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Glossary 
 

Stop words: Stop words, or stopwords, is the name given to words which are filtered out 

prior to, or after, processing of natural language data (text). [L20] lists the complete set of 

English stop words.  

(A B C): This means we are querying for A B C.  

Stemming: Stemming is the process for reducing inflected (or sometimes derived) words 

to their stem, base or root form — generally a written word form. A stemmer for English, 

for example, should identify the string "cats" (and possibly "catlike", "catty" etc.) as 

based on the root "cat", and "stemmer", "stemming", "stemmed" as based on "stem". A 

stemming algorithm reduces the words "fishing", "fished", "fish", and "fisher" to the root 

word, "fish". 
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Efficient K-Word Proximity Search 

 

          Abstract 
by 

CHIRAG GUPTA 

 

Proximity search is a very useful technique in narrowing down the results to more 

relevant ones and at the same time allows users to better express what they are looking 

for. Most of the current search engines provide limited proximity search behavior like 

allowing only two query terms. While there are many algorithms for doing k-word near 

proximity search, there is no significant work for doing k-word ordered proximity search. 

We have studied and analyzed this behavior of the various current search engines and 

hereby propose a new algorithm for k-word ordered proximity search which runs in 

O(nlogk) time. We have also studied ranking techniques related to proximity search and 

propose enhancements to it. We also propose an additional feature of suggesting frequent 

combinations of the query terms which might exist in the search document set to the 

users. This will help users to reach the desired document faster and efficiently. 

 



1. Introduction 
 

The Web is expanding and, search engines role has become all the more 

significant in finding relevant information on the Web. Their main objective is to find the 

most efficient answer for the query, rank it near the top and do this as fast as possible. For 

example, when the query is for (apple computer support), the user is most likely intended 

customer support page in the apple computer site. However, some other documents may 

also contain all three keywords in totally different contexts. Therefore the issue for search 

engine is to find the relevant documents and prioritize them. Many heuristics are used to 

compute the relevance of a document. Examples include the Page Rank model [BP 98] 

and the Hub and Authority model [Kleinberg 98], both based on links between 

documents. We focus on textual information, particularly how close the keywords appear 

together (i.e., the proximity) in a document, and this provides a good measure of 

relevance. If the proximity is good, then it is more likely that the keywords have 

combined meaning in the document. Proximity score cannot be computed off-line 

because one can not predict all possible combinations of keywords practically. Therefore, 

there is a need to compute the proximity score very efficiently.  

We propose k-word ordered proximity search algorithm for ranking documents. 

The algorithm locates regions in documents in which all k-keywords appear in the 

neighborhood and in the same order as they are inputted by the user. Such regions are 

assumed as summaries of documents and proximity search can be regarded as a kind of 

text data mining. The proposed algorithm finds regions in document that contains all the 

specified keywords maintaining the query order as well as ranking them efficiently. Time 

complexity of the algorithm does not depend on the maximum distance between 
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keywords and runs in linear time. To the best of our knowledge such an algorithm for k > 

2 keywords does not exist. 

Studies by Sprink et al [JSS 00] [SWJS 01] have shown that average length 

queries are between two and three keywords. Moreover these requests tend to cover a 

rather wide variety of information needs and are often expressed with ambiguous terms. 

This study also demonstrates that users expect the system to retrieve relevant documents 

at the top of the result list. Indeed more than half of the web users tend to refer only the 

first two result pages. Our work tries to improve the precision of k-word ordered 

proximity search by efficiently calculating the results and scoring them.  
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2. Survey and Related Work 

2.1 Survey 
We first look at the way how major search engines currently supports proximity 

search.  

2.1.1 Google 
Google [L1] does not provide any explicit proximity search except phrase 

searching. They claim to take proximity of the words into account in their relevance 

ranking. A restricted proximity search can be done by using the way they provide for 

wild-card searches [L2].  

Near Proximity Search 

Consider a user who is looking for universities in which California and university 

words are 1 word apart. The only option the user has to explicitly tell this is, by querying 

for (“University * California”) OR (“California * University). In these query expression, 

the number of asterisks represents number of possible words allowed between the terms. 

This query gets bigger and complicated if the number of query terms increases or the 

restriction changes. ((“University * California”) OR (“California * University”) OR 

(“California ** University”) OR (“University ** California”)) – query as long as this one 

would be needed to get all the results in which the terms University and California are 

either 1 or 2 words apart. This is clearly cumbersome and users are not expected to write 

such long queries.  
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Ordered Proximity Search 

 Their wild-card search can be used for ordered proximity search but no details of 

the approach and performance is available. It is much less flexible and inconvenient for 

doing true proximity search. There is no way to specify a query “get all results in which 

(India), (nuclear) and (US) are within 10 words of each other in the same order or not”. 

Results for this should give good rankings to documents that contain details about the 

India US nuclear deal.  

Ranking 

 While no information is available on how it ranks the documents based on 

proximity, Google has nearly 200 factors that play a role in their relevance ranking and 

proximity is just one of them.  

Comments: 

1. No explicit proximity functionality. 

2. Google matches close term occurrences together and classifies the distance of 

term occurrences into 10 different values that represent from a phrase to “not 

even close”. Then the distance values are used in relevance measurement. 

3. No details of the approach and performance.  

4. Users generally need to construct long queries for doing near proximity search 

using the wild-card search hack.  

5. There is an unofficial Google API proximity search (GAPS) tool [L3] that 

performs search up to a distance of three words. Number of terms in query is 

also limited to two. The reason for limiting this according to makers of the 
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tool is that the actual query length increases significantly with the increase in 

query terms.  

6. Wild-card search algorithm might not be efficient for proximity search.  

7. More on Google searching in [L4].  

2.1.2 Yahoo 
Yahoo [L5] is very similar to Google in terms of proximity searching 

functionality. It also does not have any explicit proximity searching as Google. Yahoo 

has a tool similar to GAPS [L6]. More information on Yahoo is available in [L7]. 

2.1.3 Exalead 
Exalead [L8] provides some flavor of true proximity searching though limited. It 

has operators like NEAR and NEXT to state explicit proximity searching.  

Near Proximity Search 

 The NEAR operator finds documents where the query terms are within 16 words 

of each other. It does not allow the user to alter the proximity limit of 16 words. Similar 

to Google and Yahoo, it also cannot solve queries like “get all results in which (India), 

(nuclear) and (US) are within 10 words of each other”. 

Ordered Proximity Search 

 This does not provide ordered proximity searching but phrase searching either by 

specifying the terms in the quotes or by use of the NEXT operator.  

Comments 

Not flexible and fewer options for doing proximity searching.  
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2.1.4 Other Search Engines 
 

There are many search engines on the Web but none of them provides a true 

proximity searching. A few of them provide some flavor but not all and hence the user’s 

query expressive power is low. It is evident from the above survey that major search 

engines don’t provide explicit proximity search and claim to take it into account in their 

relevance ranking. In [L9] [L21], there is a comparison of search engines on their 

proximity search features and the associated constraints. As we can see none of them 

provide proximity search except AltaVista. AltaVista used to provide it but it no longer 

does it after 2004. Although, this is an old study and things do evolve, it gives a 

reasonable idea. One can infer from the study that not many public search engines 

provide explicit proximity search and those that provide have many constraints.  

2.2 Related Work 
 

A lot of work related to near-by proximity search in the past has been done. In 

most of the work, only pairs of keyword that is k=2 or finding k keywords within a given 

maximum distance d has been considered.  

[GBS 92] proposed an algorithm for finding pairs of two keywords P1 and P2 

whose distance is less than a given constant d in O((m1 + m2) logm1) time, where m1 < m2 

are the numbers of occurrences of the keywords. This algorithm first sorts positions of a 

keyword P1 which appears m1 times. Then, for each occurrence of P2, it finds all 

occurrences of P1 whose distance to P2 is less than d. [BC 92] proposed the abstract data 
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type proximity and an O(log n)-time algorithm but the construction takes O(n2) time. 

