is weighted using the
parameters α and β. If requests accumulate beyond a certain
limit despite the dynamic threshold updates, all thresholds are
set to 0 until the server is decongested.

D. Device Heterogeneity-Aware Prioritization

MultiTASC explicitly considers device heterogeneity in
order to maximize both the average accuracy and the system
throughput. Our heterogeneity-aware prioritization strategy
updates the threshold values using Eq. (4), but expands the
pipeline by selecting which type of devices receive the update.
The key insight of our strategy is that when it comes to
decreasing the thresholds, MultiTASC prioritizes high-end
and mid-tier devices since they host larger models and can
maintain higher accuracy even with low thresholds. In contrast,
when increasing thresholds, our scheduler prioritizes low-end
devices, since they are the ones benefiting the most from
higher thresholds due to hosting lighter models.

10 20 30 40 50
Number of Devices

70

75

80

85

90

In
fe

re
nc

es
 b

el
ow

 S
LO

 (%
)

SLO 100ms

Static
Dynamic

10 20 30 40 50
Number of Devices

70

75

80

85

90

95

100
SLO 200ms

Static
Dynamic

Fig. 3: SLO satisfaction rate for EfficientNetLite0-InceptionV3 pair.

10 20 30 40 50
Number of Devices

200

400

600

800

1000

1200

Th
ro

ug
hp

ut
 (s

am
pl

es
/s

)

Static
Dynamic

10 20 30 40 50
Number of Devices

75

76

77

78

79

Ac
cu

ra
cy

 (%
)

Static Threshold
Light Model
Heavy Model
Target 100ms
Target 200ms

Fig. 4: Throughput and accuracy for EfficientNetLite0-InceptionV3
pair.

V. EVALUATION

A. Experimental Setup

To evaluate the performance of MultiTASC, we built a
prototype on top of TensorFlow 2.9.1 targeting an edge server
and three tiers of mobile devices. The edge server hosts an
NVIDIA Tesla T4 GPU, Intel(R) Xeon(R) 2.30GHz CPU and
12GB of RAM. For the clients, we target three smartphones
of increasing processing capabilities, namely: Sony Xperia
C5 Ultra, Samsung A71 and Samsung S20 FE, representing
low-, mid- and high-end clients, respectively. To assess our
system across various settings, we conduct simulation-based
experiments, varying the target latency SLO and the number
of client devices. We measure the average inference time
across 200 runs on the target devices for the evaluated models.
We follow the same approach for the server-side models
across different batch sizes. All on-device measurements were
performed using TensorFlow Lite and targeting the CPU of
the respective mobile device. For the device-server communi-
cation, we employ the AMQP protocol, following the widely
used practice for communication between IoT devices.
Models & Datasets. We target the task of 1k-class image
classification. Concretely, we use the ImageNet dataset and its
50k-images validation set in our experiments. Table I shows
the evaluated models. We obtain the ImageNet-pretrained
models as provided by TensorFlow Hub. On the client side,
to emulate the common approach where models are selected
based on the capabilities of each device, we deploy Mo-
bileNetV2, EfficientNetLite0 and EfficientNetB0 on low-, mid-
and high-end devices, respectively. On the server side, we
chose InceptionV3 and EfficientNetB3 as representative mod-
els that are computationally heavy, but provide high accuracy.

10 20 30 40
Number of Devices

70

75

80

85

90

95

In
fe

re
nc

es
 b

el
ow

 S
LO

 (%
)

SLO 100ms

Static low
Static mid
Static high
Dynamic low
Dynamic mid
Dynamic high

10 20 30 40
Number of Devices

70

75

80

85

90

95

100
SLO 200ms

Static low
Static mid
Static high
Dynamic low
Dynamic mid
Dynamic high

Fig. 5: SLO satisfaction rate for InceptionV3 on the server.

10 20 30 40

Number of Devices

100

200

300

400

500

Th
ro

ug
hp

ut
 (s

am
pl

es
/s

) Low-End Devices

Static
Dynamic

10 20 30 40

Number of Devices

50

100

150

200

250

300

350
Mid-Tier Devices

Static
Dynamic

10 20 30 40

Number of Devices

100

200

300

400

High-End Devices

Static
Dynamic

(a)

10 20 30 40

Number of Devices

72

73

74

75

76

77

78

79

Ac
cu

ra
cy

 (%
)

Low-End Devices

Static Threshold
Light Model
Target 100ms
Target 200ms

10 20 30 40

Number of Devices
75

76

77

78

79

Mid-Tier Devices

10 20 30 40

Number of Devices

77.0

77.5

78.0

78.5

79.0

79.5

80.0

High-End Devices

(b)

Fig. 6: (a) Throughput and (b) accuracy for InceptionV3 on the server.

