

EFFICIENT K-WORD PROXIMITY SEARCH

by

CHIRAG GUPTA

Submitted in partial fulfillment of the requirements

For the degree of Master of Science

Thesis Advisor: Dr. Z. Meral Ozsoyoglu

Department of Electrical Engineering and Computer Science

CASE WESTERN RESERVE UNIVERSITY

January 2008

Table of Contents

List of Tables ... iv

List of Figures ... v

Glossary .. vii

Abstract .. viii

1. Introduction ... 1

2. Survey and Related Work ... 3

2.1 Survey .. 3

2.1.1 Google ... 3

2.1.2 Yahoo .. 5

2.1.3 Exalead ... 5

2.1.4 Other Search Engines .. 6

2.2 Related Work ... 6

2.3 Inverted Index .. 10

2.3.1 Types of Inverted Index .. 10

2.3.1.1 Document level Inverted Index .. 11

2.3.1.2 Word Level Inverted Index .. 12

2.3.2 Index construction ... 14

2.4 Compression .. 18

3. Importance of Proximity Search ... 24

3.1 Problem Statement ... 26

4. Algorithms and Ranking Method.. 28

4.1 Algorithm of K-word Near Proximity Search .. 28

4.2 Algorithm for K-word Ordered Proximity Search ... 31

i

4.3 Complexity of the Algorithms ... 35

4.4 Ranking Methods ... 35

4.4.1 Near-by Proximity Search: ... 35

4.4.1.1 Based on Closeness .. 35

4.4.1.2 Based on Occurrence ... 36

4.4.1.3 Average Closeness ... 37

4.4.1.4 Other Ranking Methods ... 37

4.4.2 Ordered Proximity Search... 39

4.4.2.1 Based on Closeness .. 40

4.4.2.2 Based on Occurrence ... 41

4.4.2.3 Average Closeness ... 41

5. Implementation Details ... 43

5.1 Indexing Process .. 43

5.2 Retrieval Process .. 45

5.3 Types of different queries possible with our system .. 48

5.4 Various Optimization Techniques ... 50

6. Clustering or Grouping Results .. 51

7. Experimental Results .. 54

7.1 Search Engine Interface ... 54

7.2 Experimental Data ... 56

7.3 Effect of k (number of words in the input search terms) ... 58

7.4 Effect of threshold .. 59

7.5 Index Compression .. 61

7.6 Ordered Proximity vs. Near Proximity .. 63

ii

7.7 Proximity Search vs. Boolean Searching ... 64

8. Conclusion and Future Work .. 66

Bibliography ... 67

Links .. 71

iii

List of Tables

Table 2.1 Bytes Needed vs. Number range

Table 2.2 Decoding speed for various Compression techniques

Table 4.1 Ranking based on Order of the query terms

Table 4.2 Ranking based on Order of the query terms

Table 7.1 Effect of K

Table 7.2 Effect of threshold – Ordered Search

Table 7.3 Effect of threshold – Proximity Search

Table 7.4 Index Compression

iv

List of Figures

Figure 2.1 Document level Index

Figure 2.2 Word level Inverted Index

Figure 2.3 Nextword Index

Figure 4.1 Minimal vs. Non-minimal interval

Figure 4.2 Near Proximity Algorithm

Figure 4.3 Ordered Proximity Algorithm

Figure 4.4 Closeness Ranking Example

Figure 4.5 Ranking on starting position

Figure 4.6 Ranking Example for Ordered Proximity

Figure 5.1 Complete class diagram of our Indexer (crawler)

Figure 5.2 Main classes of our system

Figure 5.3 Main Query Class

Figure 6.1 Clusty Search Engine

Figure 7.1 Search Engine Interface – Search Page

Figure 7.2 Search Engine Interface – Results Page

Figure 7.3 Pubmed Database schema

Figure 7.4 Effect of K

Figure 7.5 Effect of threshold – Ordered Search

Figure 7.6 Effect of threshold – Proximity Search

Figure 7.7 Index Compression

Figure 7.8 Ordered vs. Near Proximity – Computation time

Figure 7.9 Ordered vs. Near Proximity – Result Document Set

v

Figure 7.10 Proximity vs. Boolean Search

vi

Glossary

Stop words: Stop words, or stopwords, is the name given to words which are filtered out

prior to, or after, processing of natural language data (text). [L20] lists the complete set of

English stop words.

(A B C): This means we are querying for A B C.

Stemming: Stemming is the process for reducing inflected (or sometimes derived) words

to their stem, base or root form — generally a written word form. A stemmer for English,

for example, should identify the string "cats" (and possibly "catlike", "catty" etc.) as

based on the root "cat", and "stemmer", "stemming", "stemmed" as based on "stem". A

stemming algorithm reduces the words "fishing", "fished", "fish", and "fisher" to the root

word, "fish".

vii

viii

Efficient K-Word Proximity Search

 Abstract
by

CHIRAG GUPTA

Proximity search is a very useful technique in narrowing down the results to more

relevant ones and at the same time allows users to better express what they are looking

for. Most of the current search engines provide limited proximity search behavior like

allowing only two query terms. While there are many algorithms for doing k-word near

proximity search, there is no significant work for doing k-word ordered proximity search.

We have studied and analyzed this behavior of the various current search engines and

hereby propose a new algorithm for k-word ordered proximity search which runs in

O(nlogk) time. We have also studied ranking techniques related to proximity search and

propose enhancements to it. We also propose an additional feature of suggesting frequent

combinations of the query terms which might exist in the search document set to the

users. This will help users to reach the desired document faster and efficiently.

1. Introduction

The Web is expanding and, search engines role has become all the more

significant in finding relevant information on the Web. Their main objective is to find the

most efficient answer for the query, rank it near the top and do this as fast as possible. For

example, when the query is for (apple computer support), the user is most likely intended

customer support page in the apple computer site. However, some other documents may

also contain all three keywords in totally different contexts. Therefore the issue for search

engine is to find the relevant documents and prioritize them. Many heuristics are used to

compute the relevance of a document. Examples include the Page Rank model [BP 98]

and the Hub and Authority model [Kleinberg 98], both based on links between

documents. We focus on textual information, particularly how close the keywords appear

together (i.e., the proximity) in a document, and this provides a good measure of

relevance. If the proximity is good, then it is more likely that the keywords have

combined meaning in the document. Proximity score cannot be computed off-line

because one can not predict all possible combinations of keywords practically. Therefore,

there is a need to compute the proximity score very efficiently.

We propose k-word ordered proximity search algorithm for ranking documents.

The algorithm locates regions in documents in which all k-keywords appear in the

neighborhood and in the same order as they are inputted by the user. Such regions are

assumed as summaries of documents and proximity search can be regarded as a kind of

text data mining. The proposed algorithm finds regions in document that contains all the

specified keywords maintaining the query order as well as ranking them efficiently. Time

complexity of the algorithm does not depend on the maximum distance between

1

keywords and runs in linear time. To the best of our knowledge such an algorithm for k >

2 keywords does not exist.

Studies by Sprink et al [JSS 00] [SWJS 01] have shown that average length

queries are between two and three keywords. Moreover these requests tend to cover a

rather wide variety of information needs and are often expressed with ambiguous terms.

This study also demonstrates that users expect the system to retrieve relevant documents

at the top of the result list. Indeed more than half of the web users tend to refer only the

first two result pages. Our work tries to improve the precision of k-word ordered

proximity search by efficiently calculating the results and scoring them.

2

2. Survey and Related Work

2.1 Survey
We first look at the way how major search engines currently supports proximity

search.

2.1.1 Google
Google [L1] does not provide any explicit proximity search except phrase

searching. They claim to take proximity of the words into account in their relevance

ranking. A restricted proximity search can be done by using the way they provide for

wild-card searches [L2].

Near Proximity Search

Consider a user who is looking for universities in which California and university

words are 1 word apart. The only option the user has to explicitly tell this is, by querying

for (“University * California”) OR (“California * University). In these query expression,

the number of asterisks represents number of possible words allowed between the terms.

This query gets bigger and complicated if the number of query terms increases or the

restriction changes. ((“University * California”) OR (“California * University”) OR

(“California ** University”) OR (“University ** California”)) – query as long as this one

would be needed to get all the results in which the terms University and California are

either 1 or 2 words apart. This is clearly cumbersome and users are not expected to write

such long queries.

3

Ordered Proximity Search

 Their wild-card search can be used for ordered proximity search but no details of

the approach and performance is available. It is much less flexible and inconvenient for

doing true proximity search. There is no way to specify a query “get all results in which

(India), (nuclear) and (US) are within 10 words of each other in the same order or not”.

Results for this should give good rankings to documents that contain details about the

India US nuclear deal.

Ranking

 While no information is available on how it ranks the documents based on

proximity, Google has nearly 200 factors that play a role in their relevance ranking and

proximity is just one of them.

Comments:

1. No explicit proximity functionality.

2. Google matches close term occurrences together and classifies the distance of

term occurrences into 10 different values that represent from a phrase to “not

even close”. Then the distance values are used in relevance measurement.

3. No details of the approach and performance.

4. Users generally need to construct long queries for doing near proximity search

using the wild-card search hack.

