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Abstract—In this paper, the price of anarchy (PoA) and
the price of stability (PoS) of a game arising in a two-user
decentralized interference channel (DIC) with noisy feedback
in which transmit-receiver pairs seek an optimal individual
transmission rate are fully characterized. In particular, it is
shown that in all interference regimes, there always exists at least
one Pareto optimal Nash equilibrium (NE). More specifically,
there always exists an NE at which players maximize the network
sum-rate and thus, the PoS of the corresponding game is always
equal to one. A second result provides closed form expressions for
the PoA, which allows the full characterization of the reduction
of the sum rate due to the anarchic behavior of all transmitter-
receiver pairs.

I. INTRODUCTION

The use of perfect output feedback has been recently
shown to be highly beneficial in the two-user decentralized
interference channel (DIC) [1], i.e., an interference channel
in which transmit-receiver pairs autonomously tune their own
transmit/receive configurations seeking an optimal individual
transmission rate [2]. Even in the case of noisy feedback, these
benefits have been shown to be very relevant. For instance, the
set of achievable rate pairs at a Nash equilibrium (NE), also
known as the Nash region, has been shown to be enlarged, in
most of the cases, thanks to the use of feedback despite the
existence of noise [3].

In this paper, tools from game theory, namely the price
of anarchy (PoA) [4] and the price of stability (PoS) [5]
are used to study the efficiency of the NEs in the linear
deterministic DIC (LD-DIC) with noisy feedback. The PoA
and the PoS are both measures of the efficiency of the set of
equilibria of any given game. Basically, the PoA measures
the loss of global performance due to decentralization by
comparing the maximum sum utility achieved under global
control with the minimum sum utility achieved at the Nash
equilibrium. The PoS measures the loss of global performance
due to decentralization by comparing the maximum sum utility
achieved under the global control with the maximum sum
utility achieved at the Nash equilibrium.

The main contributions of this paper are closed form expres-
sions for both the PoA and the PoS. Scenarios in which the
use of feedback leads to Pareto optimal NEs are identified and
interesting conclusions regarding the worst NE scenarios are
drawn for the different interference regimes. In particular, it is
shown that if players are equipped with equilibrium selection
capabilities (see discussions in [6]), no loss in the sum rate
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is observed due to the anarchical behavior of all network
components.

II. LINEAR DETERMINISTIC IC WITH NOISY FEEDBACK

Consider a two-user Gaussian DIC with noisy feedback
[3]. Transmitter i, with i ∈ {1, 2}, communicates with
receiver i during T consecutive blocks subject to the in-
terference produced by transmitter j ∈ {1, 2} \ {i}. The
linear deterministic approximation [7] of this decentralized
channel, known as two-user LD-DIC with noisy feedback,
can be described by six parameters: −→n 11, −→n 22, n12, n21,
←−n 11 and ←−n 22. The parameter −→n ii captures the signal strength
from transmitter i to receiver i; nij captures the interference
strength from transmitter j to receiver i; and ←−n ii captures
the feedback signal strength from receiver i to transmitter i.
Let q = max

(i,j)2{1,2}2
max (nij ,

←−n ii
−→n ii) be strictly positive and

finite. Let also Xi ⊂ {0, 1}q be the codebook of the receiver-
transmitter pair i. Then, the input-output relationship of the
two user LD-DIC is

−→y
(t)
1 =Sq−−!n 11x

(t)
1 + Sq−n12x

(t)
2 , and (1)

−→y
(t)
2 =Sq−n21x

(t)
1 + Sq−−!n 22x

(t)
2 , (2)

where x
(t)
i = (x

(t)
i,1, . . . , x

(t)
i,Ni

)T ∈ Xi is the channel input vec-

tor generated by transmitter i and y
(t)
i = (y

(t)
i,1 , . . . , y

(t)
i,q )

T ∈
{0, 1}q is the channel output received by receiver i during
block t ∈ {1, . . . , T}. Therefore, the code-length Ni, in the
LD-DIC, satisfies the condition that Ni 6 q. The matrix S is
a q×q lower shift matrix and all additions and multiplications
are over a binary field.