Evaluation Settings. We focus on two types of device
ecosystems: i) homogeneous, which comprises devices of
equal processing capabilities that host the same local model;
and ii) heterogeneous, which comprises devices of diverse
processing capabilities, with each device hosting a model sized
to its tier. In the homogeneous scenario, all devices were mid-
tier, i.e. A71 phones, and ran EfficientNetLite0 with an average
on-device inference latency of 43 ms. In the heterogeneous
scenario, all three tiers of devices were deployed in equal
percentage. In both cases, the dataset of each device consisted
of 5,000 randomly selected samples from the last 40,000
images of ImageNet’s validation set. Three different seeds
were used and the average is reported. The metrics used for
the evaluation are: the system throughput, the average accuracy
across devices, latency SLO satisfaction rate for 100- and 200-
ms SLOs, and scalability in terms of number of devices.
Baseline. As a baseline, we use a scheduler with statically
selected thresholds that remain fixed at run time. To choose the
static threshold, we use the first 10,000 images of ImageNet’s
validation set as our calibration set and evaluate all cascade
model pairs in terms of accuracy and forwarding probability.
As such, we tune the threshold so that approximately 30%
of samples are forwarded to the heavy model, providing
a balanced accuracy-latency trade-off. In cases where that
threshold yielded an accuracy loss of more than 1 pp compared
to the highest achievable cascade accuracy, we used the
lowest threshold that satisfied the 1 pp limit. This baseline
is equivalent to a set of state-of-the-art cascades [5], [6], [9].

4 6 8 10 12 14
Number of Devices

60

65

70

75

80

85

90

95

In
fe

re
nc

es
 b

el
ow

 S
LO

 (%
)

SLO 100ms

Static low
Static mid
Static high
Dynamic low
Dynamic mid
Dynamic high

4 6 8 10 12 14
Number of Devices

60

65

70

75

80

85

90

95

100
SLO 200ms

Static low
Static mid
Static high
Dynamic low
Dynamic mid
Dynamic high

Fig. 7: SLO satisfaction rate for EfficientNetB3.

4 6 8 10 12 14

Number of Devices

40

60

80

100

120

140

160

Th
ro

ug
hp

ut
 (s

am
pl

es
/s

) Low-End Devices

Static
Dynamic

4 6 8 10 12 14

Number of Devices
20

40

60

80

100

120
Mid-Tier Devices

Static
Dynamic

4 6 8 10 12 14

Number of Devices

40

60

80

100

120

140

High-End Devices

Static
Dynamic

(a)

4 6 8 10 12 14

Number of Devices

72

74

76

78

80

82

Ac
cu

ra
cy

 (%
)

Low-End Devices

Static Threshold
Light Model
Target 100ms
Target 200ms

4 6 8 10 12 14

Number of Devices
75

76

77

78

79

80

81

82
Mid-Tier Devices

4 6 8 10 12 14

Number of Devices
77

78

79

80

81

82

High-End Devices

(b)

Fig. 8: (a) Throughput and (b) accuracy for EfficientNetB3 on the server.

B. Evaluation of MultiTASC’s Performance

Here, we assess the performance of our scheduler across
both device ecosystems. We optimized MultiTASC’s parame-
ters P , M , L, α and β using grid search and set them equal
to 20%, 0.05, 5, 0.83 and 0.125, respectively.
Homogeneous Scenario. Fig. 3 shows the SLO satisfaction
rate comparison for the pair EfficientNetLite0-InceptionV3.
For a small amount of devices, MultiTASC keeps the satis-
faction rate close to the baseline. As the baseline starts failing
at 20 and 40 devices for SLOs of 100 and 200 ms, respectively,
MultiTASC gradually reconfigures the thresholds of the for-
warding decision functions and manages to keep satisfaction
rate high, gaining 15-20 pp across the SLOs. In Fig. 4, we can
see that after 45 devices the baseline’s throughput is starting
to plateau, due to the queue not being served quickly enough.
The users of the devices would experience this plateau as
excessive response time. In contrast, with MultiTASC, the
aggregate throughput continues to increase linearly with a
growing number of devices, indicating that the requests are
not allowed to accumulate and more devices can be served.