5. There is an unofficial Google API proximity search (GAPS) tool [L3] that

performs search up to a distance of three words. Number of terms in query is

also limited to two. The reason for limiting this according to makers of the

4

tool is that the actual query length increases significantly with the increase in

query terms.

6. Wild-card search algorithm might not be efficient for proximity search.

7. More on Google searching in [L4].

2.1.2 Yahoo
Yahoo [L5] is very similar to Google in terms of proximity searching

functionality. It also does not have any explicit proximity searching as Google. Yahoo

has a tool similar to GAPS [L6]. More information on Yahoo is available in [L7].

2.1.3 Exalead
Exalead [L8] provides some flavor of true proximity searching though limited. It

has operators like NEAR and NEXT to state explicit proximity searching.

Near Proximity Search

 The NEAR operator finds documents where the query terms are within 16 words

of each other. It does not allow the user to alter the proximity limit of 16 words. Similar

to Google and Yahoo, it also cannot solve queries like “get all results in which (India),

(nuclear) and (US) are within 10 words of each other”.

Ordered Proximity Search

 This does not provide ordered proximity searching but phrase searching either by

specifying the terms in the quotes or by use of the NEXT operator.

Comments

Not flexible and fewer options for doing proximity searching.

5

2.1.4 Other Search Engines

There are many search engines on the Web but none of them provides a true

proximity searching. A few of them provide some flavor but not all and hence the user’s

query expressive power is low. It is evident from the above survey that major search

engines don’t provide explicit proximity search and claim to take it into account in their

relevance ranking. In [L9] [L21], there is a comparison of search engines on their

proximity search features and the associated constraints. As we can see none of them

provide proximity search except AltaVista. AltaVista used to provide it but it no longer

does it after 2004. Although, this is an old study and things do evolve, it gives a

reasonable idea. One can infer from the study that not many public search engines

provide explicit proximity search and those that provide have many constraints.

2.2 Related Work

A lot of work related to near-by proximity search in the past has been done. In

most of the work, only pairs of keyword that is k=2 or finding k keywords within a given

maximum distance d has been considered.

[GBS 92] proposed an algorithm for finding pairs of two keywords P1 and P2

whose distance is less than a given constant d in O((m1 + m2) logm1) time, where m1 < m2

are the numbers of occurrences of the keywords. This algorithm first sorts positions of a

keyword P1 which appears m1 times. Then, for each occurrence of P2, it finds all

occurrences of P1 whose distance to P2 is less than d. [BC 92] proposed the abstract data

6

type proximity and an O(log n)-time algorithm but the construction takes O(n2) time.

[MB 91] also proposed an O(log n)-time algorithm but it takes O(dn) space

Though [ABJM 95] proposed an algorithm for finding tuples of k keywords in

which all keywords are within d but it requires O (n2) time. Their algorithm first

enumerates all tuples which contain first and second keywords and whose size is less than

d. Then it converts the tuples to contain the third keyword. . However all of the above do

not deal with the problem of this paper because they assume that the maximum distance,

d, is known in advance.

In the 1995 TREC conference, the University of Waterloo and the Australian

National University adopted relevance measures based on term proximity. Their methods,

known as shortest-substring ranking and Z-Mode respectively, are very similar. Both of

these approaches are based on the following two assumptions:

Assumption A: The closer appropriately chosen groups of query term occurrences in a

document (spans), the more likely that the corresponding text is relevant.

Assumption B: The more spans contained in a document, the more likely that the

document is relevant.

The processing flow of their methods is briefly enumerated. First, sets of similar

or equivalent terms (synonyms, alternative spellings, plurals and etc.) are manually

grouped from the retrieval topic to represent concepts. Besides personal knowledge, some

external resources such as on-line dictionary (Webster’s), the UNIX spell program and an

on-line list of country, state and city names are used to construct a concept. For example,

for the topic of “What is the economic impact of recycling tires?” three concepts

“economic impact”, “recycling” and “tires” are identified. “Profits” could also be added

7

in the concept of “economic impact”. Second, spans including at least one representative

of each concept are detected. For example, in the text fragment:

… reported huge profits to be made from recycling discarded automobile tires…

A span from “profits” to “tires” is found to contain representatives of all concepts.

Finally, the relevance of a document to a topic is the sum of scores of all the spans. There

is a little difference in scoring a span between the two ranking functions. In the shortest-

substring ranking function, the score is proportional to the reciprocal of the length of

span, while the score is proportional to the inverse square root of the length in Z-mode.

In [SWM 05], research from Microsoft included another assumption on the basis

that queries are prevalent and there is no notion of concept. Hence a concept extends as a

query term, and a span is no longer required to include all query terms. Accordingly,

besides assumptions A and B, another one is added:

Assumption C: The more unique query terms a span contains and the more important

these terms are, the more likely that a document is relevant.

The assumption is consistent to the experiences of web users who often expect a

document containing most or all of the query terms to be ranked before a document

containing fewer terms.

It won’t be unreasonable to assume that most people expect only those documents

that contain all their query terms and our research is concentrated on this.

Recently, Rasolofo and Savoy [RS 03] demonstrated that combining simple term

proximity based on word pairs into traditional ranking function could improve retrieval

effectiveness. For a query q = (ti, tj, tk), the following set S of term pairs is obtained {(ti,

tj), (tj, tk), (tk, ti)}. This approach of finding pairs of terms has certain issues as described

8

in [SWM 05]. 1) It is difficult to estimate the importance of phrases and their extra

contribution to relevance score and 2) it would have problems integrating with ranking

function because of its pair-wise computation.

In [SWM 05], a new approach was theorized. It considered an ordered list of all

the query terms in a document, and starting scanning from the left-most position to find

spans containing at least one of the query terms. Assume a query for (sea thousand years)

and maximum distance is set as 10. In this example, the chain of ordered hits in a

document is:

 sea5, thousand7, years8, thousand10, years11, sea29

According to their algorithm, the set of expanded spans for the document is:

{(sea5 … years8), (thousand10 years11), (sea29)}

and the width corresponds to the expanded spans is listed in the following set:

{4, 2, 10}

They then went on to give a score on the basis of how close the terms are in a span as

well as how many unique terms are there.

This approach is for near-by proximity search and it runs in n|Q| time where n is

the total occurrence of all query terms Q in a document. It is becoming more important to

include all the query terms to give the more efficient results. Sakadane and Imai [SI 01]

proposed a new and efficient algorithm for doing k-word near proximity search. This is

the first and most efficient work for k>2 as it runs in O(nlogn) and can be reduced to

9

O(nlogk) if the list is sorted. This is a superset of k-word ordered proximity search and it

is better to consider ordered proximity search separately as it covers different sets of

queries as well as has a different ranking algorithm.

An open source Search Engine called Lucene [L10] provides proximity search

and even ordered proximity search but according to our understanding, they do not

efficiently calculate the relevant documents. It scans through the list of the spans

document-wise and checks for order. However, they have very high query expressive

power.

2.3 Inverted Index

An inverted index also referred to as postings file or inverted file is an index

structure which stores a mapping from words to their locations in a document or a set of

documents allowing full text search. [MR 02] [ZM 06] [ZMS 92]

2.3.1 Types of Inverted Index

There are two main variants of inverted indexes: a record level inverted index (or

inverted file index or just inverted file or document level) contains a list of references to

documents for each word. A word level inverted index (or full inverted index or inverted

list) additionally contains the positions of each word within a document. We have

implemented the latter version of inverted index as it provides more functionality but at

the same time requires more space. Let us discuss both of them with word level inverted

index in more detail.

10

2.3.1.1 Document level Inverted Index

An inverted file index consists of two major components. The search structure or

vocabulary stores for each distinct word t,

1. a count ft of the documents containing t, and

2. a pointer to the start of the corresponding inverted list.

Studies of retrieval effectiveness show that all terms should be indexed including

even numbers. Even stopwords—which are of questionable value for bag-of-words

queries—have an important role in phrase queries. Google [L1] does index stopwords but

removes them in case of normal queries. The users can explicitly state to include them by

using special symbols. The second component of the index is a set of inverted lists where

each list stores for the corresponding word t,

1. the identifiers d of documents containing t,

2. the associated set of frequencies fd,t of terms t in document d.

 The lists are represented as sequences of (d, fd,t) pairs. As described, this is a

document level index in which word positions within documents are not recorded. Below

is a complete document-level inverted file for the Keeper database. The entry for each

term t is composed of the frequency ft and a list of pairs, each consisting of a document

identifier d and a document frequency fd,t.

11

Figure 2.1 Document level index

2.3.1.2 Word Level Inverted Index

Given that the frequency fd,t represents the number of occurrences of t in d, it is

straightforward to modify each entry to include the fd,t ordinal word positions p at which t

occurs in d and create a word-level inverted list containing pointers of the form (d, fd,t ,

p1, . . . , pfd,t).

12

Figure 2.2 Word level Inverted Index

There are many other types of indexes too that are useful for a particular type of

query. One of them is Nextword Indexes. A nextword index consists of a vocabulary of

distinct words and, for each word w, a nextword list and a position list. The nextword list

consists of, each word s that succeeds w anywhere in the database, interleaved with

pointers into the position list. For each pair ws there is a sequence of locations (document

identifier and position within document) at which the pair occurs; these sequences are

concatenated to give the position list. The structure of a nextword index is illustrated in

the figure below. In this structure, the vocabulary is held in a structure such as a B-tree.

