

Title	An Improved Dynamic Time Warping Algorithm Employing Nonlinear Median Filtering
Author(s)	Zhang, Yuxin; Miyanaga, Yoshikazu
Citation	グリーン回路とシステムに関する国際ワークショップ. 2011年11月4日(金). 北海道大学情報科学研究科棟 11F17号室. 札幌市. (International Workshop on Green Circuits and Systems. Friday, 4 November, 2011. Room No.17, 11th floor of Graduate School of Information Science and Technology, Hokkaido University. Sapporo City.)
Issue Date	2011-11-04
Doc URL	http://hdl.handle.net/2115/47543
Туре	conference presentation
File Information	Zhang_Yuxin.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

An Improved Dynamic Time Warping Algorithm Employing Nonlinear Median Filtering

Zhang Yuxin and Yoshikazu Miyanaga

Hokkaido University, Sapporo, 060-0814, Japan Email: zyx@icn.ist.hokudai.ac.jp miya@ist.hokudai.ac.jp

Performance of HMM and DTW

- Dynamic Time Warping (DTW) and Hidden Markov Model (HMM) algorithms have been applied widely to speech recognition
- HMM has been the dominant technique in speech recognition

	НММ	DTW
Training	High	Zero
Complexity	Difficult	Easy
Accuracy	High	Low

Table 1: Performance of HMM and DTW

Speech recognition system

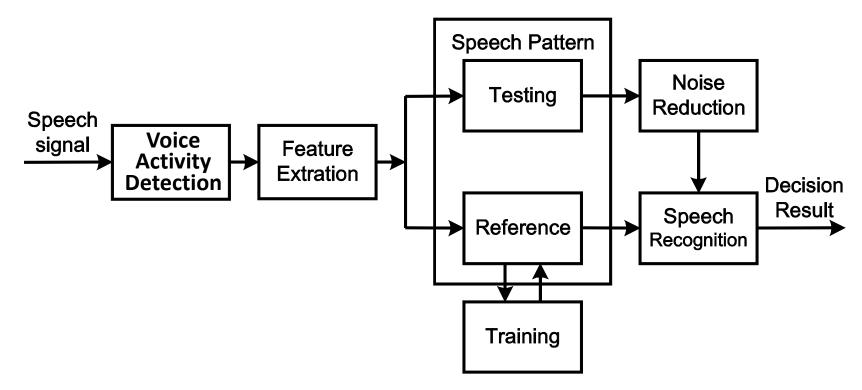


Fig. 1: ASR system diagram

Voice Activity Detection (VAD)

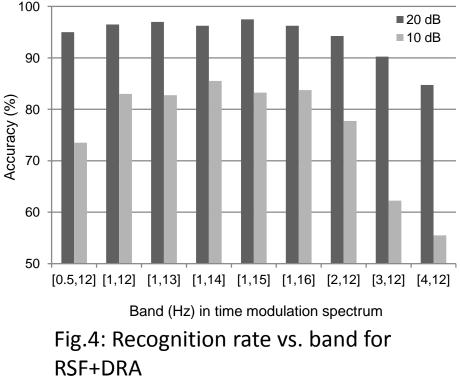
• Short time energy *E*:

$$E = \sum_{m=-\infty}^{+\infty} [x(m)(m-n)]^2$$
(1)

- Maximun energy of non-speech τ :
 - n: number of frame (n = 5)
 - α : weight factor ($\alpha = 1.5$)

$$\tau = \alpha \frac{1}{n} \sum_{i=1}^{n} E(i)$$
⁽²⁾

- Noise energy level of frame *F(i)*:
 - λ : forgetting factor $(0 \le \lambda \le 1)$

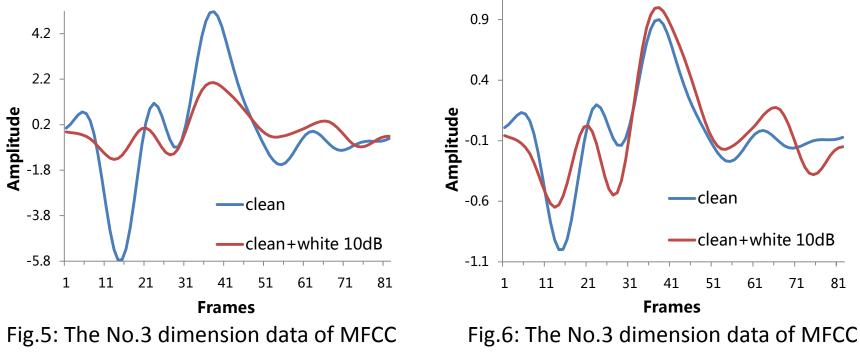

$$F(i) = \lambda F(i-1) + (1-\lambda)E(i)$$
(3)

