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Abstract—In this paper, a supermodular game theoretic ap-
proach is investigated for spectrum sharing in cognitive radio
networks. We consider a Bertrand competition model, in which
primary service providers compete to sell their spare spectrum
and then to maximize their individual profits. We demonstrate
that the Bertrand competition is a smooth supermodular game,
and a round-robin optimization algorithm is developed to obtain
the optimal price solutions. Simulation results verify that the
algorithm approximately converges to an equilibrium point, and
the influence of the exogenous variable on the equilibrium point
is analyzed.

Index Terms—spectrum sharing, smooth supermodular game,
Bertrand competition, exogenous variable.

I. INTRODUCTION

Wireless communications technology which is based on the
transmission of radio waves has become a key element in
modern life. Most of the available radio spectrum has already
been allocated to existing wireless systems. However, many
frequency bands are only partly used or largely unoccupied
[1-2]. Cognitive radio is a new paradigm of designing wireless
communication systems which aims to enhance the utilization
of the radio frequency spectrum. Implementation of cognitive
radio will be based on dynamic spectrum access by the unli-
censed users [3-4]. Frequency bands which are not occupied
can be sold to unlicensed users by licensed users, and then the
market of the spectrum trading appears. In spectrum trading,
the key element is the price of spectral resources, which should
be properly decided based on the objectives of both licensed
and unlicensed users.

In a cognitive radio network, the problem of pricing is
somewhat different from that in a traditional wireless network
due to the spectrum sharing and the adaptability of the
licensed and unlicensed users. A licensed user can charge
an unlicensed user for spectrum access. This price can be
dynamically adjusted in proportional to the availability of
spectrum opportunity, which is a function of the traffic load
in the licensed network and the demand from the unlicensed
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users. This demand depends on the current number of ongoing
sessions and applications used by the unlicensed users.

In this paper, we regard the spectrum trading as a Bertrand
game [5-6], in which the players are the primary service
providers (PSP) and the strategy is the price per unit spectrum.
PSPs compete with each other to sell spectrum to secondary
service providers (SSP) whilst aiming to maximize their indi-
vidual profits [7-8].

The main contributions of this paper are as follows:
• Bertrand competition model is presented for spectrum

trading in cognitive radio networks, which is proved as a
smooth supermodular game [9].

• Simulations based on round-robin optimization in [10]
are provided to approximate an equilibrium point, and
solutions are obtained for this model.

• Extensive analysis of the exogenous variable’s influence
on the equilibrium is provided.

The rest of this paper is organized as follows. In Sec. II,
we present the basic knowledge of the supermodular game,
smooth supermodular game and Bertrand competition theories.
The system model is introduced in Sec. III. The solutions of
the spectrum price problem is presented in Sec. IV. Simulation
results are provided in Sec. V, and Sec. VI concludes this
paper.

II. PRELIMINARY

A. Supermodular Game
Suppose that X is a partially ordered set and X ′ is a subset

of X . If x′ is in X and x ≺ x′ (x′ ≺ x) for each x in X ′,
then x′ is an upper (lower) bound for X ′. If x′ in X ′ is an
upper (lower) bound for X ′, then x′ is the greatest (least)
element of X ′. If the set of upper (lower) bounds of X ′ has a
least (greatest) element, then this least upper bound (greatest
lower bound) of X ′ is the supremum (infimum) of X ′. If
two elements, x and x′, of a partially ordered set X have
a supremum (infimum) in X , it is their joint (meet) and is
denoted as x ∨ x′. A partially ordered set that contains the
joint and the meet of each pair of its elements is a lattice. If
X ′ is a subset of a lattice X and X ′ contains the joint and
meet (with respect to X) of each pair of elements of X ′ , then
X ′ is a sublattice of X .

Suppose that f(x) is a real-valued function on a lattice X .
If f(x)+f(x′) ≤ f(x∨x′)+f(x∧x′) for all x and x′ in X ,



then, f(x) is a supermodular function on X . Suppose that X
and T are partially ordered sets and f(x, t) is a real-valued
function on a subset S of X × T (direct product). For t in
T , let St denote the section of S att. If f(x, t′′)− f(x, t′) is
increasing in x on St′′ ∩ St′ for all t′ ≺ t′′ in T , then f(x, t)
has increasing difference in (x, t) on S.