With respect to accuracy, for a small number of devices,
MultiTASC slightly increases accuracy. This happens because
our approach recognizes that the server is being underutilized
and increases the thresholds accordingly. As the number of
devices becomes larger, accuracy is traded off to achieve
lower latency and sustain higher throughput, but still stays
within 2 pp of the baseline. Additionally, we observe that the
accuracy achieved by the cascade is in most cases higher than

the accuracy of the heavy model, showcasing the benefits of
classifier cascades for the specific model pair. Moreover, we
observe the scalability of MultiTASC, serving up to 50 devices
without significant loss of accuracy. Different model pairings
gave similar results, providing high satisfaction rate, sustaining
the throughput and keeping accuracy within acceptable limits.
When comparing server-side models, InceptionV3 can serve a
larger amount of devices compared to EfficientNetB3, due to
its lower computational demands, but EfficientNetB3 achieves
higher accuracy when it comes to a lower number of devices.

We further observe that when the on-device inference
latency is below the SLO, the lowest limit for the SLO
satisfaction rate is the percentage of samples that are not
forwarded to the server. For the EfficientNetLite0-InceptionV3
pair, this is around 69% and can be observed when the baseline
solution reaches 40 devices for the 100-ms SLO (Fig. 3)
Heterogeneous Scenario. Fig. 5-6 show the SLO satisfaction
rate, throughput and accuracy comparison between MultiTASC
and the baseline, when targeting a heterogeneous device
environment with InceptionV3 as the server-side model. We
report the performance results separately for each device tier.
When calculating the throughput, different latency targets
give similar results, so we present only one. Similarly to
the homogeneous case, we observe that the satisfaction rates
are maintained high across all tiers of devices, while the
baseline leads to catastrophically degraded latency after 30
and 40 devices for SLOs of 100 and 200 ms, respectively
(Fig. 5). Our approach achieves gains of approximately 20-
25 pp in satisfaction rate across all device tiers. We also
observe the throughput plateau, but only for the low- and
high-end devices. This is attributed to the fact that the latency
of EfficientNetLite0 on the mid-tier devices is 1.32× slower
than the other tiers, resulting in mid-tier devices continuing
inference after the inference on low-end and high-end devices
has finished. This allows the server to decongest since only 1/3
of the devices remains. Accuracy is again within acceptable
values, never dropping below 2 pp from the baseline.

Fig. 7-8 show the performance comparison when Efficient-
NetB3 is used as the server-side model. Our observations
are similar to the previous case of InceptionV3, showcasing
the generality of our approach. From this set of experiments,
we infer that the highest-performing server-side model is
in most cases the higher-throughput one, e.g. InceptionV3.
Specifically, we observe that InceptionV3 can serve a much
larger number of devices while keeping accuracy within
acceptable levels compared to the complex, low-throughput
EfficientNetB3. EfficientNetB3 achieves higher accuracy when
the number of devices is 9 or lower for SLO of 100 ms or 14
and lower for SLO of 200 ms. In all cases, via adjusting the
forwarding decision thresholds during execution, MultiTASC
manages to keep response times low and system throughput
high by gradually trading off accuracy.

VI. CONCLUSION

This paper presents MultiTASC, a novel scheduler that
enables cascade collaborative systems when assisting multi-

ple devices at the same time. By dynamically updating the
thresholds of forwarding decision functions on devices during
run time, MultiTASC manages to avoid request accumulation
on server-side which keeps response latency below SLO
targets and throughput high across different device pool sizes.
Moreover, it considers the device heterogeneity problem and is
able to maintain performance while accommodating different
tiers of devices. The flexibility and scalability of MultiTASC
will help push collaborative cascade systems to enable broader
DL deployment in indoor intelligent environments.

REFERENCES

[1] S. I. Venieris, I. Panopoulos, and I. S. Venieris, “OODIn: An Optimised
On-Device Inference Framework for Heterogeneous Mobile Devices,”
in SMARTCOMP, 2021.

