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ABSTRACT
We develop a geometric approach to spin networks with
Heisenberg or XX coupling. Geometry is acquired by defin-
ing a distance on the discrete set of spins. The key feature
of the geometry of such networks is their Gauss curvature κ,
viewed here as the ability to isometrically embed the chain
in the standard Riemannian manifold of curvature κ. Here
we focus on spin rings. Even though their visual geometry
is trivial, it turns out that the geometry they acquire from the
quantum mechanical distance is far from trivial.

Index Terms— Spin chains, coarse geometry, curvature,
Riemannian spaces, Feynman path integral.

1. INTRODUCTION

We consider 1-dimensional arrays of N spins arranged in a
ring structure with either Heisenberg or XX interaction spec-
ified by the Hamiltonian

H =

N−1∑
i=1

Ji,i+1

(
σxi σ

x
i+1 + σyi σ

y
i+1 + εσzi σ

z
i+1

)
+ JN,1 (σxNσ

x
1 + σyNσ

y
1 + εσzNσ

z
1)

where ε = 0 for XX coupling and ε = 1 for Heisenberg
coupling, which we shall denote by HH and HXX in the fol-
lowing. The term JN,1(. . .) represents the coupling energy
between the two ends, spin #1 and #N , of the linear array,
closing the ring. The factor σx,y,zi is the Pauli matrix along
the x, y, or z direction of spin #i in the array, i.e.,

σx,y,zi = I2×2 ⊗ . . .⊗ I2×2 ⊗ σx,y,z ⊗ I2×2 ⊗ . . .⊗ I2×2
where the factor σx,y,z occupies the ith position among theN
factors and σx,y,z is either of the single spin Pauli operators

σx =

(
0 1
1 0

)
, σy =

(
0 −ı
ı 0

)
, σz =

(
1 0
0 −1

)
;
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Ji,i+1 denotes the strength of the coupling between spin #i
and spin #(i + 1) and is inversely proportional to the cu-
bic power of the physical distance between spin #i and spin
#(i+1), here taken to be uniform (homogeneous arrays). The
main point of this paper is that the simplicity of the geometry
given by the physical distance between spins hides a much
more complicated geometry that the network acquires via a
quantum mechanically relevant distance. The latter is related
to be the (maximum) probability of transmission of an excita-
tion from one spin to another. Here we restrict our attention to
the single excitation subspace, i.e., it is assumed that the total
number of excitations in the network is one. An excitation is
transmitted from one spin and read out from any other spin.

Through the quantum mechanical distance, the spin net-
work acquires a geometry completely different from the sim-
ple geometry of the physical arrangement of the spins. For
example, a ring made up of an arbitrary large but even num-
berN of spins becomes a regular [N/2]-simplex for the quan-
tum mechanical distance. Beyond this simple illustrative ex-
ample, here by geometry we mean curvature, which can be
defined for either Riemannian or non-Riemannian spaces [5].
For metric possibly non-Riemannian spaces, curvature can be
defined via the Gromov δ or the scaled Gromov δ (see [4, 3]
for various definitions of δ and [6, 10, 7] for various defini-
tions of the scaled δ.) Recall that the Gromov δ measures the
“fatness” of the geodesic triangles, with the idea that “thin”
triangles are symptomatic of negative curvature whereas “fat”
triangles are symptomatic of positive curvature. The Gromov
δ approach to curvature of spins in various geometrical ar-
rangements was done in [8]. Here we basically perform the
same analysis but remain closer to the traditional Riemannian
approach and focus on ring structures instead of linear chains.
More specifically, we investigate whether there exists an iso-
metric embedding (V, d) ↪→ Mr

κ, where (V, d) is the metric
space of the spins endowed with their quantum mechanical
distance and Mr

κ is the standard r-dimensional Riemannian
space of uniform curvature κ.

2. THE QUEST FOR A DISTANCE

Let |i〉 be the quantum state where the excitation is on spin #i.
The quantum mechanical probability of transition from state
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|i〉 at time 0 to state |j〉 at time t is given by

p (|i, 0〉, |j, t〉) = |〈i|e−ıHt|j〉|2

Recall that this formula is a corollary of the Feynman path
integral [9, 11].