The nextwords are sorted and stored contiguously. Nextword indexes can be used to

support phrase query w1w2 of two words and is evaluated by fetching the nextword list

13

for w1, decoding to find w2, and then fetching the location list for w1w2. Another type of

query that would be efficiently solved is of type “given a word w, the nextword list can

be used to identify all following words”.

Figure 2.3 Nextword Index

2.3.2 Index construction

Now we take a look at Index construction which is the first and most important step

of Search Engine. There are many ways available to construct an index such as:

1. In-memory inversion: The key idea is that a first pass through the documents

collects term frequency information, sufficient for the inverted index to be laid

out in memory in template form. A second pass then places pointers into their

correct positions in the template, making use of the random-access capabilities

of main memory. The advantage of this approach is that almost no memory is

wasted compared to the final inverted file size since there is negligible

fragmentation. In addition, if compression is used, the index can be

represented compactly throughout the process. This technique is viable

whenever the main memory available is about 10%–20% greater than the

combined size of the index and vocabulary that are to be produced. It is

14

straightforward to extend the in-memory algorithm to include word positions,

but the correspondingly larger final index will more quickly challenge the

memory capacity of whatever hardware is being used since individual list

entries may become many kilobytes long. It is also possible to extend the in-

memory technique to data collections where index size exceeds memory size

by laying out the index skeleton on disk, creating a sequence of partial indexes

in memory, and then transferring each in a skip-sequential manner to a

template that has been laid out as a disk file. With this extended method, and

making use of compression, indexes can be built for multi-gigabyte

collections using around 10–20MB of memory beyond the space required for

a dynamic vocabulary.

2. Sort-based inversion: - A shortcoming of two-pass techniques is that

document parsing and fetching is a significant component of index

construction costs, perhaps half to two-thirds of the total time for Web data.

The documents could be stored parsed during index construction, but doing so

implies substantial disk overheads, and the need to write the parsed text may

outweigh the cost of the second parsing. Other index construction methods are

based on explicit sorting. In a simple form of this approach, an array or file of

(t, d, fd,t) triples is created in document number order, sorted into term order,

and then used to generate the final inverted file. With careful sequencing and

use of a multi-way merge, the sort can be carried out in-place on disk using

compressed blocks. The disk space overhead is again about 10% of the final

compressed index size, and memory requirements and speed are also similar

15

to partitioned inversion. As for partitioned inversion, the complete vocabulary

must be kept in memory, limiting the volume of data that can be indexed on a

single machine.

3. Merge-based inversion: - As the volumes of disk and data grow, the cost of

keeping the complete vocabulary in memory is increasingly significant.

Eventually, the index must be created as an amalgam of smaller parts, each of

which is constructed using one of the previous techniques or using purely in-

memory structures. In merge-based inversion, documents are read and

indexed in memory until a fixed capacity is reached. Each inverted list needs

to be represented in a structure that can grow as further information about the

term is encountered, and dynamically resizable arrays are the best choice.

When memory is full, the index (including its vocabulary) is flushed to disk as

a single run with the inverted lists in the run stored in lexicographic order to

facilitate subsequent merging. As runs are never queried, the vocabulary of a

run does not need to be stored as an explicit structure; each term can, for

example, be written at the head of its inverted list. Once the run is written, it is

entirely deleted from memory so that construction of the next run begins with

an initially empty vocabulary. When all documents have been processed, the

runs are merged to give the final index. The merging process builds the final

vocabulary on the fly and, if a large read buffer is allocated to each run, is

highly efficient in terms of disk accesses. If disk space is scarce, the final

index can be written back into the space occupied by the runs as they are

processed as the final index is typically a little smaller than the runs—

16

17

2.4 Compression

There are many advantages of compressing our inverted index. Following are some of

them:

1. I/O to read a posting list is reduced if the inverted index takes less storage.

2. Faster query processing than might be possible otherwise, as I/O to read the

posting list is reduced. In particular, the relativity between disk and CPU speeds

on current hardware is such that with most compression schemes, data can be

decoded faster than it can be delivered from the disk, resulting in a net decrease in

access time if it is stored compressed. [ZM 95][WZ 99][Trotman 03].

3. Less storage is required for storing the inverted index.

4. Half of the terms occur only once (hapex legomena) so they only have one entry

in their posting list.

There are various things to compress in an Inverted Index such as:-

1. Term name in the term list.

2. Term positions in each posting list entry.

3. Document identifier in each posting list.

In our system, we compress 2nd and 3rd from the above list. We compress the document

identifier as well as the positions of a term in a document.

The main idea behind compression is that numbers can be encoded into fewer bits than

they actually take on a system.

Each of the inverted lists consists of a set of integer document numbers. The

standard way of representing these is to sort them into document-order, and then take

differences between consecutive values.

18

For example, the document-sorted list

(4, 10, 11, 12, 15, 20, 21, 28, 29, 42, 62, 63, 75, 95)

is reduced to the set of d-gaps

(4, 6, 1, 1, 3, 5, 1, 7, 1, 13, 20, 1, 12, 20)

For terms t that occur in many of the documents in the collection, the list of d-

gaps is long, but on average the values must be small, since the sum of the d-gaps cannot

exceed N, the number of documents in the collection(which is the highest document

number in the list). In the above example, sum of the numbers in the second list is equal

to 95. On the other hand, terms with short inverted lists can contain large d-gaps, but

cannot contain many of them. That is, while large d-gaps can occur, they cannot be

common. If the inverted list for a term t contains ft entries, then the average d-gap in that

list cannot exceed N/ft.

Similarly, a term can occur several times in a document. We can use the similar

techniques as we used for document identifiers. Suppose a term A occurs in document D

at the following positions:-

 (10, 15, 18, 50, 76, 100, 200)

This list will be used to the following

 (10, 5, 3, 32, 26, 24, 100)

As it is clearly evident from the second list which has smaller integers as

compared to the first, this requires less number of bits for storage and therefore

compressed faster and better.

If the documents containing a given term t can be assumed to be a random subset

of the documents in the collection, then the set of d-gaps associated with term t will

19

conform to a geometric distribution, and a Golomb code [WMA 99] provides a

minimum-redundancy representation. In essence, the Golomb code is optimal among the

universe of prefix codes if the documents containing the term are randomly scattered.

Golomb codes are also relatively straightforward to implement, and have been found to

provide good compression effectiveness on typical document collections, over the full

spectrum of scale. If the documents containing a term t are not a random subset, but are

instead clustered in some way as t moves into and out of use in the collection (for

example, consider the word “Chernobyl” in a collection organized chronologically or

geographically), better compression can be obtained. The binary interpolative code of

[MS 00] is sensitive to localized clustering, and in extreme cases can reduce a whole run

of unit d-gaps to just a few bits of output, still making use of simple binary coding

mechanisms. In [BB 02], Blandford and Blelloch took these ideas to the next level, and

considered the possibility of reordering the documents in the collection so as to magnify

clustering effects and thus minimize the cost of storing the index, but we do not apply

their technique here, and leave the collection in its original ordering.

A wide range of ad-hoc mechanisms have also been described. The static codes of

Elias [WMA 99] fall into this category—they give plausibly good compression, and have

the advantage of not requiring any tuning or parameter setting. In a sense, they trade

away compression effectiveness in any particular situation in favor of universality.

However, Elias codes decode at the same rate as Golomb codes, and are no easier to

implement.

Other tradeoffs are possible. In particular, it is interesting to consider

compromises that swap compression effectiveness for decoding speed, on the grounds

20

that a modest amount of additional disk storage to hold the index may well be warranted

if query processing using the index can be accelerated. The best examples of these

tradeoffs come through the use of nibble- and byte-aligned codes, which avoid the bit-by-

bit processing costs associated with the Golomb, Elias, and interpolative techniques.

The compression method that we use is “Byte Aligned- Fixed Length encoding”.

In this encoding scheme the first two bits of the encoded code word indicate the number

of bytes used to encode the word. The number of bytes required to encode a particular

word are determined according to the table below.

 Number Range Bytes Needed

0 ≤ n <26 1

26 ≤ n < 26+8 2

26+8 ≤ n < 26+8+8 3

26+8+8 ≤ n < 26+8+8+8 4

Table 2.1 Bytes needed vs. Number range

After recognizing how many bytes are needed for representing this difference,

write the first two bits as length indicator with 00 in the case of 1 byte, 01 in the case of 2

bytes, 10 in 3 bytes case and 11 for 4 bytes. Usually 4 bytes suffice. The remaining bits

are then used to store the binary value off the word/number to be compressed. We use

this compression technique to compress all the integer values in our index. Because

integer values require four bytes of storage in the .Net framework irrespective of the

actual number of bytes required to store the integer Our compression scheme will

improve storage efficiency because majority of the numbers we compress will be stored

in lesser than 4 bytes.

21

Another similar approach of byte-aligned coding regime uses one bit in each byte

as a flag, and the other seven bits for data. During encoding, if the number to be coded

fits into a seven-bit integer, then those bits are output in a byte with a leading “0”.