[MB 91] also proposed an O(log n)-time algorithm but it takes O(dn) space  

Though [ABJM 95] proposed an algorithm for finding tuples of k keywords in 

which all keywords are within d but it requires O (n2) time. Their algorithm first 

enumerates all tuples which contain first and second keywords and whose size is less than 

d. Then it converts the tuples to contain the third keyword. . However all of the above do 

not deal with the problem of this paper because they assume that the maximum distance, 

d, is known in advance.  

In the 1995 TREC conference, the University of Waterloo and the Australian 

National University adopted relevance measures based on term proximity. Their methods, 

known as shortest-substring ranking and Z-Mode respectively, are very similar. Both of 

these approaches are based on the following two assumptions: 

Assumption A: The closer appropriately chosen groups of query term occurrences in a 

document (spans), the more likely that the corresponding text is relevant. 

Assumption B: The more spans contained in a document, the more likely that the 

document is relevant. 

The processing flow of their methods is briefly enumerated. First, sets of similar 

or equivalent terms (synonyms, alternative spellings, plurals and etc.) are manually 

grouped from the retrieval topic to represent concepts. Besides personal knowledge, some 

external resources such as on-line dictionary (Webster’s), the UNIX spell program and an 

on-line list of country, state and city names are used to construct a concept. For example, 

for the topic of “What is the economic impact of recycling tires?” three concepts 

“economic impact”, “recycling” and “tires” are identified. “Profits” could also be added 
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in the concept of “economic impact”. Second, spans including at least one representative 

of each concept are detected. For example, in the text fragment: 

… reported huge profits to be made from recycling discarded automobile tires… 

A span from “profits” to “tires” is found to contain representatives of all concepts. 

Finally, the relevance of a document to a topic is the sum of scores of all the spans. There 

is a little difference in scoring a span between the two ranking functions. In the shortest-

substring ranking function, the score is proportional to the reciprocal of the length of 

span, while the score is proportional to the inverse square root of the length in Z-mode. 

In [SWM 05], research from Microsoft included another assumption on the basis 

that queries are prevalent and there is no notion of concept. Hence a concept extends as a 

query term, and a span is no longer required to include all query terms. Accordingly, 

besides assumptions A and B, another one is added: 

Assumption C: The more unique query terms a span contains and the more important 

these terms are, the more likely that a document is relevant. 

The assumption is consistent to the experiences of web users who often expect a 

document containing most or all of the query terms to be ranked before a document 

containing fewer terms.  

It won’t be unreasonable to assume that most people expect only those documents 

that contain all their query terms and our research is concentrated on this.  

Recently, Rasolofo and Savoy [RS 03] demonstrated that combining simple term 

proximity based on word pairs into traditional ranking function could improve retrieval 

effectiveness. For a query q = (ti, tj, tk), the following set S of term pairs is obtained {(ti, 

tj), (tj, tk), (tk, ti)}. This approach of finding pairs of terms has certain issues as described 
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in [SWM 05].  1) It is difficult to estimate the importance of phrases and their extra 

contribution to relevance score and 2) it would have problems integrating with ranking 

function because of its pair-wise computation.  

In [SWM 05], a new approach was theorized. It considered an ordered list of all 

the query terms in a document, and starting scanning from the left-most position to find 

spans containing at least one of the query terms. Assume a query for (sea thousand years) 

and maximum distance is set as 10.  In this example, the chain of ordered hits in a 

document is: 

 sea5, thousand7, years8, thousand10, years11, sea29  

According to their algorithm, the set of expanded spans for the document is: 

{(sea5 … years8), (thousand10 years11), (sea29)} 

and the width corresponds to the expanded spans is listed in the following set:  

{4, 2, 10} 

They then went on to give a score on the basis of how close the terms are in a span as 

well as how many unique terms are there.  

This approach is for near-by proximity search and it runs in n|Q| time where n is 

the total occurrence of all query terms Q in a document. It is becoming more important to 

include all the query terms to give the more efficient results. Sakadane and Imai [SI 01] 

proposed a new and efficient algorithm for doing k-word near proximity search. This is 

the first and most efficient work for k>2 as it runs in O(nlogn) and can be reduced to 
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O(nlogk) if the list is sorted. This is a superset of k-word ordered proximity search and it 

is better to consider ordered proximity search separately as it covers different sets of 

queries as well as has a different ranking algorithm.  

An open source Search Engine called Lucene [L10] provides proximity search 

and even ordered proximity search but according to our understanding, they do not 

efficiently calculate the relevant documents. It scans through the list of the spans 

document-wise and checks for order. However, they have very high query expressive 

power.  

2.3 Inverted Index 
 

An inverted index also referred to as postings file or inverted file is an index 

structure which stores a mapping from words to their locations in a document or a set of 

documents allowing full text search. [MR 02] [ZM 06] [ZMS 92] 

2.3.1 Types of Inverted Index 
 

There are two main variants of inverted indexes: a record level inverted index (or 

inverted file index or just inverted file or document level) contains a list of references to 

documents for each word. A word level inverted index (or full inverted index or inverted 

list) additionally contains the positions of each word within a document. We have 

implemented the latter version of inverted index as it provides more functionality but at 

the same time requires more space. Let us discuss both of them with word level inverted 

index in more detail. 
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2.3.1.1 Document level Inverted Index 
 

An inverted file index consists of two major components. The search structure or 

vocabulary stores for each distinct word t, 

1. a count ft of the documents containing t, and  

2. a pointer to the start of the corresponding inverted list. 

Studies of retrieval effectiveness show that all terms should be indexed including 

even numbers. Even stopwords—which are of questionable value for bag-of-words 

queries—have an important role in phrase queries. Google [L1] does index stopwords but 

removes them in case of normal queries. The users can explicitly state to include them by 

using special symbols. The second component of the index is a set of inverted lists where 

each list stores for the corresponding word t, 

1. the identifiers d of documents containing t,  

2. the associated set of frequencies fd,t of terms t in document d. 

 The lists are represented as sequences of (d, fd,t) pairs. As described, this is a 

document level index in which word positions within documents are not recorded. Below 

is a complete document-level inverted file for the Keeper database. The entry for each 

term t is composed of the frequency ft and a list of pairs, each consisting of a document 

identifier d and a document frequency fd,t. 
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Figure 2.1 Document level index 

 

 

2.3.1.2 Word Level Inverted Index 
 

Given that the frequency fd,t represents the number of occurrences of t in d, it is 

straightforward to modify each entry to include the fd,t ordinal word positions p at which t 

occurs in d and create a word-level inverted list containing pointers of the form (d, fd,t , 

p1, . . . , pfd,t).   
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Figure 2.2 Word level Inverted Index 

There are many other types of indexes too that are useful for a particular type of 

query. One of them is Nextword Indexes. A nextword index consists of a vocabulary of 

distinct words and, for each word w, a nextword list and a position list. The nextword list 

consists of, each word s that succeeds w anywhere in the database, interleaved with 

pointers into the position list. For each pair ws there is a sequence of locations (document 

identifier and position within document) at which the pair occurs; these sequences are 

concatenated to give the position list. The structure of a nextword index is illustrated in 

the figure below. In this structure, the vocabulary is held in a structure such as a B-tree. 

The nextwords are sorted and stored contiguously. Nextword indexes can be used to 

support phrase query w1w2 of two words and is evaluated by fetching the nextword list 
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for w1, decoding to find w2, and then fetching the location list for w1w2. Another type of 

query that would be efficiently solved is of type “given a word w, the nextword list can 

be used to identify all following words”.  