In order to derive a metric on the vertex set
V = {|i〉 : i = 1, . . . , N} from the probability data, we
inspire ourselves from a closely related situation in sensor
networks. In sensor networks, V is the set of sensors and a
packet reception rate PRR(i, j) is defined as the probability
of successful transmission of the packets from sensor #i to
sensor #j. Then as shown in [1] a useful “distance” is given
by d(i, j) = − log PRR(i, j). Should there be a violation of
the triangle inequality, say, d(i, j) > d(i, k) + d(k, j), then
the distance between i and j is redefined as d(i, k) + d(k, j).

We follow the same path here, with the warning that
packet transmission from #i to #j follows one wireless link,
whereas quantum mechanical transition from |i〉 to |j〉 fol-
lows many paths. Following the approach of [1], we could
define a “distance” as − log p (|i, 0〉, |j, t〉), but this would
make the distance time-dependent. To remove the depen-
dency on the time, define Πk to be the projector onto the
kth eigenspace of the Hamiltonian H =

∑
k λkΠk and let

k = 1, ..., N correspond to the first excitation subspace H1.
Then, as in [8], we define maximum transition probability
also referred to as Information Transfer Capacity:

pmax(|i〉, |j〉) :=

∣∣∣∣∣
N∑
k=1

|〈i|Πk|j〉|

∣∣∣∣∣
2

≥ p (|i, 0〉, |j, t〉) (1)

Furthermore, as proved in [8], under the condition that λk/π :
k = 1, ..., N are rationally independent, the maximum tran-
sition probability can be reached: supt≥0 p (|i, 0〉, |j, t〉) =
pmax(|i〉, |j〉). Although we cannot in general expect
− log pmax(|i〉, |j〉) to satisfy the usual requirements for a
distance, we show that this is the case for certain types of net-
works, which allows us to study their geometry and curvature
with regard to this metric.

3. UNIFORM SPIN RINGS

Unlike for linear chains, the single excitation subspace
Hamiltonians for rings with uniform XX and Heisenberg
coupling differ only by a multiple of the identity, which does
not affect the distance. Hence, the analysis is the same for
both of these physically relevant cases. The properties of
− log pmax(|i〉, |j〉) and the behavior of the distance with N
are given by the following:

Theorem 1 For a quantum ring RN of N uniformly dis-
tributed spins with XX or Heisenberg couplings, dN (i, j) :=
− log pmax(|i〉, |j〉) has the following properties:

1. For N odd (RN , dN ) is a metric space.

2. For N even (RN , dN ) is a semi-metric space that be-
comes metric after antipodal point identification.

3. If N = p or N = 2p, where p is a prime number,
then the distances on the space of equivalence classes
of spins are uniform, i.e., dN (i, j) = cN for i 6= j.
Otherwise, the distances are non-uniform.

4. In all cases limN→∞ dN (i, j) = 2 log π
2 , i 6= j mod

(N/2). (See Fig. 1 for an illustration.)

Proof. To show that (RN , dN ) is a semi-metric space we
need to verify that (i) dN (i, i) = 0, (ii) dN (i, j) = dN (j, i)
and (iii) the triangle inequality holds. For a metric space we
must further have (iv) dN (i, j) 6= 0 unless i = j.

(i) is clearly satisfied as the projectors onto the eigenspaces
are a resolution of the identity,

∑
k Πk = I , and thus for any

unit vector |i〉, we have
∑N
k=1 |〈i|Πk|i〉| =

∑N
k=1 |Πk|i〉|2 =

1. (ii) follows from |〈i|Πk|j〉| = |〈j|Πk|i〉|. The proof of the
remaining properties relies on the circulant matrix property
of the Hamiltonian H1 in the first excitation subspaceH1.