Otherwise, the seven lower order bits are written in a byte with a leading “1”; the other

high-order bits of the number are shifted right by seven bits; one is subtracted from them;

and the process repeated. During decoding, if the flag bit in any byte is “1”, the next byte

must be fetched, and then its flag bit checked. Thus, when a byte with a ‘0’ flag is

reached, the number is said to completed.

The net effect is that the numbers 1 to 128 = 27 are stored in a single byte; the

numbers 129 to 16,512 = 214 + 27 in two bytes; and so on—a kind of byte-level Golomb

code.

We are mainly concerned with the decoding speed, the faster the better.

Experimental results from [VM 05] show that Byte-aligned techniques are faster than

Golomb and Interpolative techniques.

Method WSJ TREC wt10g .GOV

Golomb 12.7 43.5 91.0 80.5

Interpolative 14.9 48.2 101.8 91.2

Byte-aligned 9.5 30.7 58.7 53.2

Nibble-aligned 8.6 31.9 76.1 68.0

Table 2.2 Decoding speed for various Compression techniques

WSJ, TREC, wt10g and .GOV are names of various collections of web data on

which experiments have been done. The above table shows the impact of different coding

22

schemes on query processing speed. Each value is the average of the elapsed time (in

milliseconds) between when a query enters the system and when a ranked list of the top

1,000 answers is finalized, but not retrieved. The average is taken over 10,000 artificial

queries with mean length of three. The hardware used was a 933 MHz Intel Pentium III

with 1 GB RAM running Debian GNU/Linux [ZM 06].

There has been some recent work on this that takes into consideration the d-gap

distribution. By taking this into consideration, the authors claim to reduce the decoding

speed. But at the same time, we have to compromise on decoding complexity and

compression rate. Some of these techniques are discussed in [VM 05]. For simplicity, we

have used byte-aligned encoding whose results are good and comparable and at the same

time less complex and easier to implement.

23

3. Importance of Proximity Search

The ideal characteristics of an efficient proximity search are:

1. User should have the freedom to enter multiple words.

2. Closeness of words should be a major factor while ranking the results.

3. The search engine should provide a large limit within which all the search

terms should occur. Some search engines have this limit to 5 or 10.

4. Ideally, all search terms should occur in the same phrase or sentence.

5. Some of the other aspects of proximity searching are discussed in [Keen

92].

As most of the current search engines provide phrase search, the major

disadvantage of phrase search methods is that they require exact match of phrases.

However in English one or a few words often comes between the terms of interest. For

example, for a search of “President NEAR Kennedy” the user retrieved records that

mention President Kennedy in a sentence in any one of the four forms in which his name

is likely to appear: President John Fitzgerald Kennedy, President John F. Kennedy,

President John Kennedy, or President Kennedy. Another example, the user probably

wants `President' and `Lincoln' to be adjacent, but still wants to catch cases of the sort

`President Abraham Lincoln.'[L11]

Another example, a search could be used to find "red brick house", and match

phrases such as "red house of brick" or "house made of red brick". By limiting the

proximity, these phrases can be matched while avoiding documents where the words are

scattered or spread across a page or in unrelated articles in an anthology [L12].

24

Let us consider another query “surface area of rectangular pyramids”. Search

Engines which do not take proximity into account return general mathematical

documents in which all the four terms surface, area, rectangular and pyramid are

individually important, but specificity about the surface area of rectangular pyramid may

be lacking in the document. It may discuss the volume of pyramids and the area of

rectangular prisms. On the other hand, an exact phrase match “surface area of rectangular

pyramids” would most certainly ensure that the document retrieved is of the desired type,

but strictly enforcing such phrase matching’s in either right or wrong way would exclude

many relevant results. A good proximity-aware scoring scheme should give perfect

phrase matches a high score, but also reward high proximity matches such as “surface

area of a rectangular-based pyramid” with good scores.

Commercial, Internet search engines tend to produce too many matches (known

as recall) for the average search query. Proximity searching is one method to reduce the

number of pages matches, and to improve the relevance of the matched pages by using

word proximity to assist in ranking. As an added benefit, proximity searching helps

combat spamdexing by avoiding web pages which contain dictionary lists or shotgun lists

of thousands of words, which rank higher in search engines that are heavily biased by

word frequency to help in ranking results.

 [TD 97] discusses how proximity search is beneficial in name searching in

Information retrieval on the Web. Since last name and first name should occur close to

each other (within 2 words), the number of documents retrieved using proximity search

are very less as compared to retrieving documents for them individually.

25

The other area where proximity search is really helpful is when the user enters

more than 2 words and a subset of these words has more importance. The documents

containing these subsets as well as other remaining terms are ranked higher, than the

documents that contain all the words in close proximity to signify something.

[Monz 04] describes the importance of proximity search in Question answering

and provides details on how to achieve higher accuracy in doing so. Even ordered

proximity search can be used to achieve higher level of accuracy in such systems.

Proximity search can reduce the number of relevant document returned by a

search engine greatly and deliver better results.

In short, proximity acts as a precision device.

3.1 Problem Statement

Here we define k-word proximity search for ranking documents.

• T = T[1..N]: a text of length N

• P1….Pk: given keywords

• pij : the position of the jth occurrence of a keyword Pi in the text T

Problem 1 (naive k-word ordered proximity search): When k keywords P1…..Pk and their

positions pij in a text T = T [1…N] are given, ordered proximity search is to find intervals

[l, r] in [1, N] that contain positions of all k keywords in the increasing order of size of

intervals r - l, where order of the keywords in a interval is to be maintained as in the

query. When the total number of k keywords is n, the number of intervals is n(n - 1)/2.

However, most of the intervals are useless and we only find minimal intervals containing

26

all keywords. An interval is said to be minimal if it does not contain any other interval

that contains all k keywords.

Problem 2 (k-word ordered proximity search): Ordered proximity search is to find

minimal intervals [l, r] in [1, N] that contain positions of all k keywords in a specified

order and ranked according to an efficient ranking mechanism.

Also, the purpose of web search engine is to make the user reach the desired

document with minimum effort i.e. minimum clicking for next page. We propose a way

to show the user various combinations of the inputted keywords in all sets of underlying

documents that helps them to filter the results and reach the desired page efficiently.

27

4. Algorithms and Ranking Method

4.1 Algorithm of K-word Near Proximity Search

We have used the idea described in the k-word near proximity search algorithm

by SAKADANE and IMAI [SI 01]. This algorithm is called plane-sweep algorithm. Its

scans the text from left to right and finds intervals [li; ri] containing all k keywords in

order of their positions. The scanning is not on the text but on lists of positions of k

keywords. Therefore we sort positions in the lists and then examine the positions from

left to right. The leftmost interval containing k keywords is obtained by taking heads of

the lists and finding the leftmost and the rightmost positions by sorting them. Note that it

may be a non-minimal interval. The next interval does not contain the leftmost keyword

in the current interval. Hence we update the current interval by removing the leftmost

keyword and appending the same keyword in the head of the list of that keyword. The

interval becomes a candidate of a minimal interval. Scanning is done by merging lists of

positions of k keywords. The figure below shows an example of minimal and non-

minimal intervals. In the figure, intervals `CAB' and `BAC' are minimal, but interval

`ABAC' is not minimal because the leftmost keyword `A' appears in another position in

the interval.

28

Figure 4.1 Minimal vs. Non-minimal interval

The algorithm becomes as follows.

1. Sort lists of positions pij (j = 1; : : : ; ni) of each keyword Pi (i = 1; : : : ; k).

2. Pop top elements pi1 (i = 1……k) of each list, sort k elements by their positions,

and find leftmost and rightmost keyword and their positions l1 and r1, which

indicate an interval [l1; ri]. Let i = 1.

3. If the current list of the leftmost keyword P in the current interval is empty, then

go to 6.

Otherwise, let p be the position of the top element of the current list of the

leftmost keyword P, which is popped. Let q be the position to the next of P in the

current interval.

4. If p > ri, then the interval [li; ri] is minimal and stores it in a list along with its size

ri - li, and the next interval is set to [li+1 = q; ri+1 = p]. Otherwise, let li+1 =

min{p,q} and ri+1 = ri, and update the order of the positions in the interval [li+1;

ri+1].

5. Let i = i + 1, and go to 3.

6. Sort the list according to the size and output them.

29

The figure below shows an example of the above algorithm.

Figure 4.2 Near Proximity Algorithm

30

4.2 Algorithm for K-word Ordered Proximity Search

We are looking for interval which contains all the query terms between two

consecutive occurrences of the first query term. Suppose the query contains 3 terms A, B

and C, the following are some of the valid minimum intervals:

ABC, ABBC, ACB, ACCB, A(B+)C, A(C+)B

By B+, we mean one or more occurrences of B term.

When the next occurrence of the first query term does not occur, we can simply

consider till the end of the list.

We keep checking the order of the keywords as we scan the list.