 

 

Figure 2.3 Nextword Index 

2.3.2 Index construction 
 

Now we take a look at Index construction which is the first and most important step 

of Search Engine. There are many ways available to construct an index such as: 

1. In-memory inversion: The key idea is that a first pass through the documents 

collects term frequency information, sufficient for the inverted index to be laid 

out in memory in template form. A second pass then places pointers into their 

correct positions in the template, making use of the random-access capabilities 

of main memory. The advantage of this approach is that almost no memory is 

wasted compared to the final inverted file size since there is negligible 

fragmentation. In addition, if compression is used, the index can be 

represented compactly throughout the process. This technique is viable 

whenever the main memory available is about 10%–20% greater than the 

combined size of the index and vocabulary that are to be produced. It is 
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straightforward to extend the in-memory algorithm to include word positions, 

but the correspondingly larger final index will more quickly challenge the 

memory capacity of whatever hardware is being used since individual list 

entries may become many kilobytes long. It is also possible to extend the in-

memory technique to data collections where index size exceeds memory size 

by laying out the index skeleton on disk, creating a sequence of partial indexes 

in memory, and then transferring each in a skip-sequential manner to a 

template that has been laid out as a disk file. With this extended method, and 

making use of compression, indexes can be built for multi-gigabyte 

collections using around 10–20MB of memory beyond the space required for 

a dynamic vocabulary. 

2. Sort-based inversion: - A shortcoming of two-pass techniques is that 

document parsing and fetching is a significant component of index 

construction costs, perhaps half to two-thirds of the total time for Web data. 

The documents could be stored parsed during index construction, but doing so 

implies substantial disk overheads, and the need to write the parsed text may 

outweigh the cost of the second parsing. Other index construction methods are 

based on explicit sorting. In a simple form of this approach, an array or file of 

(t, d, fd,t) triples is created in document number order, sorted into term order, 

and then used to generate the final inverted file. With careful sequencing and 

use of a multi-way merge, the sort can be carried out in-place on disk using 

compressed blocks. The disk space overhead is again about 10% of the final 

compressed index size, and memory requirements and speed are also similar 
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to partitioned inversion. As for partitioned inversion, the complete vocabulary 

must be kept in memory, limiting the volume of data that can be indexed on a 

single machine. 

3. Merge-based inversion: - As the volumes of disk and data grow, the cost of 

keeping the complete vocabulary in memory is increasingly significant. 

Eventually, the index must be created as an amalgam of smaller parts, each of 

which is constructed using one of the previous techniques or using purely in-

memory structures. In merge-based inversion, documents are read and 

indexed in memory until a fixed capacity is reached. Each inverted list needs 

to be represented in a structure that can grow as further information about the 

term is encountered, and dynamically resizable arrays are the best choice. 

When memory is full, the index (including its vocabulary) is flushed to disk as 

a single run with the inverted lists in the run stored in lexicographic order to 

facilitate subsequent merging. As runs are never queried, the vocabulary of a 

run does not need to be stored as an explicit structure; each term can, for 

example, be written at the head of its inverted list. Once the run is written, it is 

entirely deleted from memory so that construction of the next run begins with 

an initially empty vocabulary. When all documents have been processed, the 

runs are merged to give the final index. The merging process builds the final 

vocabulary on the fly and, if a large read buffer is allocated to each run, is 

highly efficient in terms of disk accesses. If disk space is scarce, the final 

index can be written back into the space occupied by the runs as they are 

processed as the final index is typically a little smaller than the runs—
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2.4 Compression 
 

There are many advantages of compressing our inverted index. Following are some of 

them: 

1. I/O to read a posting list is reduced if the inverted index takes less storage. 

2. Faster query processing than might be possible otherwise, as I/O to read the 

posting list is reduced. In particular, the relativity between disk and CPU speeds 

on current hardware is such that with most compression schemes, data can be 

decoded faster than it can be delivered from the disk, resulting in a net decrease in 

access time if it is stored compressed. [ZM 95][WZ 99][Trotman 03].  

3. Less storage is required for storing the inverted index.  

4. Half of the terms occur only once (hapex legomena) so they only have one entry 

in their posting list.  

There are various things to compress in an Inverted Index such as:- 

1. Term name in the term list.  

2. Term positions in each posting list entry.  

3. Document identifier in each posting list.  

In our system, we compress 2nd and 3rd from the above list. We compress the document 

identifier as well as the positions of a term in a document.  

The main idea behind compression is that numbers can be encoded into fewer bits than 

they actually take on a system.  

Each of the inverted lists consists of a set of integer document numbers. The 

standard way of representing these is to sort them into document-order, and then take 

differences between consecutive values.  

18 
 



For example, the document-sorted list 

(4, 10, 11, 12, 15, 20, 21, 28, 29, 42, 62, 63, 75, 95) 

is reduced to the set of d-gaps 

(4, 6, 1, 1, 3, 5, 1, 7, 1, 13, 20, 1, 12, 20) 

For terms t that occur in many of the documents in the collection, the list of d-

gaps is long, but on average the values must be small, since the sum of the d-gaps cannot 

exceed N, the number of documents in the collection(which is the highest document 

number in the list). In the above example, sum of the numbers in the second list is equal 

to 95. On the other hand, terms with short inverted lists can contain large d-gaps, but 

cannot contain many of them. That is, while large d-gaps can occur, they cannot be 

common. If the inverted list for a term t contains ft entries, then the average d-gap in that 

list cannot exceed N/ft. 

Similarly, a term can occur several times in a document. We can use the similar 

techniques as we used for document identifiers. Suppose a term A occurs in document D 

at the following positions:-  

 (10, 15, 18, 50, 76, 100, 200) 

This list will be used to the following 

 (10, 5, 3, 32, 26, 24, 100) 

As it is clearly evident from the second list which has smaller integers as 

compared to the first, this requires less number of bits for storage and therefore 

compressed faster and better.  

If the documents containing a given term t can be assumed to be a random subset 

of the documents in the collection, then the set of d-gaps associated with term t will 
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conform to a geometric distribution, and a Golomb code [WMA 99] provides a 

minimum-redundancy representation. In essence, the Golomb code is optimal among the 

universe of prefix codes if the documents containing the term are randomly scattered. 

Golomb codes are also relatively straightforward to implement, and have been found to 

provide good compression effectiveness on typical document collections, over the full 

spectrum of scale. If the documents containing a term t are not a random subset, but are 

instead clustered in some way as t moves into and out of use in the collection (for 

example, consider the word “Chernobyl” in a collection organized chronologically or 

geographically), better compression can be obtained. The binary interpolative code of  

[MS 00]  is sensitive to localized clustering, and in extreme cases can reduce a whole run 

of unit d-gaps to just a few bits of output, still making use of simple binary coding 

mechanisms. In [BB 02], Blandford and Blelloch took these ideas to the next level, and 

considered the possibility of reordering the documents in the collection so as to magnify 

clustering effects and thus minimize the cost of storing the index, but we do not apply 

their technique here, and leave the collection in its original ordering. 

A wide range of ad-hoc mechanisms have also been described. The static codes of 

Elias [WMA 99] fall into this category—they give plausibly good compression, and have 

the advantage of not requiring any tuning or parameter setting. In a sense, they trade 

away compression effectiveness in any particular situation in favor of universality. 

However, Elias codes decode at the same rate as Golomb codes, and are no easier to 

implement. 

Other tradeoffs are possible. In particular, it is interesting to consider 

compromises that swap compression effectiveness for decoding speed, on the grounds 
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that a modest amount of additional disk storage to hold the index may well be warranted 

if query processing using the index can be accelerated. The best examples of these 

tradeoffs come through the use of nibble- and byte-aligned codes, which avoid the bit-by-

bit processing costs associated with the Golomb, Elias, and interpolative techniques. 

The compression method that we use is “Byte Aligned- Fixed Length encoding”. 

