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• Dynamic Time Warping (DTW)  and Hidden Markov 
Model (HMM) algorithms have been applied widely to 
speech recognition 

• HMM has been the dominant technique in speech 
recognition 

 
 
 
 
 
 

Performance of HMM and DTW 

HMM DTW 

Training High Zero 

Complexity Difficult  Easy 

Accuracy High Low  

Table 1:  Performance of HMM and DTW   
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Speech recognition system 

Fig. 1:  ASR system diagram 
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Voice  
Activity 

Detection 



• Short time energy  E: 
 
 

• Maximun energy of non-speech     :  
• n:  number of frame (n = 5) 
• α:  weight factor (α = 1.5) 

 
 

• Noise energy level of frame  F(i): 
• λ: forgetting factor  (0 ≤ λ ≤ 1) 

Voice Activity Detection (VAD) 
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• Most of noise spectrum energy concentrates around the direct 
current (DC) component . 

• Some relatively noise of lower  
     energy at high frequency 
• Assuming the feature vector 
    of a noisy speech is  
    S=[S(1),S(2),…,S(t),…,S(T)],  
    S(t)=[f1(t), f2(t),…, fk(t)].  
• RSF function is: 
 
 

 

 

Running Spectrum Filtering (RSF) 

Fig.4: Recognition rate vs. band for 
RSF+DRA 
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Cepstral Mean Subtraction (CMS) 

• The white noise is usually uniformly distributed in the 
whole spectrum. 

• If the each coefficient subtract the average of every 
channel, then the average of noisy speech can be 
reduced to almost zero. 

• CMS function is 
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Dynamic Range  Adjustment (DRA) 

• DRA algorithm: 
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Fig.5: The No.3 dimension data of MFCC 
after RSF 

Fig.6: The No.3 dimension data of MFCC 
after RSF and DRA 
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DTW algorithms 
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Fig.7: Two of the most commonly used constraints.  

(a) the Sakoe-Chuba Band (b)  Itakura Parallelogram 
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The Accuracy of DTW and HMM 

66.26 67.84 
77.36 

85.6 89.5 89.08 92.76 97.5 

Symmetric Sakoe-
Chiba DTW 

Asymmetric 
Sakoe-Chiba DTW 

Itakura DTW HMM 

white 10 dB white 20 dB 

Fig.7: The accuracy of four ASR algorithms by RSF and DRA in white 
noise , SNR = 10, 20 dB.  
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DTW with Nonlinear Median filter(1) 
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Fig.8: Distributions of distance between unknown word ‘hatinohe’ and 
reference words ‘date’ and ‘hatinohe’.   

10 



DTW with Nonlinear Median filter(1) 
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Fig.9: Distributions of distance between unknown word ‘hatinohe’ and 
reference words ‘date’ and ‘hatinohe’.   
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DTW with Nonlinear Median filter(2) 

• Assuming the matching distance Matrix is             
D=[D1,D2,…,DM],  Dm=[dm,1,dm,2,…, dm,N] 

 (1)  Sorting ascendingly the distances for every reference word yields  D’m 

 
(2) Computing the median by the NMF. 

 
 

(3) In the approach we propose herein the recognized word corresponds to 
 
 

 ※The conventional DTW approaches the recognized word corresponds to 
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DTW and Nonlinear Median filter(3) 

Fig.10: Accuracy of DTW with NMF vs. 
filter order.   

Fig.11: DTW accuracy with NMF vs. number 
of waveforms, for NMF order 9 and 10 dB 
SNR.   
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DTW and Nonlinear Median filter(4) 

66.26 67.84 
77.36 

69.7 75.72 
85.04 

Symmetric Sakoe-
Chiba DTW 

Asymmetric Sakoe-
Chiba DTW 

Itakura DTW 
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Fig.12: Three DTW algorithms  accuracy with NMF for order 9 at 10 and 20 dB SNR (%).   
(a) SNR = 10 dB  (b)  SNR = 20 dB 
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Experiment 

    

 

 
 

      

 

Table 2:  Experiment setting and parameters 
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Experiment 

• We have considered the following cases: 
A) CMS and DRA are applied for testing waveforms and 

reference waveforms 
B) RSF and DRA are applied for testing waveforms and 

reference waveforms 
C) CMS, RSF and DRA are applied for testing waveforms and 

reference waveforms  
D) DRA is applied for testing data and reference waveforms 
E) No noise reduction; testing data was recognized directly. 
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Result 
Table 3:  Recognition accuracy (%) with 
NMF and VAD 

Table 4:  Recognition accuracy (%) of 
Itakutra DTW, w/o NMF 

Table 5:  Recognition accuracy (%) of 
Symmetric Sakoe-Chiba DTW, w/o NMF 

Table 6:  Recognition accuracy (%) of 
Asymmetric Sakoe-Chiba DTW, w/o NMF 
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Conclusion 

• The performances of all DTW algorithms are 
improved by NMF. 

• The accuracy of Itakura’s DTW is best among all DTW 
algorithms and close to that of HMM. 

• The VAD is necessary to all DTW algorithms. 
• The method CMS, RSF and DRA are combined is best 

among four methods. 
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