A noisy feedback link from receiver i to transmitter i allows

at the end of each block t the observation of the output −→y
(t−d)
i

at transmitter i, within a finite delay of d blocks. Thus, the
feedback signal available at transmitter i during block t is

←−y
(t)
i =Sq− −n ii−→y

(t−d)
i . (3)

Let Mi be the number of information bits b
(t)
i,1, . . . , b

(t)
i,Mi

sent
by transmitter i at every block t. Hence, the encoder of trans-
mitter i, during block t > d, can be modeled as a deterministic

mapping f
(t)
i : {1, . . . , 2Mi} × {0, 1}t−d → Xi such that

x
(t)
i = f

(t)
i

(

k,←−y
(1)
i , . . . ,←−y

(t−d)
i

)

∈ Xi, where k is the index
of the message to be transmitted. Note that for blocks for

which t 6 d, the encoder is a mapping f
(t)
i : {1, . . . , 2Mi} →

Xi for which the symbols x
(t)
i = f

(t)
i

(

k
)

do not depend

on the feedback signals ←−y
(1)
i , . . . ,←−y

(t−d)
i . At the end of



the complete transmission, after block T , receiver i uses the

sequences −→y
(1)
i , . . . ,−→y

(T )
i to generate estimates b̂

(t)
i,` of the

transmitted bits b
(t)
i,` , ∀(`, t) ∈ {1, . . . ,Mi} × {1, . . . , T}. The

average bit error probability of transmitter i during block t,

denoted by p
(t)
i , is calculated as follows:

p
(t)
i =

1

Mi

Mi
X

`=1

1{
b̂
(t)

i,`
6=b

(t)

i,`

 . (4)

The rate pair (R1, R2) ∈ R
2
+ is achievable if there exists

at least one pair of codebooks X1 and X2 with codewords
of length N1 and N2, respectively, with the corresponding
encoding functions f1 and f2 such that the average bit error
probability can be made arbitrarily small by letting the block
lengths N1 and N2 grow to infinity.

The aim of transmitter i is to autonomously choose its
transmit configuration si in order to maximize its achievable
rate Ri. More specifically, the transmit configuration si can
be described in terms of the number of information bits per
block Mi, the block length Ni, the codebook Xi, the encoding
functions fi, etc. Note that the rate achieved by receiver i
depends on both configurations s1 and s2 due to the mutual
interference naturally arising in the DIC. This reveals the
competitive interaction between both links in the LD-DIC and
justifies the use of tools from game theory in its analysis.

A. Game Formulation

The competitive interaction through mutual interference
between the transmitters in the two-user DIC can be modeled
by the following game in normal-form:

G =
(

K, {Ak}k2K , {uk}k2K
)

. (5)

The set K = {1, 2} is the set of players, that is, the set of
transmitter-receiver pairs. The sets A1 and A2 are the sets of
actions of players 1 and 2, respectively. An action of player i,
which is denoted by si ∈ Ai, is basically its transmit/receive
configuration as described above. The utility function of player
i is ui : A1×A2 → R+ and it is defined as the achieved rate
of transmitter i, that is,

ui(s1, s2) =

ß

Ri(s1, s2), if ∀t ∈ {1, . . . , T}, p
(t)
i

< ✏
0, otherwise

,

where ✏ > 0 is an arbitrarily small number and Ri(s1, s2)
denotes a transmission rate achievable with the configurations

s1 and s2 such that p
(t)
i < ✏. Often, the rate Ri(s1, s2) is

written as Ri for the sake of simplicity.
Some action profiles s = (s1, s2) ∈ A1×A2 are particularly

important in the analysis of this game. These actions profiles
are referred to as ⌘-Nash equilibria (⌘-NE) and obey the
following definition:

Definition 1 (⌘-Nash equilibrium): In the game G =
(

K, {Ak}k2K , {uk}k2K
)

, an action profile (s⇤1, s
⇤
2) is an ⌘-

Nash equilibrium, with ⌘ > 0, if ∀i ∈ K and ∀si ∈ Ai,
ui(si, s

⇤
j ) 6 ui(s

⇤
i , s
⇤
j ) + ⌘.

From Def. 1, it becomes clear that if (s⇤1, s
⇤
2) is an ⌘-Nash

equilibrium, then none of the transmitters can increase its own
transmission rate more than ⌘ bits per block by changing its
own transmit configuration and keeping the average bit error
probability arbitrarily close to zero. Thus, at a given ⌘-NE,
every transmitter achieves a utility (transmission rate) that is
⌘-close to its maximum achievable rate given the transmit

configuration of the other transmitter. Note that if ⌘ = 0,
then the classical definition of Nash equilibrium is obtained.
The relevance of the notion of equilibrium is that at any NE,
every transmitter configuration is optimal with respect to the
configuration of the other transmitters.