Running Spectrum Filtering (RSF)

- Most of noise spectrum energy concentrates around the direct current (DC) component.
- Some relatively noise of lower energy at high frequency
- Assuming the feature vector of a noisy speech is S=[S(1),S(2),...,S(t),...,S(T)], S(t)=[f₁(t), f₂(t),..., f_k(t)].
- RSF function is:

$$S(t) = Filter(S(t))$$
(4)

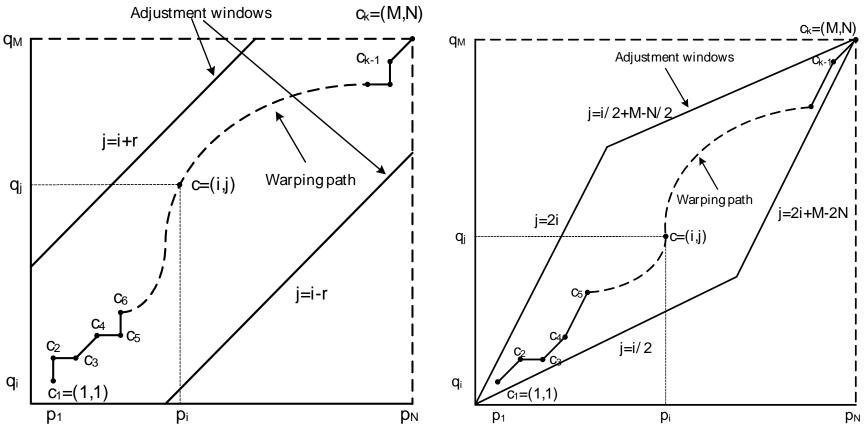
Cepstral Mean Subtraction (CMS)


- The white noise is usually uniformly distributed in the whole spectrum.
- If the each coefficient subtract the average of every channel, then the average of noisy speech can be reduced to almost zero.
- CMS function is

$$f_i(t) = f_i(t) - \frac{1}{k} \sum_{j=1}^k f_j(t)$$
(5)

Dynamic Range Adjustment (DRA)

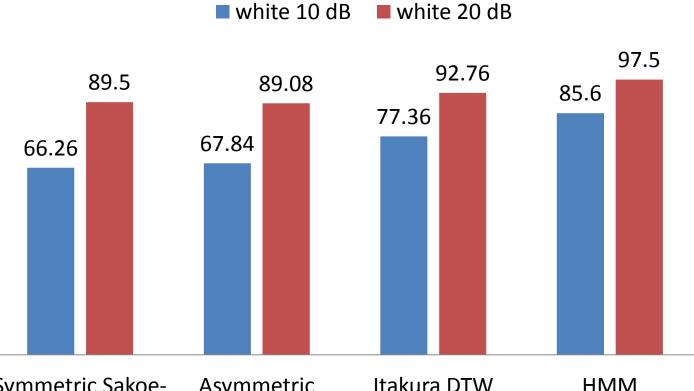
DRA algorithm: $f_i(t) = f_i(t) / \max_{i=1,\dots,k} |f_i(t)|$ (6)



after RSF

after RSF and DRA

DTW algorithms


(a) the Sakoe-Chuba Band

(b) Itakura Parallelogram

Fig.7: Two of the most commonly used constraints.

The Accuracy of DTW and HMM

Symmetric Sakoe- Asymmetric Itakura DTW HMM Chiba DTW Sakoe-Chiba DTW

Fig.7: The accuracy of four ASR algorithms by RSF and DRA in white noise , SNR = 10, 20 dB.

DTW with Nonlinear Median filter(1)

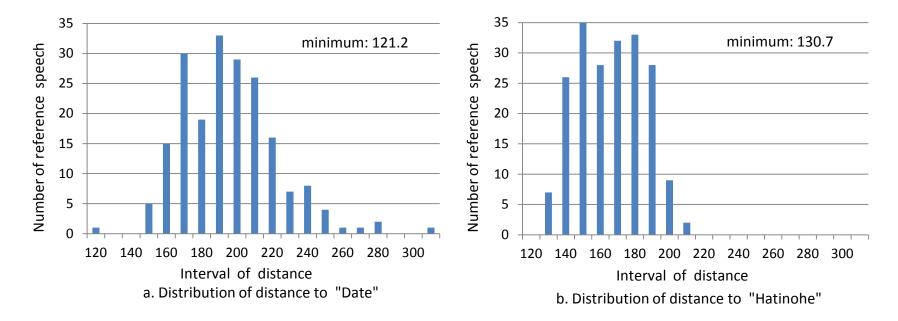


Fig.8: Distributions of distance between unknown word 'hatinohe' and reference words 'date' and 'hatinohe'.