Specifically, (H1)i,i+1 = (H1)i+1,i = h for i =
1, . . . , N − 1, (H1)N,1 = (H1)1,N = h and (H1)i,j = 0
everywhere else. The eigenvalues and eigenvectors of H1 are

λk = h(ρkN + ρ
k(N−1)
N ) = 2h cos

(
2πk
N

)
(2a)

wk = 1√
N

(
1, ρkN , ρ

k2
N , . . . , ρ

k(N−1)
N

)T
(2b)

for k = 0, . . . , N − 1, where ρkN := e
2πık
N are N th roots of

unity. Observe the double eigenvalues λk = λN−k except
for k = 0, and N/2 if N even. Thus, each of these double
eigenvalues has two complex conjugate eigenvectors vk and
v∗k. These eigenvectors need not be orthogonal but observing
that 〈wk|w`〉 = δk` and 〈wk|w∗k〉 = 0, shows that

v0 = w0 = 1√
N

(1, 1, . . .)T

vk = wk, vN−k = w∗k, k = 1, . . . N ′ = bN−12 c
vN/2 = wN/2 = 1√

N
(1,−1, . . .)T , if N is even

(3)

defines an orthonormal basis ofH1. Furthermore, in the basis
in which H1 is circulant, |i〉 = ei, where {ei : i = 1, ..., N}
is the natural basis of CN . We have

|〈i|Π0|j〉| = |〈i|v0〉〈v0|j〉| = 1
N

|〈i|Πk|j〉| = |〈i|vk〉〈vk|j〉+ 〈i|vN−k〉〈vN−k|j〉|

= |ρkiN (ρkjN )∗ + (ρkiN )∗ρkjN |
1
N

= |ρk(i−j)N + ρ
−k(i−j)
N | 1N = 2

N

∣∣∣cos( 2πk(i−j)
N )

∣∣∣
|〈i|ΠN/2|j〉| = |〈i|vN/2〉〈vN/2|j〉| = 1

N .



Summing over all eigenspaces k = 0, . . . , bN/2c gives

√
pmax(|i〉, |j〉)

=


1
N + 2

N

∑N ′

k=1

∣∣∣cos
(

2πk(i−j)
N

)∣∣∣ , N = 2N ′ + 1

2
N + 2

N

∑N ′

k=1

∣∣∣cos
(

2πk(i−j)
N

)∣∣∣ , N = 2N ′ + 2

(4)

For i = j all cosines in Eq. (4) are equal to 1 and we have√
pmax(|i〉, |i〉) = (1 + 2N ′)/N = 1 for N = 2N ′ + 1

and
√
pmax(|i〉, |i〉) = (2 + 2N ′)/N = 1 for N = 2N ′ +

2, which shows that d(i, i) = 0. For N = 2N ′ + 1 it is
easy to see that pmax(i, j) = 1 if and only if i = j, hence
(iv). For N = 2N ′ + 2, on the other hand, we also have
| cos( 2πkN/2

N )| = | cos(πk)| = 1, and thus d(i, j) = 0 for
i − j = N/2, i.e., the distance vanishes for antipodal points,
and thus d(i, j) is at most a semi-metric. However, noting that
d(i, j) = d(i,N ′ + 1 + j) for j ≤ N ′ + 1, we can identify
antipodal points |j〉 and |j +N ′ + 1〉 and let d be defined on
the set of equivalence classes [|j〉] for j = 1, . . . , N ′ + 1.

To show that the triangle inequality is satisfied, we show
that

√
pmax(|`〉, |m〉)

√
pmax(|m〉, |n〉) ≤

√
pmax(|`〉, |n〉).

From the definition of pmax in terms of the eigenvectors of
H1 we have

√
pmax(|`〉, |m〉) =

1

N

N−1∑
k=0

αkρ
k(m−`)
N

√
pmax(|m〉, |n〉) =

1

N

N−1∑
k′=0

βk′ρ
k′(n−m)
N

where αk, βk′ = ±1. Setting

γk =

N∑
k′=0

αkβk′ρ
(k′−k)(n−m)
N

we obtain√
pmax(|`〉, |m〉)

√
pmax(|m〉, |n〉)