In this encoding scheme the first two bits of the encoded code word indicate the number 

of bytes used to encode the word. The number of bytes required to encode a particular 

word are determined according to the table below.  

 

 Number Range Bytes Needed 

0 ≤ n <26 1 

26 ≤ n < 26+8 2 

26+8 ≤ n <  26+8+8 3 

26+8+8 ≤ n < 26+8+8+8 4 

 

 

 

 

Table 2.1 Bytes needed vs. Number range 

After recognizing how many bytes are needed for representing this difference, 

write the first two bits as length indicator with 00 in the case of 1 byte, 01 in the case of 2 

bytes, 10 in 3 bytes case and 11 for 4 bytes. Usually 4 bytes suffice. The remaining bits 

are then used to store the binary value off the word/number to be compressed. We use 

this compression technique to compress all the integer values in our index. Because 

integer values require four bytes of storage in the .Net framework irrespective of the 

actual number of bytes required to store the integer Our compression scheme will 

improve storage efficiency because majority of the numbers we compress will be stored 

in lesser than 4 bytes. 
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Another similar approach of byte-aligned coding regime uses one bit in each byte 

as a flag, and the other seven bits for data. During encoding, if the number to be coded 

fits into a seven-bit integer, then those bits are output in a byte with a leading “0”. 

Otherwise, the seven lower order bits are written in a byte with a leading “1”; the other 

high-order bits of the number are shifted right by seven bits; one is subtracted from them; 

and the process repeated. During decoding, if the flag bit in any byte is “1”, the next byte 

must be fetched, and then its flag bit checked. Thus, when a byte with a ‘0’ flag is 

reached, the number is said to completed. 

The net effect is that the numbers 1 to 128 = 27 are stored in a single byte; the 

numbers 129 to 16,512 = 214 + 27 in two bytes; and so on—a kind of byte-level Golomb 

code. 

We are mainly concerned with the decoding speed, the faster the better. 

Experimental results from [VM 05] show that Byte-aligned techniques are faster than 

Golomb and Interpolative techniques.  

Method WSJ TREC wt10g .GOV 

Golomb 12.7 43.5 91.0 80.5 

Interpolative 14.9 48.2 101.8 91.2 

Byte-aligned 9.5 30.7 58.7 53.2 

Nibble-aligned 8.6 31.9 76.1 68.0 

Table 2.2 Decoding speed for various Compression techniques 

 

WSJ, TREC, wt10g and .GOV are names of various collections of web data on 

which experiments have been done. The above table shows the impact of different coding 
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schemes on query processing speed. Each value is the average of the elapsed time (in 

milliseconds) between when a query enters the system and when a ranked list of the top 

1,000 answers is finalized, but not retrieved. The average is taken over 10,000 artificial 

queries with mean length of three. The hardware used was a 933 MHz Intel Pentium III 

with 1 GB RAM running Debian GNU/Linux [ZM 06]. 

 

There has been some recent work on this that takes into consideration the d-gap 

distribution. By taking this into consideration, the authors claim to reduce the decoding 

speed. But at the same time, we have to compromise on decoding complexity and 

compression rate. Some of these techniques are discussed in [VM 05].  For simplicity, we 

have used byte-aligned encoding whose results are good and comparable and at the same 

time less complex and easier to implement.  
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3. Importance of Proximity Search 
 

The ideal characteristics of an efficient proximity search are: 

1. User should have the freedom to enter multiple words. 

2. Closeness of words should be a major factor while ranking the results.  

3. The search engine should provide a large limit within which all the search 

terms should occur. Some search engines have this limit to 5 or 10.  

4. Ideally, all search terms should occur in the same phrase or sentence.   

5.  Some of the other aspects of proximity searching are discussed in [Keen 

92].  

As most of the current search engines provide phrase search, the major 

disadvantage of phrase search methods is that they require exact match of phrases. 

However in English one or a few words often comes between the terms of interest. For 

example, for a search of “President NEAR Kennedy” the user retrieved records that 

mention President Kennedy in a sentence in any one of the four forms in which his name 

is likely to appear: President John Fitzgerald Kennedy, President John F. Kennedy, 

President John Kennedy, or President Kennedy. Another example, the user probably 

wants `President' and `Lincoln' to be adjacent, but still wants to catch cases of the sort 

`President Abraham Lincoln.'[L11] 

Another example, a search could be used to find "red brick house", and match 

phrases such as "red house of brick" or "house made of red brick". By limiting the 

proximity, these phrases can be matched while avoiding documents where the words are 

scattered or spread across a page or in unrelated articles in an anthology [L12]. 
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Let us consider another query “surface area of rectangular pyramids”. Search 

Engines which do not take proximity into account return general mathematical 

documents in which all the four terms surface, area, rectangular and pyramid are 

individually important, but specificity about the surface area of rectangular pyramid may 

be lacking in the document. It may discuss the volume of pyramids and the area of 

rectangular prisms. On the other hand, an exact phrase match “surface area of rectangular 

pyramids” would most certainly ensure that the document retrieved is of the desired type, 

but strictly enforcing such phrase matching’s in either right or wrong way would exclude 

many relevant results. A good proximity-aware scoring scheme should give perfect 

phrase matches a high score, but also reward high proximity matches such as “surface 

area of a rectangular-based pyramid” with good scores. 

Commercial, Internet search engines tend to produce too many matches (known 

as recall) for the average search query. Proximity searching is one method to reduce the 

number of pages matches, and to improve the relevance of the matched pages by using 

word proximity to assist in ranking. As an added benefit, proximity searching helps 

combat spamdexing by avoiding web pages which contain dictionary lists or shotgun lists 

of thousands of words, which rank higher in search engines that are heavily biased by 

word frequency to help in ranking results.  

 [TD 97] discusses how proximity search is beneficial in name searching in 

Information retrieval on the Web. Since last name and first name should occur close to 

each other (within 2 words), the number of documents retrieved using proximity search 

are very less as compared to retrieving documents for them individually.  
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The other area where proximity search is really helpful is when the user enters 

more than 2 words and a subset of these words has more importance. The documents 

containing these subsets as well as other remaining terms are ranked higher, than the 

documents that contain all the words in close proximity to signify something.  

[Monz 04] describes the importance of proximity search in Question answering 

and provides details on how to achieve higher accuracy in doing so. Even ordered 

proximity search can be used to achieve higher level of accuracy in such systems.  

Proximity search can reduce the number of relevant document returned by a 

search engine greatly and deliver better results.  

In short, proximity acts as a precision device.  

3.1 Problem Statement 

 
Here we define k-word proximity search for ranking documents. 

• T = T[1..N]: a text of length N 

• P1….Pk: given keywords 

• pij : the position of the jth occurrence of a keyword Pi in the text T 

 

Problem 1 (naive k-word ordered proximity search): When k keywords P1…..Pk and their 

positions pij in a text T = T [1…N] are given, ordered proximity search is to find intervals 

[l, r] in [1, N] that contain positions of all k keywords in the increasing order of size of 

intervals r - l, where order of the keywords in a interval is to be maintained as in the 

query. When the total number of k keywords is n, the number of intervals is n(n - 1)/2. 

However, most of the intervals are useless and we only find minimal intervals containing 
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all keywords. An interval is said to be minimal if it does not contain any other interval 

that contains all k keywords. 

Problem 2 (k-word ordered proximity search): Ordered proximity search is to find 

minimal intervals [l, r] in [1, N] that contain positions of all k keywords in a specified 

order and ranked according to an efficient ranking mechanism.  