DTW with Nonlinear Median filter(1)

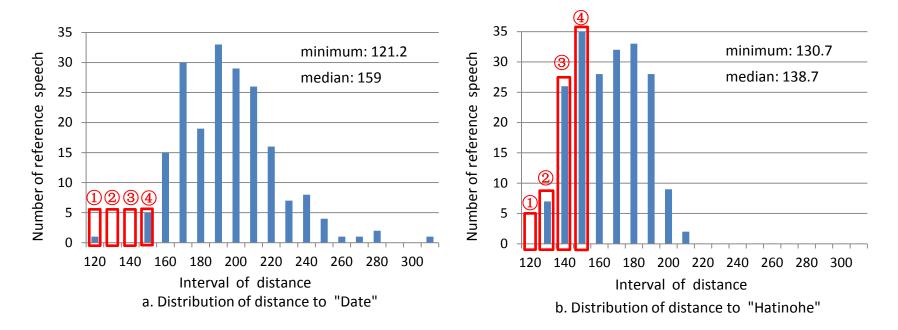


Fig.9: Distributions of distance between unknown word 'hatinohe' and reference words 'date' and 'hatinohe'.

DTW with Nonlinear Median filter(2)

• Assuming the matching distance Matrix is $D=[D_1,D_2,...,D_M], D_m=[d_{m,1},d_{m,2},...,d_{m,N}]$

(1) Sorting ascendingly the distances for every reference word yields D'_m

$$D'_{m} = Sort(D_{m}) = [d'_{m,1}, d'_{m,2}, ..., d'_{m,N}]$$
 (7)

(2) Computing the median by the NMF.

$$a_{m} = Med(d'_{m}) = \begin{cases} d'_{m,\frac{k+1}{2}}, & \text{if } k \text{ is } odd, \\ \frac{1}{2}[d'_{m,\frac{k}{2}} + d'_{m,\frac{k}{2}+1}], & \text{if } k \text{ is } even. \end{cases}$$
(8)

(3) In the approach we propose herein the recognized word corresponds to

$$\arg\min_{m=1:M} a_m \tag{9}$$

% The conventional DTW approaches the recognized word corresponds to

$$\arg\min_{m=1:M} d'_{m,1} \tag{10}$$

DTW and Nonlinear Median filter(3)

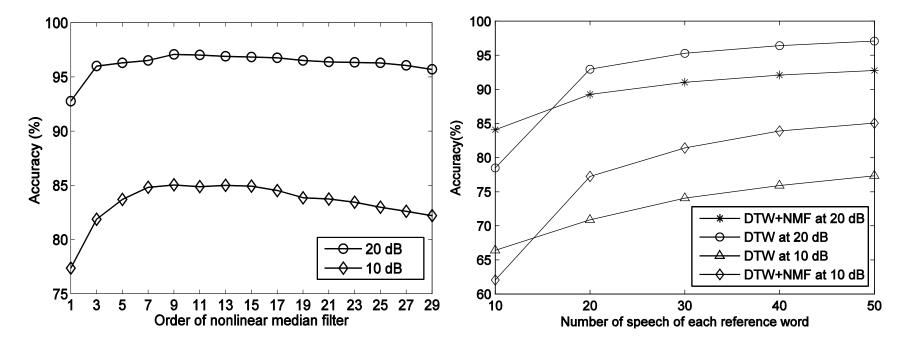


Fig.10: Accuracy of DTW with NMF vs. filter order.

Fig.11: DTW accuracy with NMF vs. number of waveforms, for NMF order 9 and 10 dB SNR.

DTW and Nonlinear Median filter(4)