=
1

N2

N−1∑
k,k′=0

αkβk′ρ
k(m−`)
N ρ

k′(n−m)
N

=
1

N2

N−1∑
k,k′=0

αkβk′ρ
k(n−`)+(k′−k)(n−m)
N

=
1

N2

N−1∑
k=0

γkρ
k(n−`)
N =

∣∣∣∣∣ 1

N2

N−1∑
k=0

γkρ
k(n−`)
N

∣∣∣∣∣ .
The final equality follows because the LHS and thus the RHS
are known to be real and positive. Furthermore, as ρN is a

root of unity, |ρN | = 1, and recalling |αk| = |βk′ | = 1,

|γk| =

∣∣∣∣∣ρk(m−n)N

N−1∑
k′=0

αkβk′ρ
k′(n−m)
N

∣∣∣∣∣
≤
∣∣∣ρk(m−n)N

∣∣∣ · N−1∑
k′=0

∣∣∣αkβk′ρk′(n−m)
N

∣∣∣ = N.

Again we have ρ(N−k)(m−n)N = ρ
−k(m−n)
N , and as the LHS

above is known to be real, we know that we must have γk =
γN−k. Hence, we can again collect exponential terms pair-
wise to obtain cosines, which gives for N = 2N ′ + 1:∣∣∣∣∣ 1

N2

N−1∑
k=0

γkρ
k(n−`)
N

∣∣∣∣∣ =

∣∣∣∣∣∣ γ0N2
+

1

N2

N ′∑
k=1

2γk cos
(

2πk(n−`)
N

)∣∣∣∣∣∣
≤ |γ0|
N2

+
2

N2

N ′∑
k=1

|γk|
∣∣∣cos

(
2πk(n−`)

N

)∣∣∣
≤ 1

N
+

2

N

N ′∑
k=1

∣∣∣cos
(

2πk(n−`)
N

)∣∣∣
=
√
pmax(|`〉, |n〉)

For N = 2N ′+ 2 we simply replace γ0 by γ0 +γN ′+1 above
to obtain∣∣∣∣∣ 1

N2

N−1∑
k=0

γkρ
k(n−`)
N

∣∣∣∣∣ ≤ 2

N
+

2

N

N ′∑
k=1

∣∣∣cos
(

2πk(n−`)
N

)∣∣∣
=
√
pmax(|`〉, |n〉).

This proves (iii) and hence parts (1) and (2) of the theorem.
To establish (3) we note that ifN = 2N ′+1 is prime then

N ′∑
k=1

∣∣∣cos
(

2πk(i−j)
N

)∣∣∣ =

N ′∑
k=1

∣∣cos
(
2πk
N

)∣∣
IfN is not p or 2p thenN and (i−j) will have factors (which
can be canceled) in common for some (i−j) but not for others
and hence we will obtain different distances.

To establish (iv) letting N → ∞, it is easily seen that the
dependency on i, j is eliminated provided i 6= j mod (N/2).
Hence, taking the norm of the above and then − log(·) it
follows that, for infinite rings, the distance is uniform for
i 6= j + mod(N/2). Finally,

lim
N→∞

√
pmax(|i〉, |j〉) = lim

N→∞

2

N

N/2∑
k=0

| cos((i− j)2πk/N)|

=
4|i− j|

2π

∫ π
2|i−j|

0

cos(|i− j|x)dx

=
2|i− j|
π|i− j|

[sin(|i− j|x)]
π

2|i−j|
0 =

2

π



shows that the limiting value for the distance is d∞(i, j) =
−2 log π

2 ≈ 2× 0.4516 for i 6= j mod (N/2). �
The preceding theorem points to discrete spaces which,

possibly after some identification, become complete order n
graphsKn with uniform or nearly uniform link weight. Com-
plete graphs with uniform link weight are among the very few
that are embeddable in all spaces of constant curvature: nega-
tively curved Riemannian manifolds Hκ<0, Euclidean spaces
E, and positively curved Riemannian manifolds Sκ>0. The
latter embedding appears the most natural, since the vari-
ous vertices are nearly uniformly “filling” the whole sphere,
whereas it is impossible to uniformly fill a Euclidean or a
hyperbolic space with finitely many vertices, as Sκ and Hκ
are infinite. Also Kn can be embedded in a sphere of di-
mension (n − 2), whereas the smallest dimension in which
a nonpositively curved manifold can contain n equidistant
points is (n − 1). This not to say that it is futile to consider
embeddings in, say, hyperbolic spaces; indeed, hyperbolic
spaces have specific transport phenomena that could map to
the graphs they support but we begin with embeddability in
uniformly positively curved spaces.

