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ABSTRACT
In this work we study the properties of the optimal Proba-
bility Mass Function (PMF) of a discrete input to a general
Multiple Input Multiple Output (MIMO) channel. We prove
that when the input constellation is constructed as a Cartesian
product of 1-dimensional constellations, the optimal PMF
factorizes into the product of the marginal 1D PMFs. This
confirms the conjecture made in [1], which allows for
optimizing the input PMF efficiently when the rank of the
MIMO channel grows. The proof is built upon the iterative
Blahut-Arimoto algorithm. We show that if the initial PMF
is factorized, the PMF on each successive step is also
factorized. Since the algorithm converges to the optimal
PMF, it must therefore also be factorized.

Index Terms— MIMO, QAM, Constellation shaping

I. INTRODUCTION
As the data rate demand increases, the physical links in

band limited scenarios are pushed to operate at high SNR
and with high order of modulation in order to achieve high
spectral efficiency. Furthermore, it is well known that at high
SNR, uniformly distributed signaling achieves the Shannon
capacity rate for 1.53dB more energy, called the shaping gap
or shaping gain. In order to close that gap, continuously
distributed Gaussian signaling is required [2]. While it is
clear that such signals are completely described by their
mean and variance, nothing explicit can be said about the
shape of the optimal Probability Mass Function (PMF) of a
given discrete signaling set.

We consider a standard Multiple Input Multiple Output
(MIMO) channel model:

Y = HX +W (1)

where X is 2M dimensional vector random variable, tak-
ing values from the discrete, real-valued set X 2M , H is
the 2Nx2M real-valued equivalent of the NxM complex
channel matrix, W is the usual 2N dimensional AWGN and
Y is the 2N dimensional channel output. The set X is the
basic PAM constellation set. The channel is assumed to be
perfectly known at the receiver unless otherwise stated.

The algorithm for finding the optimal PMF input to an
AWGN channel was derived independently by Blahut [3]
and Arimoto [4]. It uses Expectation-Maximization (EM)
type update rules, sequentially increasing the concave cost
function (in this case the Mutual Information (MI) as a
function of the input distribution) subject to average power
constraint

∑|X 2M |
i=1 p(xi)|xi|2 ≤ Pav , and normalization

constraint
∑|X 2M |

i=1 p(xi) = 1, where xi is the i′th element of
the signaling set and P (X = xi) = p(xi) is its probability.

In [5], the authors replace the power constraint with
equality, and then sweep all possible scaled versions of the
signaling set, i.e. ˆX 2M = αX 2M . The EM algorithm is then
run for each of these sets, and the one achieving maximum
MI is chosen as optimal. The optimal PMF of X 2M is the
PMF of the optimal set, and its respective MI is the channel
capacity. This algorithm was later extended to cover MIMO
scenarios in [1]. Our work is largely based on the derivations
made in [1], and so we briefly introduce the mathematical
notation of the algorithm used there.

I-A. EM for finding the optimal distribution on MIMO
channel with average power constraint

The channel capacity when signaling with X 2M and
averaging among the possible channel realizations can be
expressed as [1]:

C = max
p(X)
I(X;Y |H) =

= max
p(X)

∑
i=1:|X 2M |

p(xi)

(
log2

1

p(xi)
+ Ti

)
(2)

where,:

Ti =

∫
H

p(H)

∫
y

p(y|xi,H) log2 p(xi|y,H)dydH (3)

We have replaced p(H = H) with p(H) for simplicity and
I is the MI. The EM algorithm is as follows:

Sweep α ∈ [αmin;αmax]

• Initialization:
Initialize p(x), so that it satisfies

∑|X 2M |
i=1 p(xi) = 1, and∑|X 2M |

i=1 p(xi)|αxi|2 = Pav



• E: For each point i and fixed p(xi), compute Ti.

• M: Given the set of fixed Ti values, maximize I(X;Y |H)
w.r.t. the probability of each point. This is a strictly
concave optimization problem, solved using Lagrange
multipliers.

