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Abstract: In this paper we consider state estimation of a discrete time linear system using mul-
tiple sensors, where the sensors quantize their individual innovations, which are then combined
at the fusion center to form a global state estimate. We obtain an asymptotic approximation for
the error covariance matrix that relates the system parameters and quantization levels used by
the different sensors. Numerical results show close agreement with the true error covariance for
quantization at high rates. An optimal rate allocation problem amongst the different sensors is
also considered.

1. INTRODUCTION

Linear state estimation using multiple sensors is a com-
monly performed task in areas such as radar tracking
and industrial monitoring. Nowadays, much of the com-
munication systems used in practice are digital in nature.
Therefore, analog measurements made by sensors will need
to be quantized before transmission to a central processor
or fusion center over a bandwidth limited wireless channel.
Characterizing the performance loss due to quantization,
for a linear state estimation problem, is the focus of this
paper. This can be seen as a first step towards achieving
a quantization rate versus state estimation error trade-off
for linear dynamical systems, which is largely unavailable
in the current literature.

We consider a discrete time linear system. A number of
sensors take measurements, perform some local processing
before transmitting a processed signal to a fusion center,
that then combines these signals to form a global state
estimate. At the sensor level, each sensor will quantize
their innovations. 1 This is motivated by the fact that for
unstable systems, while the state will become unbounded
(leading to possible saturation of the quantizer), the in-
novations process remains of bounded variance (Anderson
and Moore (1979)). These quantized innovations are then
sent to a fusion center to form a global state estimate,
using a modification of the decentralized scheme for un-
quantized Kalman filtering in Hashemipour et al. (1988).

The work of Nair and Evans (1998) gave structural results
on optimal coding for state estimation with measurements
obtained over a finite rate digital link, though the fo-
cus is more on determining minimum bit rates required
for stability. For a linear quadratic control problem with
quantized state feedback, the performance with high rate
quantization has been studied in Gupta et al. (2006).
The idea of quantizing innovations has also been con-
sidered in Msechu et al. (2008); You et al. (2011) with
different filtering equations from ours. However You et al.

1 To be more specific, we quantize an approximation to the true
innovations due to the nonlinear effect of quantization

(2011) only considers the case of a single sensor, while
the multi-sensor setup in Msechu et al. (2008) does not
involve a fusion center but instead requires sensors to
broadcast their quantized innovations to all other sensors.
In Sukhavasi and Hassibi (2011) a filter which involves
quantizing the true innovations at the sensor (rather than
the approximation to the true innovations considered here
and in Msechu et al. (2008); You et al. (2011)) is given,
but it is shown that for unstable systems the mean squared
error always becomes unbounded with this scheme. Par-
ticle filtering schemes are also considered in Sukhavasi
and Hassibi (2011), though such schemes are difficult to
analyze theoretically.

The paper is organized as follows. We first consider the
single sensor case in order to motivate our choice of
quantization method, filtering equations, and asymptotic
analysis techniques for high rate quantization. We then
consider the multi-sensor case. We obtain an asymptotic
approximation for the error covariance in terms of the
number of quantization levels used by the different sensors,
as well as the system parameters. Numerical comparisons
are made between the asymptotic expression and Monte
Carlo simulations of the true error covariance matrix.
While our asymptotic expressions are derived assuming
high rate quantization, numerical results suggest that they
are quite accurate even for rates as low as 3 bits per
sample. We also solve a rate allocation problem in the
multi-sensor case for minimizing the trace of the error
covariance matrix at the fusion centre when the total rate
across the sensors is limited. The special case of scalar
systems has been analyzed using different techniques in
Leong et al. (2012).

2. SINGLE SENSOR

The system is a discrete time vector linear system

xk+1 = Axk + wk

where xk ∈ R
n and wk is i.i.d. zero mean Gaussian with

covariance matrix Σw ≥ 0. The sensor makes a vector
measurement

yk = Cxk + vk
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where yk ∈ R
m, and vk is i.i.d. zero mean Gaussian with

covariance matrix Σv > 0. We assume that {wk} and {vk}

are mutually independent, and that the pair (A,Σ
1/2
w ) is

stabilizable and the pair (A,C) is detectable.