Also, the purpose of web search engine is to make the user reach the desired 

document with minimum effort i.e. minimum clicking for next page. We propose a way 

to show the user various combinations of the inputted keywords in all sets of underlying 

documents that helps them to filter the results and reach the desired page efficiently. 
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4. Algorithms and Ranking Method 
 

4.1 Algorithm of K-word Near Proximity Search 
 

We have used the idea described in the k-word near proximity search algorithm 

by SAKADANE and IMAI [SI 01]. This algorithm is called plane-sweep algorithm. Its 

scans the text from left to right and finds intervals [li; ri] containing all k keywords in 

order of their positions. The scanning is not on the text but on lists of positions of k 

keywords. Therefore we sort positions in the lists and then examine the positions from 

left to right. The leftmost interval containing k keywords is obtained by taking heads of 

the lists and finding the leftmost and the rightmost positions by sorting them. Note that it 

may be a non-minimal interval. The next interval does not contain the leftmost keyword 

in the current interval. Hence we update the current interval by removing the leftmost 

keyword and appending the same keyword in the head of the list of that keyword. The 

interval becomes a candidate of a minimal interval. Scanning is done by merging lists of 

positions of k keywords. The figure below shows an example of minimal and non-

minimal intervals. In the figure, intervals `CAB' and `BAC' are minimal, but interval 

`ABAC' is not minimal because the leftmost keyword `A' appears in another position in 

the interval. 
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Figure 4.1 Minimal vs. Non-minimal interval 

The algorithm becomes as follows. 

1. Sort lists of positions pij (j = 1; : : : ; ni) of each keyword Pi (i = 1; : : : ; k). 

2. Pop top elements pi1 (i = 1……k) of each list, sort k elements by their positions, 

and find leftmost and rightmost keyword and their positions l1 and r1, which 

indicate an interval [l1; ri]. Let i = 1. 

3.  If the current list of the leftmost keyword P in the current interval is empty, then 

go to 6. 

Otherwise, let p be the position of the top element of the current list of the 

leftmost keyword P, which is popped. Let q be the position to the next of P in the 

current interval. 

4. If p > ri, then the interval [li; ri] is minimal and stores it in a list along with its size 

ri - li, and the next interval is set to [li+1 = q; ri+1 = p]. Otherwise, let li+1 = 

min{p,q} and ri+1 = ri, and update the order of the positions in the interval [li+1; 

ri+1]. 

5. Let i = i + 1, and go to 3. 

6.  Sort the list according to the size and output them. 
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The figure below shows an example of the above algorithm.  

 

Figure 4.2 Near Proximity Algorithm 
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4.2 Algorithm for K-word Ordered Proximity Search 
 

We are looking for interval which contains all the query terms between two 

consecutive occurrences of the first query term. Suppose the query contains 3 terms A, B 

and C, the following are some of the valid minimum intervals: 

ABC, ABBC, ACB, ACCB, A(B+)C, A(C+)B 

By B+, we mean one or more occurrences of B term.  

When the next occurrence of the first query term does not occur, we can simply 

consider till the end of the list.  

We keep checking the order of the keywords as we scan the list.  

Approach 1:- 

1. From our indexing phase, we can get the position list of each keyword in each 

file. For a document under consideration, we can get the position list of all the 

query terms for this document. We can merge these lists of query terms in 

O(nlogk) time where n is the total number of positions for all the query terms 

(position lists are already sorted). By merging, we get a list of the document 

containing the query terms sorted according to their position. For example, 

suppose there are 3 terms in the query A, B and C and their position list in a 

document is 

A = <5, 10, 12, 20, 24>  B = <1, 3, 11, 54, 75, 98>  C = <7, 13, 45, 56, 

85, 97, 101> 

So the list after merging will be 

< (1,B),(3,B), (5,A), (7,C),(10,A), (11,B), (12,A), (13,C), (20,A), (24,A), (45,C), 

(54,B), (56,C), (75,B), (85,C), (97,C), (98,B), (101,C)> 
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Since we can imagine this as the merging step of a merge sort which runs in 

O(nlogk) time if we merge k lists, this step takes O(nlogk) time.  

2. As our minimal interval should start with the first query term, we should take 

advantage of this to reduce the scan through the list. Since we have the position 

list for the first query term as well as the complete list for all query term, we can 

directly start scanning from the position next to the first query term in the 

complete list as visualized below.  

3. While scanning, we keep checking whether the next term in the list is the same as 

in the query. If yes, we continue scanning until we found all the query term in the 

order. If the next term is not the same as the next query term, then we can simply 

stop scanning the list there and continue with the position following the next 

position of first query term. This would be clearer from the figure below.  

 

3 5 10 18 56 97 

 

 

2 3 5 8 9 10 17 18 45 48 49 55 56 57 61 78 79 96 97 99

 

C A A B C A C A B B C B A B B C C C A C 

Figure 4.3 Ordered Proximity Algorithm 

4. We can check whether it is possible to have all the terms between the current and 

the next position of the first query term, if not then we can ignore the current 

position and continue with the next position. In the above figure, we have ignored 
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first position of A as it is not possible to have all the remaining terms between 

p=3 and p=5 and hence we ignore A for position=3 and start checking with 

position=5.  

5. While scanning, suppose a term repeats like in case of (A B B C) in which B 

repeats, we can simply check for those cases and allow them or ignore them based 

on our requirements. In our case, we allow such cases.  

 

Approach 2:- 

Our second approach is similar to near proximity search algorithm. The algorithm 

scans the text from left to right and adds intervals [li, ri] containing all k keywords in 

order of their positions to the result list. The scanning is not on the text but on lists of 

positions of k keywords. As we have the sorted position lists, we examine the positions 

from left to right. The leftmost interval containing k keywords is obtained by taking 

heads of the lists and finding the leftmost and the rightmost positions by sorting them. 

Note that it may be a non-minimal interval. Our leftmost word should always be the first 

query term.  We can update the current interval by removing the leftmost keyword and 

appending the same keyword to the list of the keyword until we have the first query term 

as the first word in our sorted list. To reduce this, we can add only those positions of 

other terms which are greater than the current position of first query term in the list.  

 

 

 

 

33 
 



1. We have the lists of positions pij (j = 1 . . . . . ni) of each keyword Pi (i = 1 . .. . k). 

2.   Pop top elements pi1 (i = 1……k) of each list, sort k elements by their positions, 

and find leftmost l and rightmost keyword r and their positions li and ri respectively, 

and the interval is indicated by [li; ri].  

3.  

a) If the leftmost keyword in the list in not the first keyword in the query, then 

remove that keyword and pop the same keyword from its list and add. Repeat 3a until 

true. 

b) Get the next position of the first keyword of the query, if its position is greater than 

ri then current interval in the minimal one. Else, remove the first keyword from the 

list, and pop and add the next position from its list. Repeat step 3 again.  

4.  If we found the minimal interval in step 3b, then check whether the keywords are 

in the same order as the input query words, if it is then find the closeness of that 

interval using the formula below. In either case, remove all the elements from the list 

and repeat from step 2 to find the next minimal interval.  

 

Note – Our current list is always kept sorted according to the positions of the keywords 

even when we remove and add a new keyword. 
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4.3 Complexity of the Algorithms 
 

K-word ordered Proximity Search 

Approach 1:- 

Merging k lists takes O(nlogk) time whereas the scanning the list in the second 

step in the worst case scans the whole list i.e. O(n). In the best case, the second step 

might only need to scan at most k elements in the list and hence O(k). Hence, the overall 

complexity of the algorithm is O(nlogk). 

Approach 2:- 

Step 2 of our algorithm takes O(klogk) time because we are sorting a list of k 

keywords. Step 3 and 4 are repeated at most n times, therefore there are at most 2n 

inserting and deletion from the sorted list. Since insertion and deletion to a sorted list is 

of the O(logk) therefore step 3 and 4 has O(nlogk) complexity. In step 4, checking 

whether the terms in the interval are in the order or not, is of the O(k), therefore overall 

complexity of the algorithm is O(nlogk).  