Approach 1:-

1. From our indexing phase, we can get the position list of each keyword in each

file. For a document under consideration, we can get the position list of all the

query terms for this document. We can merge these lists of query terms in

O(nlogk) time where n is the total number of positions for all the query terms

(position lists are already sorted). By merging, we get a list of the document

containing the query terms sorted according to their position. For example,

suppose there are 3 terms in the query A, B and C and their position list in a

document is

A = <5, 10, 12, 20, 24> B = <1, 3, 11, 54, 75, 98> C = <7, 13, 45, 56,

85, 97, 101>

So the list after merging will be

< (1,B),(3,B), (5,A), (7,C),(10,A), (11,B), (12,A), (13,C), (20,A), (24,A), (45,C),

(54,B), (56,C), (75,B), (85,C), (97,C), (98,B), (101,C)>

31

Since we can imagine this as the merging step of a merge sort which runs in

O(nlogk) time if we merge k lists, this step takes O(nlogk) time.

2. As our minimal interval should start with the first query term, we should take

advantage of this to reduce the scan through the list. Since we have the position

list for the first query term as well as the complete list for all query term, we can

directly start scanning from the position next to the first query term in the

complete list as visualized below.

3. While scanning, we keep checking whether the next term in the list is the same as

in the query. If yes, we continue scanning until we found all the query term in the

order. If the next term is not the same as the next query term, then we can simply

stop scanning the list there and continue with the position following the next

position of first query term. This would be clearer from the figure below.

3 5 10 18 56 97

2 3 5 8 9 10 17 18 45 48 49 55 56 57 61 78 79 96 97 99

C A A B C A C A B B C B A B B C C C A C

Figure 4.3 Ordered Proximity Algorithm

4. We can check whether it is possible to have all the terms between the current and

the next position of the first query term, if not then we can ignore the current

position and continue with the next position. In the above figure, we have ignored

32

first position of A as it is not possible to have all the remaining terms between

p=3 and p=5 and hence we ignore A for position=3 and start checking with

position=5.

5. While scanning, suppose a term repeats like in case of (A B B C) in which B

repeats, we can simply check for those cases and allow them or ignore them based

on our requirements. In our case, we allow such cases.

Approach 2:-

Our second approach is similar to near proximity search algorithm. The algorithm

scans the text from left to right and adds intervals [li, ri] containing all k keywords in

order of their positions to the result list. The scanning is not on the text but on lists of

positions of k keywords. As we have the sorted position lists, we examine the positions

from left to right. The leftmost interval containing k keywords is obtained by taking

heads of the lists and finding the leftmost and the rightmost positions by sorting them.

Note that it may be a non-minimal interval. Our leftmost word should always be the first

query term. We can update the current interval by removing the leftmost keyword and

appending the same keyword to the list of the keyword until we have the first query term

as the first word in our sorted list. To reduce this, we can add only those positions of

other terms which are greater than the current position of first query term in the list.

33

1. We have the lists of positions pij (j = 1 ni) of each keyword Pi (i = 1 k).

2. Pop top elements pi1 (i = 1……k) of each list, sort k elements by their positions,

and find leftmost l and rightmost keyword r and their positions li and ri respectively,

and the interval is indicated by [li; ri].

3.

a) If the leftmost keyword in the list in not the first keyword in the query, then

remove that keyword and pop the same keyword from its list and add. Repeat 3a until

true.

b) Get the next position of the first keyword of the query, if its position is greater than

ri then current interval in the minimal one. Else, remove the first keyword from the

list, and pop and add the next position from its list. Repeat step 3 again.

4. If we found the minimal interval in step 3b, then check whether the keywords are

in the same order as the input query words, if it is then find the closeness of that

interval using the formula below. In either case, remove all the elements from the list

and repeat from step 2 to find the next minimal interval.

Note – Our current list is always kept sorted according to the positions of the keywords

even when we remove and add a new keyword.

34

4.3 Complexity of the Algorithms

K-word ordered Proximity Search

Approach 1:-

Merging k lists takes O(nlogk) time whereas the scanning the list in the second

step in the worst case scans the whole list i.e. O(n). In the best case, the second step

might only need to scan at most k elements in the list and hence O(k). Hence, the overall

complexity of the algorithm is O(nlogk).

Approach 2:-

Step 2 of our algorithm takes O(klogk) time because we are sorting a list of k

keywords. Step 3 and 4 are repeated at most n times, therefore there are at most 2n

inserting and deletion from the sorted list. Since insertion and deletion to a sorted list is

of the O(logk) therefore step 3 and 4 has O(nlogk) complexity. In step 4, checking

whether the terms in the interval are in the order or not, is of the O(k), therefore overall

complexity of the algorithm is O(nlogk).

4.4 Ranking Methods

4.4.1 Near-by Proximity Search:

We provide three ranking methods that provide useful analysis of the relevant

document.

4.4.1.1 Based on Closeness

For nearby-proximity search, we define closeness by the length of the interval

which contain all the query terms. We find the minimum interval in a document and

assign that document a score based on it. We can further reduce of the number of

35

documents based on other user input like restriction on the maximum length of the

interval (threshold value). These are discussed in details in the next section. By this, we

get a list of all the documents which satisfy all restriction and thus have a closeness value

attached to them (we can also call it a rank value). While displaying the result, we can

sort the document based on the rank value. In the example below, the minimum interval

is 29 and hence the closeness score would be 29.

Figure 4.4 Closeness Ranking Example

4.4.1.2 Based on Occurrence

Our interval which contain all the query terms could occur many times in a document.

The more the number of intervals in a document, the more relevant the document would

be. For the above example, the score of the document would be 3. We keep a count of the

valid intervals irrespective of their closeness value. Other restrictions like threshold value

are still applied to narrow down the valid intervals. Results are sorted in descending order

based on their occurrence score.

36

4.4.1.3 Average Closeness

This ranking gives more of a true picture of the document relevance as it takes both

the occurrence as well as the closeness into account. Basically we find the average

closeness of the query terms in a document. For example, if a combination of query terms

occurs very close and occurs only once in the document, we can signify that document

has some unique occurrence of the query terms and hence important. On the other hand,

if a document contains many occurrences of the query terms in which the query terms are

not close either, then we can infer that document is of less significance.

4.4.1.4 Other Ranking Methods

In all of the above ranking, we further consider the following two important

points:

1. Order of the query terms:

We take into consideration the order in which the query terms are

inputted. So, if we have a set of documents which has similar score (based

on closeness or occurrence or on both), then we further sort this set based

on the order of terms. Closer the terms are to the original order of terms,

the higher they would be ranked. This would be clear on the example

below.

Consider the following set of document having similar score based on

closeness for a query (A B C):

37

Document Combination found
in the document

Closeness Score Rank

D1 (B A C) 5 1

D2 (B C A) 5 2

D3 (A B C) 5 3

D4 (C B A) 5 4

D5 (A C B) 5 5

Table 4.1 Ranking based on Order of the query terms

As the closeness score is same for all documents, they are ranked based on

the order they were scanned. A more likely output would be

Document Combination found
in the document

Closeness Score Rank

D3 (A B C) 5 1

D5 (A C B) 5 2

D1 (B A C) 5 3

D2 (B C A) 5 4

D4 (C B A) 5 5

 Table 4.2 Ranking based on Order of the query terms

A simple way to do this would be to assign a number based on the order of

the keywords. If the query is for (A B C) then we assign A = 3, B = 2 and

C = 1, so the score would be 321. Now for the combination (B C A), the

score would be 213 and hence less than 321, hence will be ranked lower.

38

2. Starting position of the interval in a document:

Suppose we have two documents having the same score as well as the

same order of the terms. We can further sort them based on the starting

position of the interval. Closer the starting position of the interval to the

start of the document, the more relevant the document would be compared

to the others.

Figure 4.5 Ranking on starting position

Clearly the (ii) is more relevant compared to the (i) as it occurs closer to

the starting of the document.

4.4.2 Ordered Proximity Search

In our approach, we give importance to the closeness of the keywords occurring

earlier in the query when the interval is the same. This is based on the intuition that the

users type the first few words which they are really sure of (and hence are close) and then

the following terms. This would be clear from the example below.

39

Figure 4.6 Ranking Example for Ordered Proximity

Our ranking method would rank 1st case higher than the second even the length of

the interval is same for both of them.

Closeness = pow (10, n-2) * log (pos(2) – pos(1)) + pow (10, n-3) * log (pos(3) – pos(2))

+ ………… + pow (10, 0) * log (pos(n) – pos(n-1))

Where n is the number of query words and pos (i) is the position of the ith keyword in the

interval.

So closeness of the above cases

Closeness (1st case) = pow (10, 3-2) * log2 (6 - 0) + pow (10, 3-3) * log2 (15 – 6) = 29.02

Closeness (2nd case) = pow (10, 3-2) * log2 (8 - 0) + pow (10, 3-3) * log2 (15 – 8) =32.81

If the difference between the positions of two words is more than 1023 words, we give

them the maximum weight age in our formula.

4.4.2.1 Based on Closeness

We calculate all intervals in which all k-search terms occur and find the minimum

interval among them. If the interval is the same for a set of document, then we rank them

on the basis of the score calculated using the above formula. This is done for all the

documents which have occurrences of all the search terms in them. We can further reduce

the number of documents based on other user input like restriction on the maximum
40

length of the interval (threshold value). These are discussed in details in the next section.