• Go to ‘E’ until convergence

As the order of modulation and number of dimensions of
the signal grow, this algorithm is impractical even when
performed offline due to the exponential increase in the
number of parameters to be optimized. In [1] the authors
conjecture, that the optimal PMF factorizes into the PMFs
of each dimension, however, no theoretical proof has been
provided. In this work we prove the conjecture. We also
show how the Blahut-Arimoto (BA) algorithm can be used
to solve the power-allocation problem for discrete signaling
sets.

I-B. Notation

In the rest of the paper we use the following notation: xi
denotes the i′th value from the set X . The one-dimensional
variable Xi represents dimension i, and p(Xi = xj) =
p(xij) is the probability of that variable taking value xj .
Capacity achieving PMF will be denoted as p(X)∗, and
p(X)n will be the PMF at the beginning of the E step
on the n′th iteration. The entropy function is denoted as
H(·). Dependency on the noise variance is omitted in the
expressions for probability and entropy for brevity.

II. FACTORIZING THE OPTIMAL QAM
DISTRIBUTION

In the following, without loss of optimality of the EM
algorithm, we assume it has been initialized with a distribu-
tion, which is symmetric around 0, and which factorizes as
p(X)1 =

∏
k=1:2M p(Xk)

1.

Theorem 1. If p(X)n =
∏

k=1:2M p(Xk)
n, then

at step n, for fixed p(X|Y,H), the conditional en-
tropy H(Xk|X{1:2M}\k, Y,H = H) is independent of
p
(
X{1:2M}\k

)n+1

Proof. See Appendix A

Theorem 2. If p(X)n =
∏

k=1:2M p(Xk)
n, then

p(X)n+1 =
∏

k=1:2M p(Xk)
n+1, and therefore p(X)∗ =∏

i=1:2M p(Xk)
∗

Proof. The MI after step n for real-valued 2x2 MIMO
channel can be written as:

I(X;Y |H) = H(X|H)−H(X|Y,H) =

H(X1) +H(X2|X1)−H(X1|Y,H)−H(X2|X1, Y,H)
(4)

where we have used the chain rule for entropy and con-
ditional entropy. It is clear that H(X1|Y,H) is indepen-
dent of p(X2)

n+1. After Theorem I, H(X2|X1, Y,H) is
also independent of p(X1)

n+1, or the conditional entropy
H(X|Y,H) is separated into functions of the marginal
PMFs. Let’s assume that the optimal PMF at this step was
found as p(X)∗, and its respective marginals are p(Xk)

∗ =∑
X{1:2M}\k

p(X)∗. We then consider the PMF, obtained as
product of those marginals p(X)˜ =

∏
k=1:2M p(Xk)

∗. The
entropy of X as a function of this PMF is:

H(p(X)˜) = H(X1) +H(X2) ≥ H(p(X)∗) (5)

Then for the MI as a function of the PMF we have:

I(p(X)˜) = H(p(X)˜)−H(X|Y,H) ≥
H(p(X)∗)−H(X|Y,H) = I(p(X)∗) (6)

However, I(p(X)∗) ≥ I(p(X)) for any p(X), and there-
fore I(p(X)∗) = I(p(X)˜). In [6] the authors prove, that
the MI is strictly concave in p(X), and therefore the optimal
distribution is unique. The optimal distribution therefore
must be the same as the product of its marginals. The
extension to M > 2 is straight-forward. The MI after step
n can be expressed as:

I(p(X)n+1) = H(X)−
∑

k=1:2M

H(Xk|X{1:k−1}, Y,H)

(7)

where each element in the sum only depends on its respective
marginal PMF. Then if I(p(X)n+1) = max I(p(X)n+1)⇒
H(Xm|{X1:2M}\Xm) = maxH(Xm|{X1:2M}\Xm), and
therefore p(Xm|{X1:2M}\Xm)n+1 = p(Xm)n+1. Since
p(X)n+1 =

∏
i=1:M p(Xi)

n+1, the theorem is proven.