The set of rate pairs achieved at an NE is known as the
Nash region.

Definition 2 (Nash Region): An achievable rate pair
(R1, R2) is said to be in the Nash region of the game
G =

(

K, {Ak}k2K , {uk}k2K
)

if there exists an action profile
(s⇤1, s

⇤
2) that is an ⌘-Nash equilibrium for an arbitrarily small

⌘ and the following holds u1(s
⇤
1, s
⇤
2) = R1 and u2(s

⇤
1, s
⇤
2) =

R2.

B. Capacity and Nash Region of the Symmetric LD-DIC with
Noisy Feedback

A particular case of the LD-DIC is the symmetric case.
That is, an LD-DIC in which −→n = −→n 11 = −→n 22, m = n12 =
n21 and ←−n = ←−n 11 = ←−n 22. The capacity region of the two-
user symmetric LD-DIC with noisy feedback is denoted by
C(−!n , −n ,m) and it is fully characterized by Theorem 1 in [8].

Lemma 1 (Theorem 1 in [8]): The capacity region
C(−!n , −n ,m) of the two-user LD-DIC with noisy feedback

corresponds to the set of non-negative rate pairs (R1, R2)
that satisfy for all i ∈ {1, 2}

Ri6 max (−→n ,m) , (6)
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−→n +
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)+
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R1 +R26
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)
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,
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⌘
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(−→n −m)+,
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←−n −max
(

(−→n −m)+,m
)

⌘+
!

.
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⇣

(−→n −m
)+

,m
⌘

.

The NE region (Def. 2) of the symmetric LD-DIC with
noisy feedback with parameters −→n , ←−n and m is given by
Theorem 1 in [3]. Let N(−!n , −n ,m) denote such an NE region
and consider the following region:

B(−!n , −n ,m)=
n

(R1, R2) : L 6 Ri 6 U, ∀i ∈ {1, 2}
o

, (12)

where L and U are defined as follows:

L=(−→n −m)+ and (13)

U =

ß

U (a) if m >
−→n

U (b) if m 6
−→n

, (14)

with U (a) = min (max (−→n ,←−n ) ,m) and

U (b) = max
(−→n ,m

)

− min ((−→n −m)+,m) +



(min ((−→n −m)+,m)− (max(−→n ,m)−←−n ))
+

. Hence,
following this notation, Theorem 1 in [3] can be written as
follows:

Lemma 2: [Theorem 1 in [3]] The Nash region of the two-
user symmetric LD-DIC with noisy feedback, with parameters
−→n , m and ←−n , is N(−!n , −n ,m) = B(−!n , −n ,m) ∩ C(−!n , −n ,m).

III. MAIN RESULTS

In this section, the efficiency of the NEs of the game G is
studied. To this end, let A = A1×A2 be the set of all possible
action profiles, ANE ⊂ A be the set of NE action profiles and
consider the following lemma.

Lemma 3 (Maximum Sum-Rate at an NE): For all
(−→n ,←−n ,m) ∈ N

3, let Σ(−!n , −n ,m) satisfy the following
equality:

Σ(−!n , −n ,m) =maxR1(s1, s2) +R2(s1, s2) (15)

s. t. (s1, s2) ∈ A

(R1(s1, s2), R2(s1, s2)) ∈ C(−!n , −n ,m).

Then, there always exists at least one rate pair (R⇤1, R
⇤
2) ∈

N(−!n , −n ,m) that satisfies Σ(−!n , −n ,m) = R⇤1 +R⇤2 and

Σ(−!n , −n ,m)

= min

(

(−→n −m
)+

+max
(−→n ,m

)

, 2max
⇣

(−→n −m
)+

,m
⌘

+2min
⇣

(−→n −m)+,
⇣

←−n −max
(

(−→n −m)+,m
)

⌘+⌘
)

.