2.1 Kalman filter

We briefly review a few properties of the Kalman fil-
ter. Define the state estimates and error covariances 2

x̂kf

k|k−1 = E[xk|y0, . . . , yk−1], x̂kf

k|k = E[xk|y0, . . . , yk],

P kf

k|k−1 = E[(xk − x̂kf

k|k−1)(xk − x̂kf

k|k−1)
T |y0, . . . , yk−1],

P kf

k|k = E[(xk − x̂kf

k|k)(xk − x̂kf

k|k)
T |y0, . . . , yk]. The inno-

vations process is

ỹkfk = yk − E[yk|y0, . . . , yk−1] = yk − Cx̂kf

k|k−1

It is well-known (see e.g. Anderson and Moore (1979)) that

ỹkfk ∼ N(0, CP kf

k|k−1C
T +Σv)

The Kalman filtering equations (no quantization) are:

x̂kf

k|k−1 = Ax̂kf

k−1|k−1

x̂kf

k|k = x̂kf

k|k−1 +Kkf
k (yk − Cx̂kf

k|k−1) = x̂kf

k|k−1 +Kkf
k ỹkfk

Kkf
k = P kf

k|k−1C
T (CP kf

k|k−1C
T +Σv)

−1

P kf

k|k−1 = AP kf

k−1|k−1A
T +Σw

P kf

k|k = P kf

k|k−1−P kf

k|k−1C
T (CP kf

k|k−1C
T +Σv)

−1CP kf

k|k−1

(1)

Under the stabilizability and detectability assumptions, as

k → ∞, P kf

k|k−1 converges to a steady state value P kf
∞ that

satisfies the algebraic Riccati equation:

P kf
∞ = AP kf

∞ AT+Σw−AP kf
∞ CT (CP kf

∞ CT+Σv)
−1CP kf

∞ AT

(2)

2.2 Quantized filtering scheme

In this paper we consider a suboptimal quantized filtering
scheme where we run a slightly modified version of the
unquantized filtering equations given in (1):

x̂k|k−1 = Ax̂k−1|k−1

x̂k|k = x̂k|k−1 +Kkqk(yk − Cx̂k|k−1)

Kk = Pk|k−1C
T (CPk|k−1C

T +Σv +Σn,k)
−1

Pk|k−1 = APk−1|k−1A
T +Σw

Pk|k=Pk|k−1−Pk|k−1C
T (CPk|k−1C

T +Σv+Σn,k)
−1CPk|k−1

(3)

where qk(yk − Cx̂k|k−1) is the quantization of the vector
yk−Cx̂k|k−1, and the matrix Σn,k is a term to account for
the quantization noise. Note that due to quantization x̂k,
Pk, and yk − Cx̂k|k−1 are not the true conditional mean,
error covariance matrix and innovations respectively, but
for high rate quantization the approximations should be
quite accurate.

Let Pk , Pk|k−1. Under high rate quantization, we as-
sume that the quantity yk − Cx̂k|k−1 is approximately

N(0, CPkC
T + Σv). Since yk − Cx̂k|k−1 is a vector, we

will use vector quantizers with N quantization values. In
2 Similar to Sukhavasi and Hassibi (2011), we use the superscript
“kf ” to denote the true Kalman filtering quantities.

general, optimal vector quantization (optimal in terms of
minimizing the distortion) is a difficult problem where
many open questions remain. The LBG algorithm (Gersho
and Gray (1992)) can be used to find locally optimal
vector quantizers but requires numerical methods to com-
pute, and the resulting quantizers often lack structure.
We thus consider mostly the case of lattice quantizers,
whose regular structure makes for efficient encoding and
implementation. 3

We will first diagonalize CPkC
T +Σv as

CPkC
T +Σv = UkΛkU

T
k

where Uk is a unitary (in fact orthogonal) matrix of
eigenvectors and Λk is a diagonal matrix of eigenvalues (we
recall that every real symmetric matrix is diagonalizable,
and the eigenvalues of a positive definite matrix are
positive). Then the distribution

N(0, CPkC
T +Σv) = UkΛ

1/2
k N(0, I).