II-A. Modified BA algorithm
The channel capacity of the simple 2x2 real-valued chan-

nel can now be expressed as:

C = max
p(X)
I(X;Y |H) = max

p(X1)
(I(X1;Y |H))+

max
p(X2)

(H(X2)−H(X2|X1, Y,H)) (8)

The maximization problem is separated into 2 maximization
problems of much lower dimensionality, and power constrain
P k
av =

∑
l=1:|X | p(xl)αk|xl|2, where αk is the scaling

coefficient for the k′th dimension. The degrees of freedom
in the maximization problem are reduced from |X |2M to
only |X |. If we assume symmetric distribution on H , it
is clear that p(X1)

∗ = p(X2)
∗ = · · · = p(X2M )∗, and

P 1
av = P 2

av = · · · = P 2M
av = Pav/2M . In that case the

modified BA algorithm from Section I takes the form:

Sweep α ∈ [αmin;αmax]

• Initialization:
Initialize p(X1), so that it satisfies

∑|X |
i=1 p(x1i) = 1, and∑|X |

i=1 p(x1i)|αxi|2 = Pav

2M



• E: For each point xi ∈ X and fixed p(xi), compute T̂i:

T̂i =

∫
H

p(H)

∫
y

p(y|x1i,H) log2 p(x1i|y,H) (9)

• M: Given the set of fixed T̂i values, find p(X1) which
maximizes I(X1;Y |H) as:

p(X1) = argmax I(X1;Y |H) =

argmax
∑

i=1:|X |

p(x1i)

(
log2

1

p(x1i)
+ T̂i

)
(10)

• Go to ‘E’ until convergence

III. FURTHER DISCUSSION
III-A. Orthogonal channel

Let us consider the case, when H is diagonal. When the
noise is i.i.d. Gaussian, the likelihood on this channel can be
expressed as a product of the likelihoods on each dimension:

p(Y |X,H) =
∏

k=1:2M

p(Yk|Xk,Hkk) (11)

where Hkk is the element on the k′th row and k′th column
(we assume the channel has full rank). In this case it is
straightforward to prove that the entropy H(X|Y,H) can
be expressed as a sum of functions of the marginal PMFs,
namely H(X|Y,H) =

∑
k=1:2M H(Xm|Ym, H). It suffices

to show that at step n, the conditional distribution p(X|Y,H)
factorizes as:

p(X|Y,H) =
p(Y |X,H)p(X)n∑

k=1:|X 2M | p(Y |xk,H)p(xk)n
=∏

k=1:2M p(Yk|Xk,Hkk)p(Xk)∏
k=1:2M

∑
i=1:|X | p(Yk|xki,H)p(xki)n

=∏
k=1:2M

p(Xk|Yk,H) (12)

III-B. Non-symmetric channel matrix distribution
When the channel distribution is not symmetric, the power

constraint on each maximization problem is not necessarily
the same. In order to find these constraints, a power alloca-
tion solution is needed. However, this can be circumvented
if the scaling coefficient α can be chosen differently for
each dimension, and the maximization problem is run on
the full-rank system for each allowed α = [α1, ...α2M ]T

and the set X 2M =
∏

k=1:2M αkX . As usual, the set,
achieving the maximum MI will be chosen as optimal. Since
for fixed p(X), αk directly gives the power, allocated to
dimension k, it is clear that the power allocation is obtained
by the modified Blahut-Arimoto algorithm. When channel
state information at the transmitter is not available or is
imperfect, and symmetry in the channel distribution cannot
be assumed, the optimization problem cannot be separated
into problems of reduced dimensionality, because the optimal

Fig. 1. MI with uniform PMF, the optimal PMFs obtained
from the algorithms in Sections I and II, and the ergodic ca-
pacity. The KLD between the two optimal PMFs is indicated
for selected SNR values

power allocation is not known a-priori, and only the total
power constraint:

Pav =
∑

k=1:|X 2M |

p(xk)[α1, ...α2M ][|x1k|2, ...|x2Mk |2]T (13)

can be considered (here xk = [x1k, ...x
2M
k ]T ). In this case the

degrees of freedom in the optimization process for each α
are reduced from |X |2M to 2M |X |, but the number of values
of the vector α that need to be swept grows exponentially
with M .