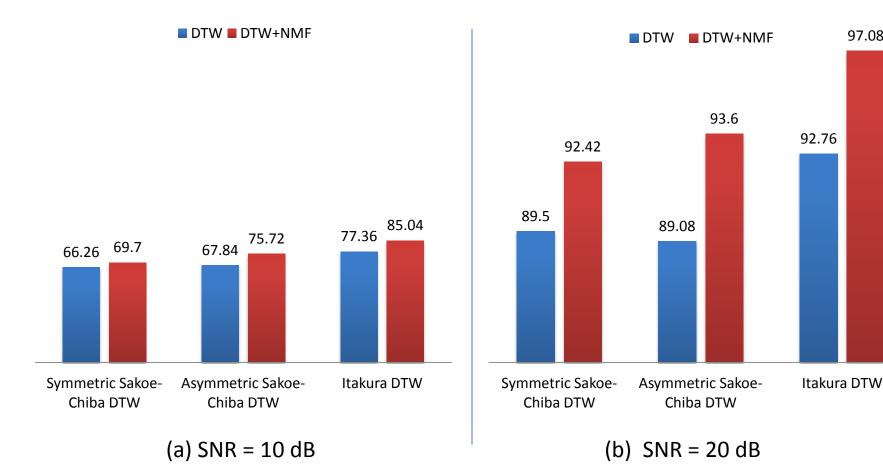


Fig.12: Three DTW algorithms accuracy with NMF for order 9 at 10 and 20 dB SNR (%).

97.08

Experiment

Recognition task	Isolated 100 words				
Speech data	100 Japanese region names from JEIDA				
Sampling	11.025 kHz, 16 bits				
Window length	23.2 ms (256 samples)				
Frame length	11.6 ms (128 samples)				
Bandwidth of bandpass filter	1 – 16 Hz				
NMF order	9				
Feature vector	38-dimensional MFCC				
Noise type	White noise and babble noise				

Table 2: Experiment setting and parameters

Experiment

- We have considered the following cases:
 - A) CMS and DRA are applied for testing waveforms and reference waveforms
 - B) RSF and DRA are applied for testing waveforms and reference waveforms
 - C) CMS, RSF and DRA are applied for testing waveforms and reference waveforms
 - D) DRA is applied for testing data and reference waveforms
 - E) No noise reduction; testing data was recognized directly.

Result

Table 3: Recognition accuracy (%) with NMF and VAD

Case	withou	t VAD	with VAD		
	10 dB	20 dB	10 dB	20 dB	
A	67.68	86.7	78.42	93.58	
В	70.54	87.38	77.36	92.76	
С	70.18	87.02	77.08	92.96	
D	67.34	84.29	73.38	91.76	
E	14.7	65.7	19.34	72.12	
clean	90	.48	98.5	52	

Table 5: Recognition accuracy (%) of Symmetric Sakoe-Chiba DTW, w/o NMF

	DTW				DTW+NMF			
Case	White		Babble		White		Babble	
	10 dB	20dB	10dB	20dB	10dB	20dB	10dB	20dB
A	52.28	80	42.58	72.44	55.72	84.14	45.04	75.12
В	66.26	89.5	44.32	76.5	69.7	92.42	48.62	79.74
C	66.96	89.24	56.32	84.44	70.76	92.28	59.1	86.92
D	35.8	76.92	35.3	76.08	38.2	78.26	38.1	78.32
E	7.51	56.96	6.8	54.24	7.1	60.34	11.74	63.82
clean	96.14					97.	.28	

Table 4: Recognition accuracy (%) of Itakutra DTW, w/o NMF

	DTW				DTW+NMF			
Case	White		Babble		White		Babble	
	10 dB	20dB	10dB	20dB	10dB	20dB	10dB	20dB
Α	78.42	93.58	71.9	90.54	84.18	96.92	77.74	93.28
В	77.36	92.76	70.42	89.16	85.04	<u>97.08</u>	77.38	92.82
C	77.08	92.96	71.06	89.98	84.22	97.06	78.06	<u>93.78</u>
D	73.38	91.76	68.1	88.26	82.4	96.5	76.06	92.48
E	19.34	72.12	22.94	73.84	24.2	77.46	28.94	79.06
clean	98.52				98.76			

Table 6: Recognition accuracy (%) of Asymmetric Sakoe-Chiba DTW, w/o NMF

	DTW				DTW+NMF			
Case	White		Babble		White		Babble	
	10 dB	20dB	10dB	20dB	10dB	20dB	10dB	20dB
Α	65.02	87.46	55.4	80.16	73.7	92	63.28	85.88
В	67.84	89.08	57.62	82.36	75.72	93.6	66.34	86.7
С	68	88.84	58.06	82.52	75.86	93.9	66.48	87.2
D	49.48	74.68	39.64	64.98	61.2	83.04	49.12	72.42
E	7.54	56.96	7.72	55.6	7.1	60.34	6.94	65.9
clean	96.58					97.	92	

Conclusion

- The performances of all DTW algorithms are improved by NMF.
- The accuracy of Itakura's DTW is best among all DTW algorithms and close to that of HMM.
- The VAD is necessary to all DTW algorithms.
- The method CMS, RSF and DRA are combined is best among four methods.