Now for zero mean multivariate Gaussian distributions
with i.i.d. components, asymptotically optimal lattice
quantizers have been considered in Moo (1998), with an-
alytical expressions derived for the distortion and sizes of
the cells in the lattice quantizer. Thus one way to vector

quantize yk−Cx̂k|k−1 is to first multiply it by (UkΛ
1/2
k )−1

to transform into (approximately) N(0, I) random vectors,
quantizing this using the asymptotically optimal lattice
quantizers from Moo (1998), and then multiplying the

quantized vector by UkΛ
1/2
k , i.e.

qk(yk − Cx̂k|k−1) = UkΛ
1/2
k q̃((UkΛ

1/2
k )−1(yk − Cx̂k|k−1))

where q̃ is the lattice quantizer of Moo (1998) (note that

multiplication by UkΛ
1/2
k is a linear transformation which

preserves the number of values in the quantizer codebook).
For asymptotically optimal lattice quantization of a Gaus-
sian random vector with i.i.d. components, each having
variance σ2, the distortion per dimension DN , 1

m
E[(x−

q̃(x))T (x− q̃(x))] is given by (see Moo (1998)):

DN ∼
M(S0)V

2/m

η2

2
m
lnN

N2/m
, δN

where m represents the dimension of the vector to be
quantized, N the number of quantization values, η =
1
σ

√

Γ(3/2)
Γ(1/2) = 1

σ

√

1
2 , V = (Γ(1/2))m

Γ(m/2+1) = πm/2

Γ(m/2+1) , M(S0) =
1

k

∫

S0

||x−y||2
2
dx

v(S0)1+2/m
, S0 is a Voronoi cell of the lattice, v(S0) is

the volume of S0, and M(S0) is the normalized moment
of inertia of S0. The asymptotically optimal scaling aN of
the fundamental cells of the lattice is given by:

aN ∼

√

2

m

1

η

(

V

v(S0)

)1/m √
lnN

N1/m

Since the components are i.i.d., if we assume that the quan-
tization errors are spread evenly amongst all components,
then E[(x − q̃(x))(x − q̃(x))T ] ≈ δNI, and the term Σn,k

in (3) is then defined as

Σn,k,UkΛ
1/2
k (δNI)Λ

1/2
k UT

k =δN (CPkC
T +Σv). (4)

3 For scalar measurements, lattice quantization reduces to the case
of the uniform scalar quantizer. For scalar measurements we will also
consider the case of optimal quantization, see Section 2.2.1.
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Remark : The expressions for the asymptotic distortion
and asymptotically optimal scaling clearly depends on
the choice of fundamental cell S0. However, the optimal
shapes for S0 are generally not known. 4 As an example,
suppose S0 is an m-dimensional cube of length 1. Then
one can easily compute that v(S0) = 1 and M(S0) = 1/12.
Therefore in this case we have (with σ2 = 1):

DN ∼
π

3m(Γ(m/2 + 1))2/m
ln(N)

N2/m
,

aN ∼
2
√
π

√
m(Γ(m/2 + 1))1/m

√
lnN

N1/m
.

For dimension m = 1, these expressions further simplify

to DN ∼ 4 lnN
3N2 and aN ∼ 4

√
lnN
N

, see below.

The case of scalar measurements In the special case
of scalar measurements, the quantity to be quantized is
scalar, and the lattice quantizer reduces to the uniform
quantizer. The asymptotically optimal step size for uni-
form quantization of Gaussian variables has also been
derived in Hui and Neuhoff (2001). Under high rate quan-

tization, the step size ∆N is asymptotically ∆N ∼ 4
√
lnN
N

σ
and the resulting squared error distortion is asymptotically
DN ∼ 4 lnN

3N2 σ2 where σ2 is the variance of the Gaussian
random variable that is to be quantized.

Furthermore, for Gaussian random variables the optimal
quantizers have also been tabulated in Max (1960) for N
up to 36, and can be computed for other values of N
relatively easily. For N large, it is known that the resulting
squared error distortion satisfies the Panter-Dite formula,

so that DN ∼ π
√
3

2N2 σ
2. We therefore have (note that here

CPkC
T +Σv is scalar) Σn,k = δN (CPkC

T +Σv), where

δN =

{

π
√
3

2N2 , optimal quantization
4 lnN
3N2 , optimal uniform quantization

(5)

2.3 Asymptotic analysis

We wish to determine the asymptotic behaviour of tr(P∞)
for large N , where P∞ is the limit of Pk as k → ∞ that
from (3) and (4) satisfies the equation

P∞=AP∞AT +Σw−
AP∞CT(CP∞CT +Σv)

−1CP∞AT

1 + δN
(6)

In the scalar case an analytical expression for P∞ can be
derived and analyzed (see Leong et al. (2012)) to find
asymptotic approximations. However, in the vector case
we do not have a closed form expression for P∞ or tr(P∞).
Instead we will use a different technique, which is based on
the method used to find asymptotic solutions to algebraic
equations in perturbation theory (see e.g. Holmes (1995)),
but extended to matrices. With this technique, we can in
fact derive an asymptotic expression for the whole matrix
P∞, and not just its trace.