The following theorem makes this embeddability precise.
For notational convenience, let R̃N denote the ring RN after
anti-podal identification. Also define the following function

κmax(n,w) :=
[
w−1 cos−1

(
− 1
n−1

)]2
where w is typically some edge weight.

Theorem 2 The spin rings are embeddable in the following
spaces:

1. If N is an odd composite number, (RN , dN ) is iso-
metric to a complete graph KN with nonuniform link
weight; furthermore, for N large enough, there exists
an isometric embedding (RN , dN ) ↪→ (SN−1κ , dκ) for
κ ≤ κmax(N, w̄).

2. If N = 2c where c is a composite number, (R̃N , dN )
is isometric to a complete graph KN/2 with nonuni-
form link weight; furthermore, for N large enough,
there exists an isometric embedding (RN , dN ) ↪→
(S(N/2)−1κ , dκ) for κ ≤ κmax(N/2, w̄).

3. a. If N = p, where p is a prime number, (RN , dN )
is isometric to a complete graph KN of uniform edge
weight w = dN (i, j), i 6= j; furthermore, there ex-
ists an isometric embedding (RN , dN ) ↪→ (SN−1κ , dκ)
in the (N − 1)-dimensional sphere of curvature κ ≤
κmax(N,w). Finally, there exists an irreducible iso-
metric embedding (RN , dN ) ↪→ (SN−2κ , dκ) in the
sphere of curvature κ = κmax(N,w).
b. If N = 2p where p prime, (R̃N , dN ) is isometric
to a complete graph KN/2 with uniform link weight;
furthermore, there exists an embedding (R̃N , dN ) ↪→
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Fig. 1. Variance of quantum mechanical distance between
spins showing its decrease as the number of spins increases.

(SN/2−1, dκ) for κ ≤ κmax(N/2, w) and an irre-
ducible isometric embedding (R̃N , dN ) ↪→ (SN/2−2, dκ)
for κ = κmax(N/2, d).

Proof. Part 3.a of the proof is in the Appendix.
Part 3.b of the proof is a corollary of the Appendix. By

doing the anti-podal identification on the semi-metric space
(RN , dN ), one obtains the metric space (R̃N , dN ). The lat-
ter is clearly isomorphic to (KN/2, w), where w is the uni-
form link weight. The result then follows by applying the
Appendix to (KN/2, w).

Part 1 relies on the continuity of the Gram matrix relative
to distance data. Define (K∞, w∞) be the complete graph on
countably infinitely many vertices with uniform link weight
w∞ := limN→∞ dN (i, j), i 6= j. By a limiting argument
on the Appendix, it follows that (K∞, w∞) is isometri-
cally embeddable in an infinite-dimensional sphere (itself
embedded in the Hilbert space `2 as

∑∞
i=1 x

2
i = 1/

√
κ)

of curvature κ ≤ κmax(∞, w∞) = π2/4w2
∞. Hence

the associated Gram matrix Gκ(D∞(1, 2, 3, . . . )) for uni-
form link weight is positive definite. Trivially, the N ×
N section of the Gram matrix Gκ(D∞(1, 2, . . . ))N×N
for uniform link weight is also positive definite. Since
limN→∞Gκ(DN (1, . . . , N)) = Gκ(D∞(1, 2, . . . ))N×N ,
and since the latter is positive definite, there exists a N large
enough such that Gκ(DN (1, . . . , N)) > 0. The latter means
that the ringRN is isometrically embeddable in SN−1κ .

Part 2 follows from a combination of the argument of Part
3.b and Part 1. �

4. CONCLUSION

In conclusion, besides their 1-dimensional physical geometry,
quantum rings have been shown to have higher dimensional
geometry for the quantum mechanical distance. In forthcom-
ing work will investigate how the geometry can be changed
to improve transmission fidelities by local control.