A noncooperative game (N,S, fi : i ∈ {1, · · · , N}) , in
which the strategy of player i is an mi vector xi, is a
supermodular game if the set S of feasible joint strategies
is a sublattice of Rm (or of×i∈{1,···,N}R

mi , m = ΣN
i=1mi),

the payoff function fi(yi, x−i) is supermodular in yi on Si

for each x−i in S−i and each player i, and fi(yi, x−i) has
increasing difference in (yi, x−i) on Si × S−i for each i.

Theorem 1 [10]: If the game is supermodular, there exists
a largest and a smallest Nash equilibrium in pure strategies.

B. Smooth Supermodular Game

Since the strategy space of the game in this paper is
continuous, for vectors x = (x1, · · · , xn) and y = (y1, · · · , yn)
in the n dimension Euclid space, x ≥ y is equivalent to
xi ≥ yi (i = 1, · · · , n). Furthermore, certain theorems are
specializations of primitive theorems due to the smoothness
of the profit function.

Lemma 1[10]: The necessary and sufficient condition for
a function f having increasing differences on Rn is that the
function f is supermodular.

Lemma 2[10]: If a function f : Rn → R is twice
continuously differentiable in an open interval including a
interval I = [x, x] in Rn, then the necessary and sufficient
condition of the function f having the supermodularity is
∂2f(x,y)
∂xi∂xj

≥ 0, ∀i ̸= j.
Accordingly, the request of supermodularity is easily satis-

fied for an general twice continuously differentiable function,
since it just needs the nonnegativity condition of the cross
partial derivative. The definition of the smooth supermodular
game is provided below.

Suppose that there are N players in a game, subscripted
by m and n, and player n has a strategy consisting of kn
elements, subscripted by i and j, so its strategy is the vector
xn = (xn1, · · · , xnk). Define the strategy set as Sn and
the payoff function as πn(xn, x−n; τ), where τ is a fixed
parameter. We say that a game is a smooth supermodular game
if the following four conditions are satisfied for every player.

(A) The strategy set is an interval in Rkn : Sn = [xn, xn].
(B) πn(xn, x−n; τ) is twice continuously differentiable on

Sn.
(C) (Supermodularity) Increasing one component of player

n’s strategy does not decrease the net marginal benefit of any
other component for all n, and all i and j such that 1 ≤ i <
j ≤ kn,

∂2πn

∂xni∂xnj
≥ 0. (1)

(D) (Increasing differences in one’s own and other strate-
gies) Increasing one component of n’s strategy does not
decrease the net marginal benefit of increasing any component

of player m’s strategy: for all m ̸= n, and all i and j such
that 1 ≤ i ≤ kn, 1 ≤ j ≤ km

∂2πn

∂xni∂xmj
≥ 0. (2)

In addition, we will be able to talk about the comparative
static of smooth supermodular games if a fifth condition is
satisfied, the increasing difference condition, (E).

(E) (Increasing difference in one’s own strategies and pa-
rameters) Increasing parameter τ does not decrease the net
marginal benefit to player n of any component of its own
strategy: for all n, and i such that 1 ≤ i ≤ kn,

∂2πn

∂xni∂τ
≥ 0. (3)

Theorem 2: If the game is supermodular and the assumption
of (E) is satisfied, then the largest and the smallest equilibrium
are nondecreasing functions of the parameter τ [9].

C. Bertrand Competition

Bertrand competition is a model of competition used in eco-
nomics, which describes interactions among firms (sellers) that
set prices and their customers (buyers) that choose quantities
at that price. It follows the assumptions:

• There are at least two firms producing homogenous
(undifferentiated) products;

• Firms do not cooperate;
• Firms compete by setting prices simultaneously;
• Consumers buy everything from a firm with a lower price.

If all firms charge the same price, consumers randomly
select among them.

III. SYSTEM MODEL

We consider a cognitive radio system with N PSPs. PSP i
(i ∈ {1, · · · , N}) owns a size of Bi frequency spectrum and
it serves Ki primary users (PU) as shown in Fig.1. When a
PSP is not fully utilizing its spectrum, it can sell portions
of the available spectrum to SSPs, whose users are called
secondary users (SU). In this way, a spectrum trading market
is established. The price per spectrum unit of Bi is denoted
as pi.