Notation: We will call a matrix O(1) if all its entries are
O(1), and call a matrix O(ǫ1) if all its entries are O(ǫ).

4 Even for lattice quantization of uniformly distributed random
vectors, the optimal cell shapes are only known for dimensions
m = 1, 2, 3.

Motivated by the asymptotic result in the scalar case
(Leong et al. (2012)), where it is shown that P∞ = P kf

∞ +
κδN +O(δ2N ) for some constant κ, we assume that P∞ can
be written in the form

P∞ = Φ0 + δNΦ1 + δ2NΦ2 + . . . (7)

where Φ0,Φ1, . . . etc. are matrices not dependent on N .
Substituting the form (7) into equation (6), we have

Φ0 + δNΦ1 + · · · = A(Φ0 + δNΦ1 + . . . )AT +Σw

−A(Φ0+δNΦ1+. . . )CT(C(Φ0+δNΦ1+. . . )CT +Σv)
−1

× C(Φ0 + δNΦ1 + . . . )AT 1

1 + δN
=A(Φ0+δNΦ1+. . . )AT +Σw−A(Φ0+δNΦi+. . . )CT

× [(CΦ0C
T +Σv)

−1 − δN (CΦ0C
T +Σv)

−1CΦ1C
T

× (CΦ0C
T +Σv)

−1 + . . . ]

× C(Φ0 + δNΦ1 + . . . )AT (1− δN + . . . )
(8)

where the second equality follows from the following gen-
eralization of a result from p.26 of Holmes (1995):

Proposition 1. Suppose ||
M
∑

i=1

ǫiA
−1Bi|| < 1 and A is in-

vertible. Then as ǫi → 0, i = 1, . . . ,M ,

(A+
M
∑

i=1

ǫiBi)
−1= A−1−

M
∑

i=1

ǫiA
−1BiA

−1+
∑

i,j

O(ǫiǫj1)

Due to space constraints, the proof is omitted.

Similar to the asymptotic technique in Holmes (1995), we
can derive an asymptotic expression for P∞ by successively
solving for Φ0, Φ1, etc. Equating the O(1) terms in (8) we
obtain the equation

Φ0 = AΦ0A
T +Σw −AΦ0C

T (CΦ0C
T +Σv)

−1CΦ0A
T

which can be used to compute Φ0. Comparing with (2),
we see that Φ0 = P kf

∞ .

Equating the O(δN1) terms in (8) we obtain the equation

Φ1 = AΦ1A
T −AΦ1C

T (CΦ0C
T +Σv)

−1CΦ0A
T

−AΦ0C
T (CΦ0C

T +Σv)
−1CΦ1A

T

+AΦ0C
T(CΦ0C

T +Σv)
−1CΦ1C

T(CΦ0C
T +Σv)

−1CΦ0A
T

+AΦ0C
T (CΦ0C

T +Σv)
−1CΦ0A

T

=
(

A−AΦ0C
T (CΦ0C

T +Σv)
−1C

)

Φ1

×
(

A−AΦ0C
T (CΦ0C

T +Σv)
−1C

)T

+AΦ0C
T (CΦ0C

T +Σv)
−1CΦ0A

T

(9)

which is a Lyapunov equation.

Thus, asymptotically we have P∞ = P kf
∞ + Φ1δN +

O(δ2(N)1), where δN decays to zero at the rate ln(N)
N2/m

for

the lattice quantizers of Moo (1998), P kf
∞ can be found

by solving numerically the algebraic Riccati equation (2),
and Φ1 can be found by solving numerically the Lyapunov
equation (9). For the special case of scalar measurements
and optimal quantization, δN decays at the rate 1

N2 .