By this, we get a list of all the documents which satisfy all restriction and thus have a

closeness value attached to them (we can also call it a rank value). While displaying the

result, we can sort the document based on the rank value.

4.4.2.2 Based on Occurrence

 The results are sorted based on the number of times the search terms are repeated in a

document, in the same order as they appear in the query. We take care that these intervals

are non-overlapping interval by our algorithm. For example if we query for “Case

Western Reserve University”, then higher ranking will be given to the page which has

more occurrences of “Case Western Reserve University” in the same order. We find all

such intervals in a document and for each valid interval; we increase the score of the

document by 1. So if there are n possible intervals for the query terms in a document, the

document score would be n. Another example, if the query is for (California university)

in order within 5 words of each other, then all the possible intervals which includes

combination like (California State University), (California State Baptist University), etc,

if found, would increase the document score by 1. The documents are then ranked

according to these scores while displaying.

4.4.2.3 Average Closeness

 This ranking method is the combination of the first two ranking method and gives

a useful ranking of the documents. In this, we basically find the average of the closeness

of all the valid intervals. For example, if we query for (California University) and find

41

out two combination of it in a document say (California State University) and (California

State Baptist University) and their respective closeness (according to our closeness

formula) is 1 and 2, then rank score for this document would be (1 + 2)/2 = 1.5. We

divide it by 2 because there are two occurrence of the possible valid interval for our query

terms. To generalize, for a document hybrid ranking score would be given by the average

closeness score of that document.

 As in the case of near-by proximity search, here also we consider the starting

position of the interval in the document if the score from the above ranking method are

same for a set of documents.

42

5. Implementation Details

We have used Visual Studio 2005 for writing our code(C#). SQL server 2005 is

used at the database end.

5.1 Indexing Process

As we need to store position of the terms in the index, we have implemented word

level inverted index. As we are only concerned with the positions in this project,

frequency has been removed from our inverted lists. If we need frequency, we can simply

count elements in the position list.

As storing positions of terms takes a lot of space, we have compressed our index

using byte-aligned encoding as described in compression section, as it takes relatively

less disk space.

For making our index, we crawled websites and store the terms along with their

position into our index. For our project, we have made index in the memory only.

Therefore, the size of the index is limited to the size of the memory.

Following are the steps involved in crawling:-

1. There are two essential variables that need to set before starting crawling. One

is the starting URL which acts as the first document (html) that the crawler

crawls and follows the links in it. Ideally, this document should have lots of

links. We need a parameter to control the crawling process. There are many

ways to do this:

a. We can stop crawling when we have visited and parsed x documents.

43

b. We can stop crawling at a certain depth. For example, we can say to

crawl all the documents that are reachable by following at most 2 links

from the starting document. We have used this approach in our

crawler. If the depth is set to zero, then the crawler crawls only the

starting document.

2. For a given document, the crawler does the following

a. Downloads the document.

b. Parses the document.

c. For each word in the document, it checks whether the word is a

number or a stem word or a stop word or a go word(these terms are

explained in the glossary section) and make modification according to

them and then store the word in the index along with the file in which

it exists and the word’s position.

d. Before storing, it checks whether the word already exists in the index

or not. If yes, it simply adds the position of the word to the position

list, if the word occurs in the same file or adds the position along with

the file if it occurs in a different file.

e. The crawler maintains a queue in which it keeps adding the links it

finds in a document. It gets a new document from the queue when it

has finished adding all the words from the current document. It also

maintains a list of all visited nodes so that it does not download and

parse the same document again.

44

f. There are much more advanced crawlers such as the one that Google

has “googlebot” which have lots of extra functionality [L13] [L14].

Once the index is made in the memory, we need to compress it and store it on the

disk. For each word, we compress and store its inverted list and append it to a file on the

disk and get the position at which the word information is stored in that file. We can save

this <word, fileposition> pair in another file and load it in memory during runtime (This

file is also serialized before storing on the disk). During compression, we compress the d-

gaps for a word and similarly the difference of the position instead of the exact position

(this is explained in the compression section in detail).

5.2 Retrieval Process

All the previous steps were how to crawl the documents (or websites) and store

them efficiently on the disk, with the next step is retrieval process. Suppose the query

contains three terms (A B C). For each word, we get the position in the compressed file

on the disk, fetch the information for the word and then we can uncompress the data to

get the inverted list for a word back. This inverted list information is then used by our

algorithm to narrow down to the relevant documents.

The way we store the inverted list for a word in a compress file is as follows:-

1. Document id.(This is value of the d-gaps not the actual document id)

2. Then we store the count of the number of position in the position list.

3. This is followed by all the position in the position list. (This list has the

difference of the positions not the actual position).

4. Steps 1-3 are continued until the next byte contains -1 which indicates that the

word information is over.

45

Figure 5.1 Complete class diagram of our Indexer (crawler)

46

Catalog
Class

Word
Class

Fields

_FileCollection
_Text

Properties

FilesId
Text

Methods

Add (+ 1 overload)
InFiles
ToString
Word (+ 2 overlo…

File
Class

Fields

_CrawledDate
_Description
_fileid
_Size
_Title
_Url

Properties

CrawledDate
Description
Id
Size
Title
Url

Methods

File (+ 1 overload)
ToString

Fields

_Index
_SerializePrepara…
_WordsPos
fileMap
wordsPosition

Properties

Dictionary
Files
Length
WordsPos

Methods

Add (+ 1 overload)
Catalog
Load
PostDeserialization
PrepareForSeriali…
Save
Search
ToString

Figure 5.2 Main classes of our system

47

Search
Class

Fields

searchTermsMap

Properties

DisplayTime
SearchQueryMatchHtml

Methods

addCombination
addPosList
checkMinimal
checkOrderedMinimal
getNextPos
GetResults
nextPosition
rankByAverage
rankByCloseness
rankByClosenessOld
rankByOccurrance
SetPreferences
withinRankByAverage
withinRankByCloseness
withinRankByOccurrance

Figure 5.3 Main Query Class

This class does most things related to query processing. It first gets the document

in which the keywords occurs, finds the smallest document set, scan the document set and

give them score based on the ranking function.

5.3 Types of different queries possible with our system

1. Find all the query terms within a window size of say n. Here by window size we

mean the interval in which all the search terms should occur. For example

(University California) within 5 words. (n=5)

48

2. Find all the query terms in the documents in the same order within a window size

of say n. For example (University California) in order with n=5.

3. System supports wild-card queries (fill in the blanks) like “the parachute was

invented by *”, “vitamin * is good for *”,…

a. Find all the query terms within a window size n and also specifying

minimum terms between the query terms. For example (University *

California) within 5 words.

b. Final all the query terms in order within a window size n and also

specifying minimum terms between the query terms. For example

(University * California) in order with n=5.

Here,

‘*’ – 2 or 3 words

‘**’ – 4-7 words and so on, basically if n is the number of asterisk then it means there

would be (2n – 2n-1-1) words in between.

On each of the above queries, we can rank the result either by our closeness or

occurrence or hybrid approach.

49

5.4 Various Optimization Techniques

1. For a given query, we start checking document from that term document list

which is the shortest among all. For example, suppose the query is of (A B C),

and term A occurs in X, term B in Y and term C in Z documents. While

calculating the proximity, we will start checking only those documents which

occurs in the smallest of X, Y and Z. So, if X contains 10 documents, Y contains

100 documents and Z contains 1000 documents, we will check only the 10

documents in which X occurs as the document should contain all the terms. This

way our computation time depends upon the number of documents we are

checking. Suppose if a term does not occur at all, then our computation time will

be zero as the resulting documents will be zero.

While indexing, we are not indexing common words (also called stop words) like the,

and, what, when, etc, thus keeping our index efficiently and smaller in size. If we index

these terms also, thus the size of the index shoots up suddenly as these terms occurs very

frequently in the documents.

50

6. Clustering or Grouping Results

As we mentioned before also, the position that we are storing for calculating the

proximity among words can be more useful in deriving much more information. The

important points here are:

1. Even if we don’t index the stopwords, we can infer from the positions of the terms

that they might be some stopwords in between or other indexed words. For

example, if we found that term (university) occurs at position say 1000 and the

term (California) occurs at position say 1002 then we can infer that there is one

word between them which can either be a stopwords or one of the indexed terms.

2. It is sometimes useful in marking the terms (making them displayed in bold) in

the snippets displayed in the search results as we know the position of the

keywords.

3. Positions also indicate whether the keywords are occurring earlier in the

document or far below in the document and we can derive useful information

based on that. Generally more relevant documents should have query terms in the

beginning of them. Suppose, A document is found in Wikipedia and so if the

query terms are found in the beginning of the document, it can possibly mean that

document is related to the query terms (has its definition) and if the query terms

are found far below, then it might be of less relevance as it might lie in the

reference section, etc,.

There has been various works in clustering documents on the Web, the major

difference between our approach and theirs is that we are only suggesting various

51

different combinations of words possible in the complete document set and also

displaying the count of the document in which a combination lie (to give an idea how

frequent that combination occurs) whereas the current search engines like Exalead

and Clusty [L17] find the frequent word or words combination in the results (which

contains all the relevant documents along with their title and snippet). So sometimes

they even get combinations which don’t seem related to query terms at first place but

still they are useful in many situations. Below is an example from Clusty search

engine which uses various other search engines like yahoo, live, ask, etc to fetch the

relevant document and then make clusters based on the documents from these other

search engines. Clusters are shown on the left-hand side and it is helpful in narrowing

down to the desired results.