Basically, Lemma 3 states that there always exists at least one
NE that maximizes the sum rate. A formal proof of Lemma 3 is
not presented in this paper due to space constraints. However,
this proof comprises two parts. In the first part, it is shown by
direct verification that for all (−→n ,←−n ,m) ∈ N

3, there always
exists at least one rate pair (R⇤1, R

⇤
2) ∈ C(−!n , −n ,m) that saturates

either (8) or (9). This proves that (R⇤1, R
⇤
2) is in the boundary

of the capacity region, that is, Σ(−!n , −n ,m) = R⇤1 + R⇤2. In

the second part, it is shown that (R⇤1, R
⇤
2) ∈ B(−!n , −n ,m). This

shows that the rate pair (R⇤1, R
⇤
2) is achieved at an NE, which

completes the proof.
Consider also the following lemma.
Lemma 4 (Minimum Sum-Rate at an NE): For all

(−→n ,←−n ,m) ∈ N
3, let Σ(−!n , −n ,m) satisfy the following

equality:

Σ(−!n , −n ,m) =minR1(s1, s2) +R2(s1, s2) (16)

s. t. (s1, s2) ∈ ANE

(R1(s1, s2), R2(s1, s2)) ∈ C(−!n , −n ,m).

Then, there always exists at least one rate pair (R⇤1, R
⇤
2) ∈

N(−!n , −n ,m) that satisfies Σ(−!n , −n ,m) = R⇤1 + R⇤2, with

Σ(−!n , −n ,m) = 2(−→n −m).
Lemma 4 provides a lower bound for the sum rate at an NE.
The proof of Lemma 4 follows from Lemma 2.

From Lemma 3 and Lemma 4, the sum rate at any NE can
be lower and upper bounded. Using these results, closed-form
expressions can be provided for the PoA and the PoS of the
game G.

A. Price of Anarchy

From its definition in [4], it holds that the PoA of the game
G is

PoA (G) =

max
(s1,s2)2A

2
X

i=1

Ri(s1, s2)

min
(s∗1 ,s

∗

2)2ANE

2
X

i=1

Ri(s
⇤
1, s
⇤
2)

. (17)

From Lemma 3 and Lemma 4, the following proposition holds.
Proposition 1 (PoA): The PoA in the game G of the sym-

metric LD-DIC with noisy feedback with parameters −→n , m
and ←−n satisfies the following equality:

PoA (G) =

®

Σ(−→n ,←−n ,m)

2(−!n−m)+
if −→n > m

∞ if −→n 6 m.
(18)

The relevance of Proposition 1 is highlighted by the following
corollaries that describe the PoA in particular interference
regimes. Consider the following parameters ↵ = m

−!n
and

β =
 −n
−!n

.
1) Very Weak Interference Regime: The PoA of the game

G in the very weak interference regime (↵ 6
1
2 ) is fully

characterized by the following corollary of Proposition 1.
Corollary 1 (PoA in Very Weak Interference Regime):

The PoA in the game G of the symmetric LD-DIC with noisy
feedback in the very weak interference regime (↵ 6

1
2 ) is

PoA (G) =

8

<

:

1 if β 6 1− ↵

min
Ä

β
1−↵ ,

2−↵
2(1−↵)

ä

if 1− ↵ 6 β 6 1
2−↵

2(1−↵) if β > 1− ↵.

Corollary 1 leads to an interesting upper bound for the PoA
in the very weak interference regime: 1 6 PoA (G) 6 3

2 . Note
that no loss in the sum rate is observed due to the anarchical
behavior of the players (PoA (G) = 1) when the signal to noise
ratios (SNRs) of the feedback links are lower than the signal
to interference ratios (SIRs) of the direct links, i.e., β 6 1−↵
(see Fig. 1). This is explained by the fact that under these
conditions, ↵ 6

1
2 and β 6 1 − ↵, the Nash regions with

and without feedback links are identical and thus, the unique
rate pair achievable at an NE, which is achieved by treating
interference as noise, falls on the boundary of the capacity
region [1], [2]. Alternatively, when the SNRs of the feedback
links are higher than the SIRs of the direct links β > 1 − ↵,
the use of feedback enlarges the NE region and thus, treating
interference as noise becomes the worse NE [3]. Therefore,
it follows that PoA (G) > 1 (see Fig. 1). The upperbound
PoA (G) 6 3

2 follows from the fact that increasing the SNRs
of the feedback links beyond the SIRs of the direct links does
not push forward the sum-rate upper bounds of the capacity
region [3] and for all ↵ 6

1
2 , it follows that 2−↵

2(1−↵) 6
3
2 (see

Fig. 1). That is, the sum rate at the worst equilibrium can be
at most the highest achievable sum-rate in a fully centralized
system but it is never less than 2

3 of the highest achievable
sum-rate in a fully centralized system.