Since there are more than two PSPs, who do not cooperate
with each other and will announce prices simultaneously,
we shall adopt the Bertrand competition model to set the
price. In fact, the Bertrand competition can be viewed as a
noncooperative game. We assume that each PSP is aware of
the existence of other PSPs and all of them compete with
each other to maximize their individual profits. The PSPs are
viewed as players and the price per spectrum unit of Bi is
the strategy of PSP i. Each PSP gains the profit via selling
spectrum to the SSP.

In Fig.1, the SSP is a fictional service provider (a repre-
sentative consumer [11]), whose utility maximization problem
generates the aggregate demand functions when facing aggre-
gate resource constraints. The assumption does not rule out
SSP heterogeneity, but only requires that the potential sources
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Fig. 1. Spectrum sharing model

of the heterogeneity have sufficient structure to ensure that the
cluster of all SSPs behaves as if it were a single provider.

IV. SOLUTION OF SPECTRUM PRICE PROBLEM

A. Demand Function

Assuming a cluster of SSPs behaves as if it were a single
one, the spectrum demand of such a virtual provider can be
expressed directly as follows [12],

Di(p, d) = ai − bipi + d
∑
j ̸=i

pj , (4)

where pi is the price offered by PSP i, p is the price
vector with component pi, ai denotes the market capacity
of the spectrum Bi, and d is the substitutability coefficient
(0 ≤ d ≤ bi). When d is the upper bound, it implies that the
two spectrums can be completely substituted. Moreover, the
spectrums become independent when d equals to zero.

B. Profit Function

This noncooperative game, a single decision variable (price)
competition, is a Bertrand competition. The profit function of
PSP is developed as follows:

ui(p, d) = (pi − ci)Di(p, d)− νi(Qi −
Bi −Di(p, d)

Ki
), (5)

where νi is the coefficient of the penalty term, Qi denotes the
bandwidth requirement per PU and ci denotes the cost of per
spectrum unit of Di(p, d). PSP i (i ∈ {1, · · · , N}) owns a
size of Bi frequency spectrum and it serves Ki primary users.

In this case, piDi(p, d) denotes the revenue gained from
sharing spectrum with SSP, and ciDi(p, d) denotes the cost
of PSP i for owning the spectrum Di(p, d). Here, the cost
involved is a function of QoS performance degradation [13]
of ongoing PUs due to sharing spectrum with SSP.

Proposition 1:The game with utility function (5) is a smooth
supermodular game.

Proof: We suppose the price is restricted to [ci, p] for player
i, where p can be chosen to yield zero quantity demand, so
(A) is satisfied. ui(p, d) is twice continuously differentiable
on [ci, p], so (B) is satisfied. As explained above, this is a
single decision variable (price) competition, that is, a player’s
strategy has just one component, pi, so (C) is satisfied.

The first-order derivative of the profit function is

∂ui(p, d)

∂pi
= Di(p, d) + (pi − ci)

∂Di(p, d)

∂pi

−2
νi
Ki

(Qi −
Bi −Di(p, d)

Ki
)
∂Di(p, d)

∂pi
. (6)

The following inequality is true,

∂2ui(p, d)

∂pi∂pj
= d+

2bidνi
K2

i

≥ 0, (7)

so (D) is satisfied. And it is also true that

∂2ui(p, d)

∂pi∂d
= (1 +

2biνi
Ki

)Σj ̸=ipj ≥ 0, (8)

so (E) is satisfied for d. Then the game is a smooth super-
modular game.

By Theorem 1 and 2, it yields the following results for our
differentiated Bertrand game:

• There exists a largest and a smallest Nash equilibrium in
pure strategies (Theorem 1);

• The largest and the smallest equilibrium prices for PSP i
are nondecreasing functions of the parameter d (Theorem
2).

The best response is given by

Ui(p−i) = max
pi∈Pi(p−i)

ui(pi, p−i; d). (9)

For any joint strategy p ∈ P (P is the strategy space)
and any player i, p−i denotes the vector of strategies of all
players in 1, · · · , N except player i. And (pi, p−i) denotes the
joint strategy vector with pi being changeable and the other
components of p being constant. The set of feasible strategies
for player i given strategies p−i for the other players is
denoted as pi(p−i) = pi : (pi, p−i) ∈ P . The substitutability
coefficient d is an exogenous variable used in comparative
static analysis.