3. MULTIPLE SENSORS

The system is still the vector linear system xk+1 = Axk +
wk, with xk ∈ R

n, but now with M different sensors each
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making measurements:

yi,k = Cixk + vi,k, i = 1, . . . ,M

where yi,k ∈ R
mi , wk ∼ N(0,Σw) and vi,k ∼ N(0,Σi,v).

We assume that {wk} and {vi,k}, ∀i are mutually inde-

pendent, and that the pair (A,Σ
1/2
w ) is stabilizable and

the pairs (A,Ci) are detectable for each i.

It is assumed that the individual sensors can perform
some local processing, with a fusion center then using an
appropriate fusion rule to compute a global estimate of the
state xk. See Fig. 1 for a diagram of the system model.

Fig. 1. System model: Multi-sensor

3.1 Decentralized Kalman filter

In Hashemipour et al. (1988), it is shown that in the case
where there is no quantization, each sensor can run its own
individual Kalman filter to obtain local state estimates,
which can then be combined at the fusion center to obtain
a global state estimate, that is the same as if the fusion
center had access to the individual measurements. We
summarize the equations below.

Define the local estimates and error covariances: x̂kf

i,k|k−1 =

E[xk|yi,0, . . . , yi,k−1], x̂
kf

i,k|k = E[xk|yi,0, . . . , yi,k], P
kf

i,k|k−1 =

E[(xk − x̂kf

i,k|k−1)(xk − x̂kf

i,k|k−1)
T |yi,0, . . . , yi,k−1], P kf

i,k|k =

E[(xk − x̂kf

i,k|k)(xk − x̂kf

i,k|k)
T |yi,0, . . . , yi,k], and the global

quantities: x̂kf

k|k−1 = E[xk|y0, . . . ,yk−1],

x̂kf

k|k = E[xk|y0, . . . ,yk],

P kf

k|k−1 = E[(xk − x̂kf

k|k−1)(xk − x̂kf

k|k−1)
T |y0, . . . ,yk−1],

P kf

k|k = E[(xk − x̂kf

k|k)(xk − x̂kf

k|k)
T |y0, . . . ,yk], where yk ,

(yT1,k, . . . , y
T
M,k)

T .

The sensors run their individual Kalman filtering equa-
tions, for i = 1, . . . ,M , whose equations take the form (1)
but replacing yk with yi,k, C with Ci, Σv with Σi,v etc.

The fusion center makes use of the local estimates x̂kf

i,k|k−1

and x̂kf

i,k|k and local error covariances P kf

i,k|k−1 and P kf

i,k|k

to compute global estimates as follows:

x̂kf

k|k−1 = Ax̂kf

k−1|k−1

x̂kf

k|k=P kf

k|k

(

P kf−1

k|k−1x̂
kf

k|k−1+
M
∑

i=1

{

P kf−1

i,k|k x̂
kf

i,k|k−P kf−1

i,k|k−1x̂
kf

i,k|k−1

})

P kf

k|k−1 = AP kf

k−1|k−1A
T +Σw

P kf

k|k = P kf

k|k−1−P kf

k|k−1C
T (CP kf

k|k−1C
T +Σv)

−1
CP kf

k|k−1

where C =
[

CT
1 | . . . | CT

M

]T
and Σv is a block diagonal

matrix given by Σv = diag(Σ1,v, . . . ,ΣM,v). Note that
instead of the sensors sending their local estimates and

error covariances, the local innovations ỹkfi,k = yi,k −

Cix̂
kf

i,k|k−1 can be sent to the fusion center instead, since

the fusion center can reconstruct x̂kf

i,k|k, x̂
kf

i,k+1|k, P
kf

i,k|k and

P kf

i,k+1|k from ỹi,k provided it has knowledge of all the

sensor parameters Ci and Σi,v, i = 1, . . . ,M .