2) Weak Interference Regime: The PoA of the game G
in the weak interference regime ( 12 6 ↵ 6

2
3 ) is fully

characterized by the following corollary of Proposition 1.
Corollary 2 (PoA in Weak Interference Regime): The PoA

in the game G of the symmetric LD-DIC with noisy feedback
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in the weak interference regime ( 12 6 α 6
2
3 ) is

PoA (G) =

8

>

<

>

:

↵
1−↵ if β 6 α

min
Ä

β
1−↵ ,

2−↵
2(1−↵)

ä

if α 6 β 6 1
2−↵

2(1−↵) if β > 1.

Corollary 2 leads to the following inequalities for the PoA:
1 6 PoA (G) 6 2. Note that in this interference regime, the
equality PoA = 1 holds only when α = 1

2 and β 6 α for the
reasons explained in the previous sections. For all other values
of α satisfying 1

2 < α 6
2
3 , strict inequality holds, PoA > 1

(see Fig. 1). This implies that there always exists a reduction
of the sum rate when the system becomes decentralized.
However, at the worst NE, given that PoA (G) 6 2, the sum
rate is never less than half of the highest sum rate of a fully
centralized system.

3) Moderate Interference Regime: The PoA of the game
G in the weak interference regime ( 23 6 α 6 1) is fully
characterized by the following corollary of Proposition 1.

Corollary 3 (PoA in Moderate Interference Regime): The
PoA in the game G of the symmetric LD-DIC with noisy
feedback in the weak interference regime ( 23 6 α 6 1) is

PoA (G) =
2− α

2 (1− α)
.

Corollary 3 leads to the following upper bound for the PoA
in the very weak interference regime: 2 6 PoA (G) 6 ∞.
Therefore, at the worst NE, the sum rate can be at most 1

2
of the highest sum rate of a fully centralized system. More
importantly, in this regime, the PoA is independent of β. This
is basically because the use of feedback enlarges the NE region
but does not shift forward the sum rate bounds of C(−!n , −n ,m)
[8]. Finally note that when α = 1, none of the transmitter-
receiver links is able to transmit at a strictly positive rate at
the worst NE, i.e., Σ = 0. Hence, PoA (G) becomes infinity
when α approaches 1.

4) Strong Interference Regime: The PoA of the game G in
the strong interference regime (α > 1) grows unboundedly
towards infinity. As in the previous case, this is basically due
to the fact that Σ = 0.

B. Price of Stability

From its definition in [5], the PoS of the game G can be
written as follows:

PoS (G) =

max
(s1,s2)2A

2
X

i=1

Ri(s1, s2)

max
(s∗1 ,s

∗

2)2ANE

2
X

i=1

Ri(s
⇤
1, s
⇤
2)

. (19)

The following proposition characterizes the PoS of the sym-
metric LD-DIC with noisy feedback.

Proposition 2 (PoS): The PoS in the game G of the sym-
metric LD-DIC with noisy feedback with parameters −→n , m
and ←−n is PoS (G) = 1, for all (−→n ,←−n ,m) ∈ N

3.
The proof of Proposition 2 is immediate from Lemma 3.

The price of stability is equal to one, independently of the
parameters −→n , ←−n , m. This implies that, despite the anarchical
behavior of both links, it is always possible to observe an
NE in which no reduction of the sum rate is observed. This
observation reveals the tremendous importance of techniques
aiming to allow players to choose the equilibrium they would
play. An interesting discussion about equilibrium selection is
presented in [6].

IV. CONCLUSION

In this paper, the PoA and the PoS of a game in which
transmit-receiver pairs of a DIC with noisy feedback au-
tonomously tune their own transmit/receive configurations
seeking an optimal individual transmission rate are fully
characterized. In particular, it is shown that in all interference
regimes, there always exists at least one Pareto optimal NE
and thus, the PoS of the corresponding game is always
equal to one. The analysis of the PoA shows that there exist
scenarios in which there is no reduction of the sum rate due
to the decentralization of the network, mainly in the very
weak interference regime. In other scenarios, mainly in the
strong interference regime, the loss on the sum rate due to
decentralization is unfortunately dramatic.
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