4.4 Ranking Methods 

4.4.1 Near-by Proximity Search:   
 

We provide three ranking methods that provide useful analysis of the relevant 

document.  

4.4.1.1 Based on Closeness 
 

For nearby-proximity search, we define closeness by the length of the interval 

which contain all the query terms. We find the minimum interval in a document and 

assign that document a score based on it. We can further reduce of the number of 
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documents based on other user input like restriction on the maximum length of the 

interval (threshold value). These are discussed in details in the next section. By this, we 

get a list of all the documents which satisfy all restriction and thus have a closeness value 

attached to them (we can also call it a rank value). While displaying the result, we can 

sort the document based on the rank value. In the example below, the minimum interval 

is 29 and hence the closeness score would be 29.  

 

Figure 4.4 Closeness Ranking Example 

 

4.4.1.2 Based on Occurrence 
 

Our interval which contain all the query terms could occur many times in a document. 

The more the number of intervals in a document, the more relevant the document would 

be. For the above example, the score of the document would be 3. We keep a count of the 

valid intervals irrespective of their closeness value. Other restrictions like threshold value 

are still applied to narrow down the valid intervals. Results are sorted in descending order 

based on their occurrence score. 
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4.4.1.3 Average Closeness  
 

This ranking gives more of a true picture of the document relevance as it takes both 

the occurrence as well as the closeness into account. Basically we find the average 

closeness of the query terms in a document. For example, if a combination of query terms 

occurs very close and occurs only once in the document, we can signify that document 

has some unique occurrence of the query terms and hence important. On the other hand, 

if a document contains many occurrences of the query terms in which the query terms are 

not close either, then we can infer that document is of less significance.  

4.4.1.4 Other Ranking Methods 
 

In all of the above ranking, we further consider the following two important 

points: 

1. Order of the query terms:  

We take into consideration the order in which the query terms are 

inputted. So, if we have a set of documents which has similar score (based 

on closeness or occurrence or on both), then we further sort this set based 

on the order of terms. Closer the terms are to the original order of terms, 

the higher they would be ranked. This would be clear on the example 

below.  

Consider the following set of document having similar score based on 

closeness for a query (A B C):   
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Document Combination found 
in the document 

Closeness Score Rank 

D1 (B A C) 5 1 

D2 (B C A) 5 2 

D3 (A B C) 5 3 

D4 (C B A) 5 4 

D5 (A C B) 5 5 

Table 4.1 Ranking based on Order of the query terms 

As the closeness score is same for all documents, they are ranked based on 

the order they were scanned. A more likely output would be 

Document Combination found 
in the document 

Closeness Score Rank 

D3 (A B C) 5 1 

D5 (A C B) 5 2 

D1 (B A C) 5 3 

D2 (B C A) 5 4 

D4 (C B A) 5 5 

         Table 4.2 Ranking based on Order of the query terms 

 

A simple way to do this would be to assign a number based on the order of 

the keywords. If the query is for (A B C) then we assign A = 3, B = 2 and 

C = 1, so the score would be 321. Now for the combination (B C A), the 

score would be 213 and hence less than 321, hence will be ranked lower. 

 

 

38 
 



2. Starting position of the interval in a document:  

Suppose we have two documents having the same score as well as the 

same order of the terms. We can further sort them based on the starting 

position of the interval. Closer the starting position of the interval to the 

start of the document, the more relevant the document would be compared 

to the others.  

 

Figure 4.5 Ranking on starting position 

 

Clearly the (ii) is more relevant compared to the (i) as it occurs closer to 

the starting of the document. 

4.4.2 Ordered Proximity Search 
 

In our approach, we give importance to the closeness of the keywords occurring 

earlier in the query when the interval is the same. This is based on the intuition that the 

users type the first few words which they are really sure of (and hence are close) and then 

the following terms. This would be clear from the example below.  
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Figure 4.6 Ranking Example for Ordered Proximity 

Our ranking method would rank 1st case higher than the second even the length of 

the interval is same for both of them.  

Closeness =  pow (10, n-2) * log (pos(2) – pos(1)) + pow (10, n-3) * log (pos(3) – pos(2)) 

+ ………… + pow (10, 0) * log (pos(n) – pos(n-1)) 

Where n is the number of query words and pos (i) is the position of the ith keyword in the 

interval. 

So closeness of the above cases 

Closeness (1st case) = pow (10, 3-2) * log2 (6 - 0) + pow (10, 3-3) * log2 (15 – 6) = 29.02 

Closeness (2nd case) = pow (10, 3-2) * log2 (8 - 0) + pow (10, 3-3) * log2 (15 – 8) =32.81 

If the difference between the positions of two words is more than 1023 words, we give 

them the maximum weight age in our formula.  

4.4.2.1 Based on Closeness 
 

We calculate all intervals in which all k-search terms occur and find the minimum 

interval among them. If the interval is the same for a set of document, then we rank them 

on the basis of the score calculated using the above formula. This is done for all the 

documents which have occurrences of all the search terms in them. We can further reduce 

the number of documents based on other user input like restriction on the maximum 
40 

 



length of the interval (threshold value). These are discussed in details in the next section. 

By this, we get a list of all the documents which satisfy all restriction and thus have a 

closeness value attached to them (we can also call it a rank value). While displaying the 

result, we can sort the document based on the rank value.  

 

4.4.2.2 Based on Occurrence 
 

 The results are sorted based on the number of times the search terms are repeated in a 

document, in the same order as they appear in the query. We take care that these intervals 

are non-overlapping interval by our algorithm. For example if we query for “Case 

Western Reserve University”, then higher ranking will be given to the page which has 

more occurrences of “Case Western Reserve University” in the same order. We find all 

such intervals in a document and for each valid interval; we increase the score of the 

document by 1. So if there are n possible intervals for the query terms in a document, the 

document score would be n. Another example, if the query is for (California university) 

in order within 5 words of each other, then all the possible intervals which includes 

combination like (California State University), (California State Baptist University), etc, 

if found, would increase the document score by 1.  The documents are then ranked 

according to these scores while displaying. 

4.4.2.3 Average Closeness 
 

 This ranking method is the combination of the first two ranking method and gives 

a useful ranking of the documents. In this, we basically find the average of the closeness 

of all the valid intervals. For example, if we query for (California University) and find 
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out two combination of it in a document say (California State University) and (California 

State Baptist University) and their respective closeness (according to our closeness 

formula) is 1 and 2, then rank score for this document would be (1 + 2)/2 = 1.5. We 

divide it by 2 because there are two occurrence of the possible valid interval for our query 

terms. To generalize, for a document hybrid ranking score would be given by the average 

closeness score of that document.  

 

         As in the case of near-by proximity search, here also we consider the starting 

position of the interval in the document if the score from the above ranking method are 

same for a set of documents.  
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5. Implementation Details 
 

We have used Visual Studio 2005 for writing our code(C#). SQL server 2005 is 

used at the database end. 

5.1 Indexing Process 
 

As we need to store position of the terms in the index, we have implemented word 

level inverted index. As we are only concerned with the positions in this project, 

frequency has been removed from our inverted lists. If we need frequency, we can simply 

count elements in the position list.   

As storing positions of terms takes a lot of space, we have compressed our index 

using byte-aligned encoding as described in compression section, as it takes relatively 

less disk space.  

For making our index, we crawled websites and store the terms along with their 

position into our index. For our project, we have made index in the memory only. 

Therefore, the size of the index is limited to the size of the memory.  

Following are the steps involved in crawling:- 

1. There are two essential variables that need to set before starting crawling. One 

is the starting URL which acts as the first document (html) that the crawler 

crawls and follows the links in it. Ideally, this document should have lots of 

links. We need a parameter to control the crawling process. There are many 

ways to do this: 

a. We can stop crawling when we have visited and parsed x documents.  