As k → ∞, the local error covariance matrices P kf

i,k|k−1

have steady state values P kf
i,∞ satisfying the algebraic

Riccati equations:

P kf
i,∞ = AP kf

i,∞AT +Σw

−AP kf
i,∞CT

i (CiP
kf
i,∞CT

i +Σi,v)
−1CiP

kf
i,∞AT , i = 1, . . . ,M,

and the global error covariance matrix P kf

k|k−1 has steady

state value P kf
∞ that satisfies the algebraic Riccati equation

P kf
∞ = AP kf

∞ AT+Σw−AP kf
∞ C

T(CP kf
∞ C

T+Σv)
−1
CP kf

∞ AT

(10)

3.2 Quantized filtering scheme

As in the single sensor case, we can consider a subop-
timal scheme which are a slightly modified version of
the unquantized decentralized Kalman filtering equations.
The individual sensors run the following equations, for
i = 1, . . . ,M :

x̂i,k|k−1 = Ax̂i,k−1|k−1

x̂i,k|k = x̂i,k|k−1 +Ki,kqi,k(yi,k − Cix̂i,k|k−1)

Ki,k = Pi,k|k−1C
T
i (CiPi,k|k−1C

T
i +Σi,v +Σi,n,k)

−1

Pi,k|k−1 = APi,k−1|k−1A
T +Σw

Pi,k|k = Pi,k|k−1 − Pi,k|k−1C
T
i

× (CiPi,k|k−1C
T
i +Σi,v +Σi,n,k)

−1CiPi,k|k−1

while the fusion center runs the following equations:

x̂k|k−1 = Ax̂k−1|k−1

x̂k|k=Pk|k

(

P−1
k|k−1x̂k|k−1+

M
∑

i=1

{

P−1
i,k|kx̂i,k|k−P−1

i,k|k−1x̂i,k|k−1

})

Pk|k−1 = APk−1|k−1A
T +Σw

Pk|k = Pk|k−1−Pk|k−1C
T(CPk|k−1C

T+Σv+Σn,k)
−1
CPk|k−1

where Σn,k = diag(Σ1,n,k, . . . ,ΣM,n,k) is a block diagonal
matrix, and qi,k(yi,k − Cix̂i,k|k−1) is the quantization
of yi,k − Cix̂i,k|k−1, with corresponding term Σi,n,k to
account for the quantization noise. The values qi,k(yi,k −
Cix̂i,k|k−1) are the quantities that are sent to the fusion
center. Similar to the previous subsection, the fusion
center can reconstruct x̂i,k|k, x̂i,k+1|k, Pi,k|k and Pi,k+1|k

from qi,k(yi,k − Cix̂i,k|k−1) and knowledge of the sensor
parameters.

Call Pi,k , Pi,k|k−1. We again use the lattice vector
quantizers of Moo (1998), withNi quantizer values for each
sensor i. At high rates, assuming that yi,k − Cix̂i,k|k−1 is

approximately N(0, CiPi,kC
T
i +Σi,v), we obtain similar to

the single sensor case the quantization
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qi,k(yi,k − Cix̂i,k|k−1)

= Ui,kΛ
1/2
i,k q̃((Ui,kΛ

1/2
i,k )−1(yi,k − Cix̂i,k|k−1))

where Ui,k and Λi,k come from the diagonalization

CiPi,kC
T
i +Σi,v = Ui,kΛi,kU

T
i,k

and q̃ is the lattice quantizer of Moo (1998). We also have

Σi,n,k , δi,Ni
(CiPi,kC

T
i +Σi,v)

where δi,Ni
=

Mi(Si,0)V
2/mi

i

η2

2 lnNi

miN
2/mi

i

. In the special case of

sensors having scalar measurements, we have

δi,Ni
=

{

π
√
3

2N2

i

, optimal quantization
4 lnNi

3N2

i

, optimal uniform quantization
(11)

3.3 Asymptotic analysis

Let Pi,∞ be the steady state value of Pi,k that satisfies

Pi,∞ = APi,∞AT +Σw

−APi,∞CT
i (CiPi,∞CT

i +Σi,v +Σi,n)
−1CiPi,∞AT

and P∞ be the steady state value of Pk that satisfies

P∞=AP∞AT+Σw−AP∞C
T(CP∞C

T+Σv+Σn)
−1
CP∞AT .

(12)
where Σi,n = δi,Ni

(CiPi,∞CT
i +Σi,v) and

Σn = diag(Σ1,n, . . . ,ΣM,n). We now determine the asymp-
totic behaviour of P∞ as Ni → ∞, ∀i. Motivated by
the asymptotic result for scalar systems in Leong et al.