Figure 6.1 Clusty Search Engine

52

Another difference is that there is an extra computation required as this sort of

clustering is done after the results have been fetched. Whereas in our case, we keep

storing the new combinations found as well as incrementing the existing one

whenever we get a relevant document. While the approaches are quite different, they

can be used to compliment each other in future.

The grouping that we provide can be useful to the user as it gives them some idea

of the way the search terms are present in the documents and help them to get to the

document they are looking for. Consider the example considered previously, if a user

searched for “University California”, he/she will be shown with the combinations like

“university California”, “California university”, “California * University”, University

* California, and so on with their frequency in the documents. All this comes with no

extra time complexity but only space cost to store them. If the search engine is for a

small web site, it is possible to show to the exact words between the search terms. But

this require some extra computation and space complexity and not feasible for Web

search engine.

Another advantage of this is that once we have the various combinations for the

search terms, we can filter our search results to the more specific ones by doing a

sort-of phrases queries in which asterisk(*) represents wildcards.

So now a search for “California * University” will find all the documents in

which California comes before University and there is at least 2 words between them

(1 asterisk stands for 2 words, 2 for 4, basically in the power of 2).

53

7. Experimental Results

In this section, we evaluate our algorithms presented in Chapter 8, our ranking

method, our compression techniques and derive useful conclusion from them.

7.1 Search Engine Interface
A simple interface for our search engine is shown below. In this, user can choose

the proximity type and the way in which they want documents to be ranked. They can

also set the window size within which they want all terms to appear. This can be done by

setting the threshold value.

Figure 7.1 Search Engine Interface – Search Page

54

The way the search results are formatted is shown below.

Figure 7.2 Search Engine Interface – Results Page

55

7.2 Experimental Data

For our experiments, we have used two sets of data.

1. We crawled the web to a certain extent and made an in-memory index and used it

as our data. We have used Searcharoo [L16] search engine crawling technique

and modified it to our requirement mainly to include term positional information.

For each word or token, we have an inverted list which contain the document ids

and for each document the positions of the word in that document.

2. We have used already existing Pubmed [L15] database on one of our servers

which contain all the required information. We are mainly concerned with three

tables which are:

a. sPapers – It contains three field’s pmid(paper id), title(paper title) and

abstract(paper abstract).

b. sTokens – It contains tokens(keyword) information. It has fields like

id(token id), token(keyword), and other fields related to token

frequency(which we don’t require in our experiments).

c. sPaper2Token – This is the main table which maps tokens to papers. Its

main fields are pmid, tokenid, pos (position where this token occurs in the

paper).

This database has 154991 papers with 250397 distinct tokens (words).

56

Figure 7.3 Pubmed Database schema

57

7.3 Effect of k (number of words in the input search terms)

Approach: We kept increasing the number of keywords k in the query while

making sure that the number of document scanned is same. Following is an

example:

Query k Computation

Time(ms)

molecular (19517) cell (84652) 2 234.375
molecular (19517) cell (84652) gene (81267) 3 265.625
molecular (19517) cell (84652) gene (81267) protein
(92653)

4
296.875

molecular (19517) cell (84652) gene (81267) protein
(92653) human (56069)

5
312.500

molecular (19517) cell (84652) gene (81267) protein
(92653) human (56069) sequence (56046)

6
343.750

Table 7.1 Effect of K

Figure 7.4 Effect of K

58

Observation: As the number of keywords in the query increases, our computation

time increases. It is directly supported by our algorithm which depends upon k. It

is to be noted that the number of documents to be scanned is kept same in all the

experiments above. We only scan a document only if contains all the keywords in

it. So generally, if the number of keywords increases, probability that all the

keywords will be found in a document decreases and hence computation time

decreases. However in the above test, all the high frequencies words are picked to

show the effect of k.

7.4 Effect of threshold

Approach: We run the same query under different threshold values. We increased

the value of threshold from 1 till 100 as shown in the table below. We ran the

experiments for both ordered and near proximity search.

Search Terms(Ordered

Search)
Threshold Results(No. of

documents)

molecular cell 1 11
molecular cell 2 17
molecular cell 3 62
molecular cell 4 182
molecular cell 5 268
molecular cell 6 382
molecular cell 7 518
molecular cell 10 936
molecular cell 20 2009
molecular cell 50 4161
molecular cell 100 6165

Table 7.2 Effect of threshold – Ordered Search

59

Figure 7.5 Effect of threshold – Ordered Search

Search Terms(Near-by
Search)

Threshold Results(no. of
documents)

molecular cell 1 18
molecular cell 2 80
molecular cell 3 241
molecular cell 4 459
molecular cell 5 671
molecular cell 6 940
molecular cell 7 1208
molecular cell 10 1954
molecular cell 20 3773
molecular cell 50 6665
molecular cell 100 8903

Table 7.3 Effect of threshold – Proximity Search

60

 Figure 7.6 Effect of threshold – Proximity Search

Observation: Though there is no direct relationship between the threshold and

number of documents returned, it all depends upon the relationship between the search

terms in a document but generally there is an increase in the number of documents

returned with increase in threshold as the interval within which the query terms are

searched increases.

7.5 Index Compression

Approach: We gave different parameters to the indexer. We varied our starting

URL as well as the depth. We ran our experiments on different type of data such

as Java Doc, Wikipedia, w3c and CIA fact book, and found the compression ratio

by dividing the size of the compressed files by total size of the files indexed.

61

Starting Webpage or
document set

Depth Number
of files
indexed

Total Size
of the
files(MB)

Size of the
compressed
files(MB)

Compres
sion
Ratio (%)

Java Doc 3 4708 130.771126 11.561 8.84
Wikipedia CD 3 2094 42.300242 14.838 35.07
Wikipedia Articles Set 3 1994 117.183725 32.768 27.96
CIA fact book 2 971 60.5264 6.634 10.96
http://en.wikipedia.org
– Nov 19, 2007 2 12624 854.029779 97.434 11.408
http://www.w3c.org/ 2 1789 115.960424 22.104 19.601
http://www.w3c.org/ 1 142 5.577939 1.659 29.742
http://codeproject.com

Table 7.4 Index Compression

 2 331 22.972202 4.372 19.031
http://en.wikipedia.org
/wiki/List_of_colleges
_and_universities_in_
California 1 335 22.623243 4.04 17.857

Figure 7.7 Index Compression

62

http://en.wikipedia.org/
http://www.w3c.org/
http://www.w3c.org/
http://codeproject.com/

Observation: As it was mentioned in the Compression section, the amount of

compression depends upon the type of data, the above tests verify that as

compression of different document sets has different compression ratio.

7.6 Ordered Proximity vs. Near Proximity

Approach: We ran large number of queries once for ordered proximity and then

for near proximity and recorded the number of results and computation time.

Figure 7.8 Ordered vs. Near Proximty – Computation time

63

Figure 7.9 Ordered vs. Near Proximty – Result Document Set

Observation: Results clearly shows that ordered proximity search takes less time

as well as return less documents than near proximity. This means that it is always

useful to use ordered proximity search if the order of the keywords is known as it

takes less time and return more relevant document.

7.7 Proximity Search vs. Boolean Searching

Approach: We made a system which uses the same database but only check

whether all the keywords are present in a document and gives score based on the

occurrence of the terms in the document. If the terms occur frequently in a

document, then it would be ranked higher than the documents which have low

occurrence of the query terms. This system does not check for any other factors.

This system is running on

http://nashuatest.case.edu/BooleanSearchPubmed/Search.aspx.

64

http://nashuatest.case.edu/BooleanSearchPubmed/Search.aspx

Figure 7.10 Proximity vs. Boolean Search

Observation: It is clearly evident from the results that the Proximity search returns

much less documents as compared to boolean search and hence much more

relevant. Boolean search do not consider closeness of the terms and hence return

document even if the terms are far from each other or in totally different contexts

to each other.

65

8. Conclusion and Future Work

Our experiments have explored and enhanced the power of proximity search in

Web Searching. We presented an O(nlogk) time algorithm for the k-keyword ordered

proximity search and provided efficient ranking method for the same. At the same time,

k-keyword near proximity search is also studied, implemented and enhanced by our

ranking method.

While doing explicit proximity search, we claim that it is useful for the user to

have all the combination of the terms possible in the documents which allow them to

reach the required document faster.

A search engine using the above algorithms and the ranking method is running on

one of our database lab servers

http://nashuatest.case.edu/ProximitySearchPubmed/Search.aspx.

In future, we can also take into account the tags (title, paragraph, body, bold, etc)

within which the words occurs in a document. For example, we can give more

importance to a document which satisfies all proximity criteria as well as in which all the

keywords are found in the title. Also, we can apply ordered proximity algorithm to other

areas like biological sequences. In biology context, keywords correspond to motifs and

the proximity score gives some hints on how similar different genes are. Frequent

combinations from the documents can complement existing clustering techniques to help

them show better and more frequent clusters or suggestion.