IV. SOME RESULTS ON THE OPTIMAL PMFS
We compare the PMF, obtained by the general algorithm

from Section I, with the PMF, obtained by the modified
algorithm from Section II by means of the Kullback-Leibler
Distance (KLD). If p(X)∗gen is the former, and p(X)∗prod is
the latter PMF, the KLD is defined as:

D(p(X)∗gen||p(X)∗prod) =
∑

i=1:|X 2M |

p(xi)
∗
gen log2

p(xi)
∗
gen

p(xi)∗prod

In Fig. 1 the MI is given for both PMFs, together with
the MI with uniform PMF and the ergodic capacity [7].
The MI is practically the same for both. The KLD is also
indicated in the figure for selected SNR values. We see that
it is practically zero (we attribute any error to numerical
inaccuracy) at the low SNR (where the shaping gain is very
small), the medium SNR (where the largest shaping gain can
be expected) and at high SNR (where the uniform PMF is
near-optimal).

V. CONCLUSION
In this paper the factorization properties of the optimal

PMF input to a MIMO channel were considered. It was
proven, that the optimal PMF factorizes into the product
of its marginal PMFs, confirming the conjecture, made in
[1]. The proof relies on the iterative BA algorithm, showing



that if the initial PMF factorizes, it stays factorized on each
subsequent iteration, evidently reaching the unique optimum,
which must also be factorized. Using the factorization prop-
erty, it was also shown how the power allocation problem
can be solved by the BA algorithm.

VI. APPENDIX A
We prove Theorem 1 for M = 2 and real-valued channel

for simpler notation, and then show that it can be extended
to higher order MIMO and complex-valued channel. Let us
denote f(p(X1)

n+1, p(X2)
n+1) = −H(X2|X1, Y,H = H)

at iteration n for fixed p(X|Y,H):

f =
∑

k=1:|X |

p(x1k)
n+1

∫
y

p(y|H,x1k)·∑
j=1:|X |

p(x2j|x1k,y,H) log2 p(x2j|x1k,y,H)dy =

=
∑

k=1:|X |

p(x1k)
n+1

∑
j=1:|X |

p(x2j|x1k)
n+1 · gj(x1k) (14)

where the function gj(X1) is defined as:

gj(X1) =

∫
y

p(y|H,x2j, X1).

log2
p(y|H,x2j, X1)p(x2j)

n∑
i=1:|X | p(y|H,x2i, X1)p(x2i)n

dy =

= log2 p(x2j)
n +D(p(Y |H,x2j, X1)||p(Y |H, X1)) (15)

In (14) the Bayes theorem is used to express the conditional
distribution p(X2|X1,y,H), we remove the dependency on
H where it is not relevant, and we have used the fact that
p(x2j|x1k)

n = p(x2j)
n.

Let us examine the PDFs in the KLD. The first one is a Gaus-
sian with mean H [X1,x2j]

T and covariance matrix given by
the noise. The second is a Mixture of Gaussians (MoG) with
the same covariance matrices, and mixing coefficients given
by the marginal PMF p(X2)

n. For different values of X1, the
shape of both PDFs is unchanged, only the mass is linearly
shifted. We note that this shift is the same for both PDFs.
This means that the relative offset between them is the same
regardless of X1, or in other words - the KLD is unchanged
for different X1. This property is illustrated in Fig. 2. We
plot the likelihood and the marginal PDF for a random H,
2 randomly chosen values of X1 : X1 = xk and X1 = xm,
fixed X2 = xj and a random valid PMF p(X2). The
likelihood (the white Gaussian curve) sits on top of one of
the components of the MoG (plotted in gray). The shift is
along the line, defined by the points H[X1, xj ]

T .
The logarithm in (15) is clearly independent of X1, therefore
gj is independent of X1. Equation (14) can now be rewritten
as:

f =
∑

j=1:|X |

p(x2j)
∑

k=1:|X |

p(x1k|x2j).gj =
∑

j=1:|X |

p(x2j).gj

which proves the theorem.

Fig. 2. Illustration of the KLD independence of X1. The
masses of the likelihood and the marginal PDF are shifted by
the same factor, retaining their relative offset, and therefore
the KLD

It is straight-forward to extend the proof to M >
2 and complex-valued input and channel. The upper-
mentioned linear shift will be across multiple di-
mensions, instead of just 1, still keeping the KLD
D(p(Y |H,x2j, X{1:2M}\2)||p(Y |H, X{1:2M}\2)) indepen-
dent of X{1:2M}\2. Then gj(X1, X3, ...X2M ) only depends
on p(x2j), and f =

∑
j=1:|X | p(x2j).gj .
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