(2012), where it is shown that P∞ = P kf
∞ +

∑M

i=1 κiδi,Ni
+

∑

i,j O(δi,Ni
δj,Nj

) with κi being constants, we assume that
P∞ takes the form

P∞ = Φ0 +

M
∑

i=1

δi,Ni
Φ1,i +

∑

i,j

O(δi,Ni
δj,Nj

1) (13)

where Φ0,Φ1,i, i = 1, . . . ,M are matrices not dependent
on Ni. Substituting (13) into (12) we obtain

Φ0 +

M
∑

i=1

δi,Ni
Φ1,i + · · · = A(Φ0 +

M
∑

i=1

δi,Ni
Φ1,i + . . . )AT

+Σw −A(Φ0 +

M
∑

i=1

δi,Ni
Φ1,i + . . . )CT

× (C(Φ0 +

M
∑

i=1

δi,Ni
Φ1,i + . . . )CT +Σv +Σn)

−1

×C(Φ0 +
M
∑

i=1

δi,Ni
Φ1,i + . . . )AT

(14)

We will need to further simplify (14) before we can solve
for Φ0 and Φ1,i, i = 1, . . . ,M . First, from the analysis of

the single sensor case in Section 2.3, we have Pi,∞ = P kf
i,∞+

O (δi,Ni
1), and hence

Σn = diag(Σ1,n, . . . ,ΣM,n)

= diag(δ1(N1)(C1P
kf
1,∞CT

1 +Σ1,v) +O(δ21(N1)), . . . ,

δM (NM )(CMP kf
M,∞CT

M +ΣM,v) +O(δ2M (NM )))

=

M
∑

i=1

δi,Ni
Fi +

M
∑

i=1

O(δ2i (Ni)1)

where Fi is a block diagonal matrix with i-th diagonal

submatrix equal to CiP
kf
i,∞CT

i +Σi,v, and zeros elsewhere.

After some algebraic manipulations and an application of
Proposition 1 we can then rewrite (14) as

Φ0 +

M
∑

i=1

δi,Ni
Φ1,i + · · · = A(Φ0 +

M
∑

i=1

δi,Ni
Φ1,i + . . . )AT

+Σw −A(Φ0 +
M
∑

i=1

δi,Ni
Φ1,i + . . . )CT [(CΦ0C

T +Σv)
−1

−
M
∑

i=1

δi,Ni
(CΦ0C

T+Σv)
−1(CΦ1,iC

T+Fi)(CΦ0C
T+Σv)

−1

+ . . . ]C(Φ0 +

M
∑

i=1

δi,Ni
Φ1,i + . . . )AT

(15)

Equating the O(1) terms in (15), we obtain

Φ0 = AΦ0A
T +Σw −AΦ0C

T (CΦ0C
T +Σv)

−1
CΦ0A

T

This is the same equation as (10) satisfied by P kf
∞ , thus

Φ0 = P kf
∞ .

Equating the O(δi,Ni
1) terms in (15), we have for each i:

Φ1,i = AΦ1,iA
T −AΦ1,iC

T (CΦ0C
T +Σv)

−1
CΦ0A

T

−AΦ0C
T (CΦ0C

T +Σv)
−1

CΦ1,iA
T +AΦ0C

T

×(CΦ0C
T+Σv)

−1(CΦ1,iC
T+Fi)(CΦ0C

T+Σv)
−1
CΦ0A

T

=
(

A−AΦ0C
T (CΦ0C

T +Σv)
−1

C

)

Φ1,i

×
(

A−AΦ0C
T (CΦ0C

T +Σv)
−1

C

)T

+AΦ0C
T (CΦ0C

T +Σv)
−1Fi(CΦ0C

T +Σv)
−1

CΦ0A
T

(16)

Hence, asymptotically P∞ behaves like P∞ = P kf
∞ +

∑M

i=1 δi,Ni
Φ1,i+

∑

i,j O(δi,Ni
δj,Nj

1), where P kf
∞ is the un-

quantized steady state error covariance that can be found
numerically by solving the algebraic Riccati equation (10),
and Φ1,i, i = 1, . . . ,M can be found numerically by solving
the Lyapunov equations (16).