[2] S. Laskaridis, S. I. Venieris, A. Kouris, R. Li, and N. D. Lane, “The
Future of Consumer Edge-AI Computing,” arXiv, 2022.

[3] M. Almeida, S. Laskaridis, A. Mehrotra, L. Dudziak, I. Leontiadis, and
N. D. Lane, “Smart at What Cost? Characterising Mobile Deep Neural
Networks in the Wild,” in IMC, 2021.

[4] E. Park, D. Kim, S. Kim, Y.-D. Kim, G. Kim, S. Yoon, and S. Yoo,
“Big/little deep neural network for ultra low power inference,” in
CODES+ISSS, 2015.

[5] M. Li, Y. Li, Y. Tian, L. Jiang, and Q. Xu, “AppealNet: An Efficient
and Highly-Accurate Edge/Cloud Collaborative Architecture for DNN
Inference,” in DAC, 2021.

[6] X. Wang, Y. Luo, D. Crankshaw, A. Tumanov, F. Yu, and J. E. Gonzalez,
“IDK Cascades: Fast Deep Learning by Learning not to Overthink,” in
UAI, 2018.

[7] S. I. Mirzadeh and H. Ghasemzadeh, “Optimal Policy for Deployment
of Machine Learning Models on Energy-Bounded Systems,” in IJCAI,
2020.

[8] D. Stamoulis, T.-W. R. Chin, A. K. Prakash, H. Fang, S. Sajja,
M. Bognar, and D. Marculescu, “Designing Adaptive Neural Networks
for Energy-Constrained Image Classification,” in ICCAD, 2018.

[9] A. Kouris, S. I. Venieris, and C.-S. Bouganis, “CascadeCNN: Pushing
the Performance Limits of Quantisation in Convolutional Neural Net-
works,” in FPL, 2018.

[10] T. Nakamura, S. Saito, K. Fujimoto, M. Kaneko, and A. Shiraga,
“Spatial- and Time-Division Multiplexing in CNN Accelerator,” Parallel
Computing, 2022.

[11] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“MobileNetV2: Inverted Residuals and Linear Bottlenecks,” in CVPR,
2018.

[12] S. Han, H. Mao, and W. J. Dally, “Deep Compression: Compressing
Deep Neural Networks with Pruning, Trained Quantization and Huffman
Coding,” in ICLR, 2015.

[13] Y. He, X. Zhang, and J. Sun, “Channel Pruning for Accelerating Very
Deep Neural Networks,” in ICCV, 2017.

[14] G. Hinton, O. Vinyals, and J. Dean, “Distilling the Knowledge in a
Neural Network,” in NeurIPS, 2014.

[15] B. Cox, R. Birke, and L. Y. Chen, “Memory-aware and Context-aware
Multi-DNN Inference on the Edge,” Pervasive and Mobile Computing,
2022.

[16] M. Almeida, S. Laskaridis, S. I. Venieris, I. Leontiadis, and N. D. Lane,
“DynO: Dynamic Onloading of Deep Neural Networks from Cloud to
Device,” TECS, 2022.

[17] J. Huang, C. Samplawski, D. Ganesan, B. Marlin, and H. Kwon, “CLIO:
Enabling Automatic Compilation of Deep Learning Pipelines across IoT
and Cloud,” in MobiCom, 2020.

[18] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and
L. Tang, “Neurosurgeon: Collaborative Intelligence Between the Cloud
and Mobile Edge,” in ASPLOS, 2017.

[19] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On Calibration of
Modern Neural Networks,” in ICML, 2017.

[20] A. J. Joshi, F. Porikli, and N. Papanikolopoulos, “Multi-Class Active
Learning for Image Classification,” in CVPR, 2009.

[21] A. Ali, R. Pinciroli, F. Yan, and E. Smirni, “BATCH: Machine Learning
Inference Serving on Serverless Platforms with Adaptive Batching,” in
SC, 2020.

	Introduction
	Background & Related Work
	Multi-Device Cascade of Classifiers
	Proposed solution
	Reconfigurable Forwarding Decision Function
	The Capacity Metric
	Fractional Update
	Device Heterogeneity-Aware Prioritization

	Evaluation
	Experimental Setup
	Evaluation of MultiTASC's Performance

	Conclusion
	References