43 
 



b. We can stop crawling at a certain depth. For example, we can say to 

crawl all the documents that are reachable by following at most 2 links 

from the starting document. We have used this approach in our 

crawler. If the depth is set to zero, then the crawler crawls only the 

starting document.  

2. For a given document, the crawler does the following 

a. Downloads the document. 

b. Parses the document. 

c. For each word in the document, it checks whether the word is a 

number or a stem word or a stop word or a go word(these terms are 

explained in the glossary section) and make modification according to 

them and then store the word in the index along with the file in which 

it exists and the word’s position.  

d. Before storing, it checks whether the word already exists in the index 

or not. If yes, it simply adds the position of the word to the position 

list, if the word occurs in the same file or adds the position along with 

the file if it occurs in a different file.  

e. The crawler maintains a queue in which it keeps adding the links it 

finds in a document. It gets a new document from the queue when it 

has finished adding all the words from the current document. It also 

maintains a list of all visited nodes so that it does not download and 

parse the same document again.  
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f. There are much more advanced crawlers such as the one that Google 

has “googlebot” which have lots of extra functionality [L13] [L14].  

Once the index is made in the memory, we need to compress it and store it on the 

disk. For each word, we compress and store its inverted list and append it to a file on the 

disk and get the position at which the word information is stored in that file. We can save 

this <word, fileposition> pair in another file and load it in memory during runtime (This 

file is also serialized before storing on the disk). During compression, we compress the d-

gaps for a word and similarly the difference of the position instead of the exact position 

(this is explained in the compression section in detail).  

5.2 Retrieval Process 
 

All the previous steps were how to crawl the documents (or websites) and store 

them efficiently on the disk, with the next step is retrieval process. Suppose the query 

contains three terms (A B C). For each word, we get the position in the compressed file 

on the disk, fetch the information for the word and then we can uncompress the data to 

get the inverted list for a word back. This inverted list information is then used by our 

algorithm to narrow down to the relevant documents.  

The way we store the inverted list for a word in a compress file is as follows:- 

1. Document id.(This is value of the d-gaps not the actual document id) 

2. Then we store the count of the number of position in the position list.  

3. This is followed by all the position in the position list. (This list has the 

difference of the positions not the actual position). 

4. Steps 1-3 are continued until the next byte contains -1 which indicates that the 

word information is over.  
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Figure 5.1 Complete class diagram of our Indexer (crawler) 
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Figure 5.2 Main classes of our system 
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Figure 5.3 Main Query Class 

This class does most things related to query processing. It first gets the document 

in which the keywords occurs, finds the smallest document set, scan the document set and 

give them score based on the ranking function.  

5.3 Types of different queries possible with our system 
 

1. Find all the query terms within a window size of say n. Here by window size we 

mean the interval in which all the search terms should occur. For example 

(University California) within 5 words. (n=5) 

48 
 



2. Find all the query terms in the documents in the same order within a window size 

of say n. For example (University California) in order with n=5.  

3. System supports wild-card queries (fill in the blanks) like “the parachute was 

invented by *”, “vitamin * is good for *”,…  

a. Find all the query terms within a window size n and also specifying 

minimum terms between the query terms. For example (University * 

California) within 5 words.  

b. Final all the query terms in order within a window size n and also 

specifying minimum terms between the query terms. For example 

(University * California) in order with n=5.  

 

Here,  

‘*’ – 2 or 3 words 

‘**’ – 4-7 words and so on, basically if n is the number of asterisk then it means there 

would be (2n – 2n-1-1) words in between. 

On each of the above queries, we can rank the result either by our closeness or 

occurrence or hybrid approach. 
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5.4 Various Optimization Techniques 
 

1. For a given query, we start checking document from that term document list 

which is the shortest among all. For example, suppose the query is of (A B C), 

and term A occurs in X, term B in Y and term C in Z documents. While 

calculating the proximity, we will start checking only those documents which 

occurs in the smallest of X, Y and Z. So, if X contains 10 documents, Y contains 

100 documents and Z contains 1000 documents, we will check only the 10 

documents in which X occurs as the document should contain all the terms. This 

way our computation time depends upon the number of documents we are 

checking. Suppose if a term does not occur at all, then our computation time will 

be zero as the resulting documents will be zero.  

While indexing, we are not indexing common words (also called stop words) like the, 

and, what, when, etc, thus keeping our index efficiently and smaller in size. If we index 

these terms also, thus the size of the index shoots up suddenly as these terms occurs very 

frequently in the documents. 
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6. Clustering or Grouping Results 
 

As we mentioned before also, the position that we are storing for calculating the 

proximity among words can be more useful in deriving much more information. The 

important points here are: 

1. Even if we don’t index the stopwords, we can infer from the positions of the terms 

that they might be some stopwords in between or other indexed words. For 

example, if we found that term (university) occurs at position say 1000 and the 

term (California) occurs at position say 1002 then we can infer that there is one 

word between them which can either be a stopwords or one of the indexed terms.  

2. It is sometimes useful in marking the terms (making them displayed in bold) in 

the snippets displayed in the search results as we know the position of the 

keywords.  

3. Positions also indicate whether the keywords are occurring earlier in the 

document or far below in the document and we can derive useful information 

based on that. Generally more relevant documents should have query terms in the 

beginning of them. Suppose, A document is found in Wikipedia and so if the 

query terms are found in the beginning of the document, it can possibly mean that 

document is related to the query terms (has its definition) and if the query terms 

are found far below, then it might be of less relevance as it might lie in the 

reference section, etc,.  

 

There has been various works in clustering documents on the Web, the major 

difference between our approach and theirs is that we are only suggesting various 
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different combinations of words possible in the complete document set and also 

displaying the count of the document in which a combination lie (to give an idea how 

frequent that combination occurs) whereas the current search engines like Exalead 

and Clusty [L17] find the frequent word or words combination in the results (which 

contains all the relevant documents along with their title and snippet). So sometimes 

they even get combinations which don’t seem related to query terms at first place but 

still they are useful in many situations. Below is an example from Clusty search 

engine which uses various other search engines like yahoo, live, ask, etc to fetch the 

relevant document and then make clusters based on the documents from these other 

search engines. Clusters are shown on the left-hand side and it is helpful in narrowing 

down to the desired results.  

 

Figure 6.1 Clusty Search Engine 
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Another difference is that there is an extra computation required as this sort of 

clustering is done after the results have been fetched. Whereas in our case, we keep 

storing the new combinations found as well as incrementing the existing one 

whenever we get a relevant document. While the approaches are quite different, they 

can be used to compliment each other in future.  

The grouping that we provide can be useful to the user as it gives them some idea 

of the way the search terms are present in the documents and help them to get to the 

document they are looking for. Consider the example considered previously, if a user 

searched for “University California”, he/she will be shown with the combinations like 

“university California”, “California university”, “California * University”, University 

* California, and so on with their frequency in the documents. All this comes with no 

extra time complexity but only space cost to store them. If the search engine is for a 

small web site, it is possible to show to the exact words between the search terms. But 

this require some extra computation and space complexity and not feasible for Web 

search engine. 

Another advantage of this is that once we have the various combinations for the 

search terms, we can filter our search results to the more specific ones by doing a 

sort-of phrases queries in which asterisk(*) represents wildcards.  

So now a search for “California * University” will find all the documents in 

which California comes before University and there is at least 2 words between them 

(1 asterisk stands for 2 words, 2 for 4, basically in the power of 2).  
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7. Experimental Results 
 

In this section, we evaluate our algorithms presented in Chapter 8, our ranking 

method, our compression techniques and derive useful conclusion from them.  

7.1 Search Engine Interface 
A simple interface for our search engine is shown below. In this, user can choose 

the proximity type and the way in which they want documents to be ranked. They can 

also set the window size within which they want all terms to appear. This can be done by 

setting the threshold value.  