3.4 A rate allocation problem

Suppose we are given Rtot, where Rtot is large. We want to
determine how this total rate is to be allocated amongst
the sensors. The rate of each sensor Ri is defined as
Ri = log2(Ni). One way to allocate the rates is to minimize
the trace of the asymptotic expression P∞ = P kf

∞ +
∑M

i=1 δi,Ni
Φ1,i. We then have for lattice quantization the

integer program:

min
R1,...,RM∈Z+

tr(P kf
∞ ) +

M
∑

i=1

eiRi

22Ri/mi

s.t.

M
∑

i=1

Ri = Rtot

(17)

where Z+={0, 1, 2, . . . } and ei,
Mi(Si,0)V

2/mi

i

η2

2 ln 2
mi

tr(Φ1,i).

In the case of scalar measurements and optimal quantiza-
tion, the integer program is instead:
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min
R1,...,RM∈Z+

tr(P kf
∞ ) +

M
∑

i=1

fi
22Ri

s.t.
M
∑

i=1

Ri = Rtot (18)

where fi ,
π
√
3

2 tr(Φ1,i). An efficient suboptimal solution
to problem (18) can also be derived. Let Ri = αiRtot where
0 ≤ αi ≤ 1, and Ri is not constrained to be integer valued.
We then have the problem:

min
α1,...,αM

tr(P kf
∞ ) +

M
∑

i=1

fi
22αiRtot

, s.t.

M
∑

i=1

αi = 1, αi ≥ 0

(19)

We have the following result:

Lemma 1. The optimization problem (19), where fi ≥ 0
are constants, has solution

α∗
i =

1

M
+

1

2Rtot

log2
fi

(

∏M

j=1 fj

)1/M
(20)

Proof The optimal solution follows from analyzing the
Karush-Kuhn-Tucker conditions. The derivation is omit-
ted. �

A suboptimal solution to problem (18) can then be ob-
tained by rounding the solutions obtained from problem
(19) to the nearest integer.

Remark : For problem (17), even if we don’t constrain
the rates to be integer valued, the resulting optimization
problem will still be non-convex.

4. NUMERICAL STUDIES

We consider a vector system with parameters A =
[

1.2 0.5
0 1.1

]

and Σw = I.

We first consider the case of a single sensor with scalar
measurements, and parameters C1 = [ 1 1 ], Σ1,v = 1. In
Fig. 2 we plot the results from Monte Carlo simulations of
the trace of the true error covariance trE[(xk−x̂k|k−1)(xk−

x̂k|k−1)
T ], together with tr(P∞) and the asymptotic ex-

pression for tr(P∞) derived in Section 2.3, for different
values of R1 = log2(N1). We use uniform quantization
(similar results can be obtained for optimal quantization
but are omitted due to space constraints). We see that the
asymptotic expression is very close to the Monte Carlo
simulations for rates of 3 bits per sample and above.

2 2.5 3 3.5 4 4.5 5 5.5 6
6.2

6.4

6.6

6.8

7

7.2

7.4

7.6

log
2
(N)

tr
E

[(
x

k
−

x̂
k
|k
−

1
)(

x
k
−

x̂
k
|k
−

1
)T

]

 

 

Monte Carlo

tr(P
∞

)

Asymptotic tr(P
∞

)

Fig. 2. Error covariance and asymptotic expression: Single
sensor

We next add an additional sensor, with parameters C2 =
[ 1 1 ], Σ2,v = 0.2. We consider the rate allocation problem

Table 1. Error covariance and asymptotic ex-
pression: Two sensors

R1 R2 Monte Carlo tr(P∞) Asymptotic tr(P∞)

2 6 5.474 5.2213 5.2321

3 5 5.219 5.2119 5.2124

4 4 5.240 5.2290 5.2289

5 3 5.315 5.3136 5.3185

6 2 6.306 5.5996 5.6829

(18) with Rtot = 8, where we now use optimal quantiza-
tion. In Table 1 we tabulate the results for some integer
combinations of R1 = log2(N1) and R2 = log2(N2),
with R1 + R2 = 8. We again present the results from
Monte Carlo simulations, together with tr(P∞) and the
asymptotic expression for tr(P∞) derived in Section 3.3.
We see that in this example R1 = 3, R2 = 5 gives
the best performance. Solving the problem (19) gives the
solution α∗

1 = 0.3798, α∗
2 = 0.6202, corresponding to rates

R∗
1 = 3.0386, R∗

2 = 4.9614.
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