APPENDIX: EMBEDDABILITY OF COMPLETE
GRAPH IN CONSTANT CURVATURE SPACES

Given a set V of n vertices and the distance data D(1, 2, . . . ,
n) = {d(i, j)}i,j=1,...,n, isometric embedding of (V, D)
in a Riemannian manifold of uniform curvature κ 6= 0 in-
volves the Gram matrix Gκ(D(1, . . . , n)) (we sometimes
simplify this to Gκ(D)). In the positive curvature case,
Gκ>0(D) = {cos

√
κd(i, j)}i,j=1,...,n and in the negative

curvature case Gκ<0(D) =
{

cosh
√
−κd(i, j)

}
i,j=1,...,n

.

(V, D) is embeddable in SN−1κ iff κ ≤ π2

maxi,j d2(i,j)
and

Gκ(D) > 0 (see [2]). Gκ(D) > 0 is of course equivalent
to detGκ(D(1, . . . , k)) > 0, ∀k = 1, . . . , n. (V, D) is em-
beddable in Hn−1κ<0 iff sign detGκ(D(1, . . . , k)) = (−1)k+1

(see [2]).
Embeddability in Euclidean space involves the Cayley-

Menger matrix CM(D(1, . . . , n)) =
0 1 1 . . . 1
1 0 d(1, 2)2 . . . d(1, n)2

1 d(2, 1)2 0 . . . d(2, n)2

...
...

...
. . .

...
1 d(n, 1)2 d(n, 2)2 . . . 0

.

Embeddability in Euclidean space is equivalent to
sign detCM(D(1, . . . , k)) = (−1)k, k = 2, . . . , n (see [2]).

Embeddability of the complete graph with uniform link
weight in both the constant curvature hyperbolic space and the
constant curvature spherical space involves the special k × k
Toeplitz structure

Tk =


1 c . . . c
c 1 . . . c
...

...
. . .

...
c c . . . 1

 , k ≥ 1

where c = cosh
(
d(i, j)

√
−κ
)

in the hyperbolic case and
c = cos (d(i, j)

√
κ) in the spherical case. The issue is the se-

quence of principal minors of such a Toeplitz-structured ma-
trix. Set tk = detTk×k and we have the following lemma:

Lemma 1 The recursion on the principal minors of the
Toeplitz-structured matrix Tk is

tk+1 = (1− c)tk + (1− c)2tk−1 − (1− c)3tk−2

subject to the initial conditions

t1 = 1

t2 = 1− c2

t3 = (1− c)2(2c+ 1).

Furthermore, the solution to the above recursion is given by

tk = (1− c)k−1 ((k − 1)c+ 1) , k ≥ 1.

Proof. By subtracting the first column from the last column
of Tk, we get

detTk = (−1)k+1(c− 1) detT + (1− c) detTk−1

where T is the Toeplitz matrix with 1’s on the superdiagonal
and c’s everywhere else. Again, by subtracting the first row
from the last row of T , we get

detT = (−1)k+1(c− 1) det

(
c c1Tk−3

c1k−3 Tk−3

)
where 1k is the k-dimensional column made up of 1’s. Ob-
serving that(

c c1Tk−3
c1k−3 Tk−3

)
=

(
(c− 1) 0

0 0

)
+ Tk−2

and remembering that the determinant of the sum of two ma-
trices equals the sum of the determinants of all matrices con-
structed with some columns of the first matrix and the com-
plementary columns of the second matrix, we get

det

(
c c1Tk−3

c1k−3 Tk−3

)
= detTk−2 + det

(
(c− 1) c1k−3

0 Tk−3

)
= detTk−2 + (c− 1) detTk−3.

Combining all of the above yields the recursion. The initial
conditions on the recursion are trivial to verify. The explicit
solution is easily seen by direct verification to satisfy the re-
cursion and its initial conditions. �

From the above, it is possible to say something about the
eigenvalues of Tn.

Corollary 1

det (sI − Tn) = (s− (1− c))n−1(s− ((n− 1)c+ 1)).