66

http://nashuatest.case.edu/ProximitySearchPubmed/Search.aspx

Bibliography

 [ABJM 95] Aref W.G., Barbara D., Johnson S., and Mehrotra S., Efficient

processing of proximity queries for large databases", Proc. 11th

IEEE International Conf. on Data Engineering, pp.147-154, 1995.

[BB 02] Blandford D., Blelloch G., Index compression through document

reordering. In: Storer JA and Cohn M, Eds., Proc. 2002 IEEE Data

Compression Conference, April, IEEE Computer Society Press,

Los Alamitos, CA. pp. 342–351 2002.

[BC 92] Manber, U., and Baeza-Yates, R.: An algorithm for string

matching with a sequence of don’t cares, Information Processing

Letters, Vol. 37, 133–136, Feb. 1991.

[BC 99] Baeza-Yates R., Cunto W., The ADT proximity and text proximity

problems, in IEEE String processing and Informational

Symposium(SPIRE 99), 1999, pp. 24-30

[BP 98] Brin, S. and Page, L., The anatomy of a large-scale hypertextual

Web search engine. Wide Web Conference, Brisbane, Australia,

1998.

[GBS 92] Gonnet G. H., Baeza-Yates R., and Snider T., New indices for text:

PAT trees and PAT arrays", in Information Retrieval: Algorithms

and Data Structures, ed. Frakes W and Baeza-Yates R., chapter 5,

pp.66-82. Prentice-Hall, 1992

67

[JSS 00] Jansen, B.J., Spink, A. and Saracevic, T., Real life, real users and

real needs: A study and analysis of user queries on the Web,

Information Processing and Management, 36(2), 207-227, 2000.

[Keen 92] Keen E.M., Some aspects of proximity searching in text retrieval

systems, Journal of Information Science, Vol. 18, No. 2, 89-98

(1992).

[Kleinberg 98] J. Kleinberg, Authoritative sources in a hyperlinked environment,

in Proc. The 9th Annual ACM-SIAM Symposium on Discrete

Algorithm, 1998 pp. 668-677

[MB 91] Manber U., Baeza-Yates R., An algorithm for string matching with

a sequence of don’t cares, Inform. Process. Lett. 37 February 1991

133-136.

[Monz 04] Monz C., Minimal Spanning Weighting Retrieval for Question

Answering, SIGIR 2004 Workshop.

[MR 02] Monz Christof, Rijke Maarten de: Inverted Index construction

[MS 00] Moffat A., Stuiver L., Binary interpolative coding for effective

index compression, Information Retrieval, 3(1):25–47, 2000

[RS 03] Rasolofo Yves, Savoy Jacques, Term Proximity scoring for

keyword-based retrieval systems, 25th European Conference on IR

research, ECIR 2003.

[SI 01] Sadakane K., Imai H., Fast Algorithms for k-word Proximity

Search 2001, TIEICE.

68

[SWJS 01] Spink A., Wolfram D., Jansen B.J., and Saracevic T., Searching

the Web: The public and their queries, Journal of the American

Society for Information Science and Technology, 52(3), 226-234,

2001.

[SWM 05] Song Ruihua, Wen Ji-Rong, Ma Wei-Ying, Viewing Term

Proximity from a different perspective, Microsoft Research 2005.

[TD 97] Thompson P., Dozier Christopher C., Name Searching and

Information Retrieval, Proceedings of the Second Conference on

Empirical Methods in Natural Language Processing, 1997.

[Trotman 03] Trotman A., Compressing inverted files, Information Retrieval,

6:5–19, 2003

[VM 05] VO NGOC ANH, MOFFAT A, Inverted Index Compression Using

Word-Aligned Binary Codes, Informational Retrieval, 2005.

[WMB 99] Witten I. H., Moffat A., Bell T. C., Managing Gigabytes:

Compressing and Indexing Documents and Images, 2nd edition.

Morgan Kaufmann, San Francisco, 1999.

[WZ 99] Williams H. E., Zobel J., Compressing integers for fast file access,

The Computer Journal, 42(3):193–201, 1999.

[ZM 95] Zobel J., Moffat A., Adding compression to a full-text retrieval

system, Software—Practice and Experience, 25(8): 891-903, 1995.

[ZM 06] Zobel J., Moffat A., Inverted Files for Text Search Engines, ACM

computing surveys(C SUR), v38-2, 2006.

69

[ZMS 92] Zobel J, Moffat A, Sacks-Davis R: An efficient indexing technique

for full-text database system, p353, VLDB, 1992.

70

71

Links
1. http://www.google.com

2. http://www.google.com/support/bin/answer.py?answer=3178&topic=352

3. http://www.staggernation.com/cgi-bin/gaps.cgi

4. http://www.searchengineshowdown.com/features/google/

5. http://www.yahoo.com

6. http://www.researchbuzz.org/2004/10/ynaps_yahoo_nonapi_proximity_s.shtml

7. http://www.searchengineshowdown.com/features/yahoo/review.html

8. http://www.exalead.com

9. http://www.mlb.ilstu.edu/ressubj/subject/intrnt/srcheng.htm

10. www.lucenebook.com

11. http://www.dcc.ufmg.br/irbook/10/node25.html

12. http://en.wikipedia.org/wiki/Proximity_search_%28text%29

13. http://en.wikipedia.org/wiki/Web_crawler

14. http://www.google.com/support/webmasters/bin/topic.py?topic=8843

15. http://www.ncbi.nlm.nih.gov/sites/entrez

16. http://www.searcharoo.net

17. http://www.clusty.com

18. http://www.amrresearch.com/Help/Search_Help.asp

19. http://www.jurisearch.com/userguide/wildcard.htm

20. http://www.dcs.gla.ac.uk/idom/ir_resources/linguistic_utils/stop_words

21. http://www.searchengineshowdown.com/features/byfeature.shtml#proximity

http://www.google.com/
http://www.google.com/support/bin/answer.py?answer=3178&topic=352
http://www.staggernation.com/cgi-bin/gaps.cgi
http://www.searchengineshowdown.com/features/google/
http://www.yahoo.com/
http://www.researchbuzz.org/2004/10/ynaps_yahoo_nonapi_proximity_s.shtml
http://www.searchengineshowdown.com/features/yahoo/review.html
http://www.exalead.com/
http://www.mlb.ilstu.edu/ressubj/subject/intrnt/srcheng.htm
http://www.lucenebook.com/
http://www.dcc.ufmg.br/irbook/10/node25.html
http://en.wikipedia.org/wiki/Proximity_search_%28text%29
http://en.wikipedia.org/wiki/Web_crawler
http://www.google.com/support/webmasters/bin/topic.py?topic=8843
http://www.ncbi.nlm.nih.gov/sites/entrez
http://www.searcharoo.net/
http://www.amrresearch.com/Help/Search_Help.asp
http://www.jurisearch.com/userguide/wildcard.htm
http://www.dcs.gla.ac.uk/idom/ir_resources/linguistic_utils/stop_words

	List of Tables
	List of Figures
	Glossary
	 Abstract
	1. Introduction
	2. Survey and Related Work
	2.1 Survey
	2.1.1 Google
	2.1.2 Yahoo
	2.1.3 Exalead
	2.1.4 Other Search Engines

	2.2 Related Work
	2.3 Inverted Index
	2.3.1 Types of Inverted Index
	2.3.1.1 Document level Inverted Index
	2.3.1.2 Word Level Inverted Index

	2.3.2 Index construction

	2.4 Compression

	3. Importance of Proximity Search
	3.1 Problem Statement

	4. Algorithms and Ranking Method
	4.1 Algorithm of K-word Near Proximity Search
	4.2 Algorithm for K-word Ordered Proximity Search
	4.3 Complexity of the Algorithms
	4.4 Ranking Methods
	4.4.1 Near-by Proximity Search:
	4.4.1.1 Based on Closeness
	4.4.1.2 Based on Occurrence
	4.4.1.3 Average Closeness
	4.4.1.4 Other Ranking Methods

	4.4.2 Ordered Proximity Search
	4.4.2.1 Based on Closeness
	4.4.2.2 Based on Occurrence
	4.4.2.3 Average Closeness

	5. Implementation Details
	5.1 Indexing Process
	5.2 Retrieval Process
	5.3 Types of different queries possible with our system
	5.4 Various Optimization Techniques

	6. Clustering or Grouping Results
	7. Experimental Results
	7.1 Search Engine Interface
	7.2 Experimental Data
	7.3 Effect of k (number of words in the input search terms)
	7.4 Effect of threshold
	7.5 Index Compression
	7.6 Ordered Proximity vs. Near Proximity
	7.7 Proximity Search vs. Boolean Searching

	8. Conclusion and Future Work
	In future, we can also take into account the tags (title, paragraph, body, bold, etc) within which the words occurs in a document. For example, we can give more importance to a document which satisfies all proximity criteria as well as in which all the keywords are found in the title. Also, we can apply ordered proximity algorithm to other areas like biological sequences. In biology context, keywords correspond to motifs and the proximity score gives some hints on how similar different genes are. Frequent combinations from the documents can complement existing clustering techniques to help them show better and more frequent clusters or suggestion.Bibliography
	Links