 

Figure 7.1 Search Engine Interface – Search Page 
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The way the search results are formatted is shown below.  

 

 

Figure 7.2 Search Engine Interface – Results Page 
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7.2 Experimental Data 
 

For our experiments, we have used two sets of data.  

1. We crawled the web to a certain extent and made an in-memory index and used it 

as our data. We have used Searcharoo [L16] search engine crawling technique 

and modified it to our requirement mainly to include term positional information. 

For each word or token, we have an inverted list which contain the document ids 

and for each document the positions of the word in that document.  

2. We have used already existing Pubmed [L15] database on one of our servers 

which contain all the required information. We are mainly concerned with three 

tables which are: 

a. sPapers – It contains three field’s pmid(paper id), title(paper title) and 

abstract(paper abstract).  

b. sTokens – It contains tokens(keyword) information. It has fields like 

id(token id), token(keyword), and other fields related to token 

frequency(which we don’t require in our experiments).  

c. sPaper2Token – This is the main table which maps tokens to papers. Its 

main fields are pmid, tokenid, pos (position where this token occurs in the 

paper). 

This database has 154991 papers with 250397 distinct tokens (words).  
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Figure 7.3 Pubmed Database schema 
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7.3 Effect of k (number of words in the input search terms) 
 

Approach: We kept increasing the number of keywords k in the query while 

making sure that the number of document scanned is same. Following is an 

example: 

 
Query k Computation 

Time(ms) 
   
molecular (19517) cell (84652) 2 234.375 
molecular (19517) cell (84652) gene (81267) 3 265.625 
molecular (19517) cell (84652) gene (81267) protein 
(92653)  

4 
296.875 

molecular (19517) cell (84652) gene (81267) protein 
(92653) human (56069) 

5 
312.500 

molecular (19517) cell (84652) gene (81267) protein 
(92653) human (56069) sequence (56046) 

6 
343.750 

 
 

 
 
 
 
 
 
 
 
 

Table 7.1 Effect of K 
 
 
 

 
Figure 7.4 Effect of K 
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Observation: As the number of keywords in the query increases, our computation 

time increases. It is directly supported by our algorithm which depends upon k. It 

is to be noted that the number of documents to be scanned is kept same in all the 

experiments above. We only scan a document only if contains all the keywords in 

it. So generally, if the number of keywords increases, probability that all the 

keywords will be found in a document decreases and hence computation time 

decreases. However in the above test, all the high frequencies words are picked to 

show the effect of k.  

7.4 Effect of threshold 
 

Approach: We run the same query under different threshold values. We increased 

the value of threshold from 1 till 100 as shown in the table below. We ran the 

experiments for both ordered and near proximity search.  

 
Search Terms(Ordered 

Search) 
Threshold Results(No. of 

documents) 
   
molecular cell 1 11 
molecular cell 2 17 
molecular cell 3 62 
molecular cell 4 182 
molecular cell 5 268 
molecular cell 6 382 
molecular cell 7 518 
molecular cell 10 936 
molecular cell 20 2009 
molecular cell 50 4161 
molecular cell 100 6165 

Table 7.2 Effect of threshold – Ordered Search 
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Figure 7.5 Effect of threshold – Ordered Search 

 
 

Search Terms(Near-by 
Search) 

Threshold Results(no. of 
documents) 

   
molecular cell 1 18
molecular cell 2 80
molecular cell 3 241
molecular cell 4 459
molecular cell 5 671
molecular cell 6 940
molecular cell 7 1208
molecular cell 10 1954
molecular cell 20 3773
molecular cell 50 6665
molecular cell 100 8903

Table 7.3 Effect of threshold – Proximity Search 
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 Figure 7.6 Effect of threshold – Proximity Search 
 

Observation: Though there is no direct relationship between the threshold and 

number of documents returned, it all depends upon the relationship between the search 

terms in a document but generally there is an increase in the number of documents 

returned with increase in threshold as the interval within which the query terms are 

searched increases. 

7.5 Index Compression 
 

Approach: We gave different parameters to the indexer. We varied our starting 

URL as well as the depth. We ran our experiments on different type of data such 

as Java Doc, Wikipedia, w3c and CIA fact book, and found the compression ratio 

by dividing the size of the compressed files by total size of the files indexed.  
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Starting Webpage or 
document set 

Depth Number 
of files 
indexed 

Total Size 
of the 
files(MB) 

Size of the 
compressed 
files(MB) 

Compres
sion 
Ratio (%)

      
Java Doc 3 4708 130.771126 11.561 8.84
Wikipedia CD 3 2094 42.300242 14.838 35.07
Wikipedia Articles Set 3 1994 117.183725 32.768 27.96
CIA fact book 2 971 60.5264 6.634 10.96
http://en.wikipedia.org 
– Nov 19, 2007 2 12624 854.029779 97.434 11.408
http://www.w3c.org/ 2 1789 115.960424 22.104 19.601
http://www.w3c.org/ 1 142 5.577939 1.659 29.742
http://codeproject.com

Table 7.4 Index Compression 

 2 331 22.972202 4.372 19.031
http://en.wikipedia.org
/wiki/List_of_colleges
_and_universities_in_
California 1 335 22.623243 4.04 17.857

 

 

Figure 7.7 Index Compression 
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Observation: As it was mentioned in the Compression section, the amount of 

compression depends upon the type of data, the above tests verify that as 

compression of different document sets has different compression ratio.  

7.6 Ordered Proximity vs. Near Proximity  
 

Approach: We ran large number of queries once for ordered proximity and then 

for near proximity and recorded the number of results and computation time.  

 

Figure 7.8 Ordered vs. Near Proximty – Computation time 
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Figure 7.9 Ordered vs. Near Proximty – Result Document Set 

 

Observation: Results clearly shows that ordered proximity search takes less time 

as well as return less documents than near proximity. This means that it is always 

useful to use ordered proximity search if the order of the keywords is known as it 

takes less time and return more relevant document.  

7.7 Proximity Search vs. Boolean Searching 
 

Approach: We made a system which uses the same database but only check 

whether all the keywords are present in a document and gives score based on the 

occurrence of the terms in the document. If the terms occur frequently in a 

document, then it would be ranked higher than the documents which have low 

occurrence of the query terms. This system does not check for any other factors. 

This system is running on 

http://nashuatest.case.edu/BooleanSearchPubmed/Search.aspx.  
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Figure 7.10 Proximity vs. Boolean Search 

Observation: It is clearly evident from the results that the Proximity search returns 

much less documents as compared to boolean search and hence much more 

relevant. Boolean search do not consider closeness of the terms and hence return 

document even if the terms are far from each other or in totally different contexts 

to each other. 
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8. Conclusion and Future Work 
 

Our experiments have explored and enhanced the power of proximity search in 

Web Searching. We presented an O(nlogk) time algorithm for the k-keyword ordered 

proximity search and provided efficient ranking method for the same. At the same time, 

k-keyword near proximity search is also studied, implemented and enhanced by our 

ranking method.  

While doing explicit proximity search, we claim that it is useful for the user to 

have all the combination of the terms possible in the documents which allow them to 

reach the required document faster.  

A search engine using the above algorithms and the ranking method is running on 

one of our database lab servers 

http://nashuatest.case.edu/ProximitySearchPubmed/Search.aspx. 

In future, we can also take into account the tags (title, paragraph, body, bold, etc) 

within which the words occurs in a document. For example, we can give more 

importance to a document which satisfies all proximity criteria as well as in which all the 

keywords are found in the title. Also, we can apply ordered proximity algorithm to other 

areas like biological sequences. In biology context, keywords correspond to motifs and 

the proximity score gives some hints on how similar different genes are. Frequent 

combinations from the documents can complement existing clustering techniques to help 

them show better and more frequent clusters or suggestion.
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