Proof. Recall that the coefficient of sn−k in det (sI − Tn) is
(−1)k times the sum of all principal minors of order k of Tn.
There are

(
n
k

)
such principal minors, all equal to tk. Hence,

det (sI − Tn) =

n∑
k=0

(−1)k
(
n

k

)
tks

n−k

=

n∑
k=0

(−1)k
(
n

k

)
(1− c)k−1 ((k − 1)c+ 1) sn−k

=

(
n−1∑
k=0

(−1)k
(
n− 1

k

)
(1− c)ksn−1−k

)
× (s− ((n− 1)c+ 1))

= (s− (1− c))n−1(s− ((n− 1)c+ 1))

�
We now look at the recursion in the case of the Cayley-

Menger matrix.



Lemma 2 The recursion on the k × k top left-hand cor-
ner principal minors cmk := det (CMk×k) of the Cayley-
Menger matrix for uniform distance d is given by

cmk = −
(

(k − 1)

d2(k − 2)

)
tk−1

where the recursion on tk−1 is

tk−1 = −
(

(k − 2)d2

k − 3

)
tk−2.

Proof. Applying the Schur lemma to

CMk×k =

(
0 1Tk−1

1k−1 Tk−1

)
where Tk−1 is the Toeplitz matrix with 0’s on the diagonal
and d2’s everywhere else, we get

cmk = −
(
1Tk−1T

−1
k−11k−1

)
det(Tk−1).

If we now observe that 1k−1 is an eigenvector of Tk−1 with
eigenvalue d2(k − 2), it follows that 1Tk−1T

−1
k−11k−1 = (k −

1)/(d2(k − 2)) and setting tk−1 := det(Tk−1) the first part
of the recursion follows. Next, if we apply exactly the same
Schur lemma argument to

Tk−1 =

(
0 d21Tk−2

d21k−2 Tk−2

)
the second part of the recursion follows. �

Proposition 1 The complete graph Kn≥2 with uniform link
weight d(i, j) > 0, i 6= j, is irreducibly isometrically embed-
dable in En−1 and in Hn−1κ<0 . The same graph is isometrically
embeddable in Sn−1κ>0 iff

κ ≤
[
d(i, j)−1 cos−1

(
− 1
n−1

)]2
. (5)

Furthermore, it is irreducibly isometrically embeddable
in Sn−2κ>0 for

κ =
[
d(i, j)−1 cos−1

(
− 1
n−1

)]2
. (6)

Proof. The proof of Euclidean embedding follows at once
from Lemma 2, as the latter indeed reveals that
sign det (CMk×k) is alternating.

For embeddability in hyperbolic space, set
c = cosh

(
d(i, j)

√
−κ
)
> 1, and then the lemma yields

detGκ(D(1, . . . , k)) = (1− c)k−1((k− 1)c+ 1). The prin-
cipal minors of Gκ(D(1, . . . , n)) clearly never vanish and
their signs have the required alternating property, from which
irreducible isometric embedding follows.

For embeddability in spherical space, set
c = cos (d(i, j)

√
κ) ≤ 1 and then the lemma yields

Gκ(D(1, . . . , k)) = (1− c)k−1((k− 1)c+ 1). Isometric em-
beddability is hence equivalent to the sequence (k − 1)c+ 1,
k = 1, . . . , n being positive, with possibly a vanishing tail.
(k − 1)c+ 1 ≥ 0 is clearly equivalent to

κ ≤
[
d(i, j)−1 cos−1

(
− 1
k−1

)]2
(7)

and since

cos−1
(
− 1
n−1

)
< cos−1

(
− 1
k−1

)
, k < n (8)

it follows that detGκ(D(1, . . . , k)) = (1− c)k−1((k−1)c+
1) could only possibly vanish for k = n and is positive for
k < n. Hence the graph is isometrically embeddable iff (7) is
satisfied ∀k ≤ n, which is equivalent to (5). The irreducible
isometric embedding in Sn−2κ requires, in addition, that (n−
1)c+ 1 = 0, which is equivalent to (6). �
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