C. Algorithm

Based on round-robin optimization, we shall develop the
algorithm to reach the optimal solutions. Given a noncoopera-
tive game (N,P, ui : i ∈ {1, · · · , N}), a sequence of feasible
joint strategies is obtained as:

Step1: Set d = 0. If P has a least element inf(P), set
p0,0 = inf(P). Otherwise, stop.

Step2: Given pk,i in P for any k and i with k ≥ 1, 1 ≤ i ≤
N , let pk,i = (pk,ii , pk,i−1

−i ), where pk,ii is the least element
of the best response (9), if such an element exists. Otherwise,
stop.



Step3: Set i = i+ 1.if i = N so pk,N has been generated
for some k, set pk+1,0 = pk,N, set k = k+1, and set i = 0.
If k ≤ N go to step3 and continue, otherwise write pN,N into
a matrix F .

Step4: Set d = d + 0.1, if d ≤ bi, go to step3, otherwise,
stop.

V. SIMULATION AND DISCUSSION

We cosider a cognitive radio system with three PSPs and
each PSP has Ki = 10 PUs. The total spectrum of PSPs
are 200 MHz, 200 MHz and 300 MHz, respectively (i.e.,
B = (200, 200, 300)). Suppose the spectrum requirement of
PUs from their PSPs are 20 MHz, 20 MHz and30 MHz,
respectively (i.e., Q = (20, 20, 30)). The spectrum capacity
of the market of each PSP is 200 MHz, 200 MHz and 300
MHz, respectively, a = (200, 200, 300). The coefficient of
penalty item is ν = (1, 2, 3) and the cost of per spectrum
unit is c = (2, 3, 4). Note that substitutability coefficient
d(0 ≤ d ≤ bi) is considered as an exogenous variable when
we talk about the comparative statics of smooth supermodular
games.

A. Existence of Nash Equilibrium

The algorithm above generates an infinite sequence pk,i

that is increasing in k and i for k ≥ 1, 1 ≤ i ≤ N .
Hence, there exists a feasible joint strategy p′ in P such that
limk→∞ pk,i = p′. If a feasible joint strategy appears n times
successively in the sequence pk,i, then it is an equilibrium
point. Fig. 2 shows that the prices per spectrum unit for the
three PSPs are increasing in iteration and then reach a stable
state, the Nash equilibrium point. Here one can’t improve its
individual profit even if it increases its price. At last, the three
PSPs will share their spectrums with the SSP at these prices.
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Fig. 2. Price versus iteration for three primary service providers

B. Comparative Static Analysis on d

Comparative static is the analysis of what happens to
endogenous variables in a model when the exogenous variable
changes. A small change in the parameter might lead to a
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Fig. 3. Price versus d and iteration for three primary service providers

large change in the equilibrium because of feedback among
the different players’ strategies.

Fig. 3 shows that the system can reach a stable state for
different d, and the Nash equilibrium point increases versus d,
where d = 1 : 0.1 : 3. As expected, the supermodularity yields
comparative statics on d, the discrete exogenous variable.
However, because it just finds the effect of d on pk,i, rather
than telling us its exact value, it yields weak comparative static
on d. The frequency of the SSP switching between different
spectrums increases as d increased. This implies that the price
in equilibrium point will increase when it is easy to switch.

The scheme proposed in this paper decreases the complexity
of calculating equilibrium points and, for the profit function,
just requires the nonnegativity condition of the cross partial
derivative, regardless of what its second order partial derivative
and concavity are, as compared with that of the general game
methodology. Moreover, comparative static analysis, (i.e. the
change of equilibrium points on the exogenous variable) is
made to predict strategies of players when external conditions
change.

VI. CONCLUSIONS

In this paper, we consider the spectrum trading, a Bertrand
competition, as a noncooperative game, in which the players
are PSPs and the strategy is the price per spectrum unit.
PSPs compete with each other to maximize their individual
profits. We prove that the Bertrand competition following a
supermodular game, and the round-robin optimization algo-
rithm is developed to approximate the Nash equilibrium. We
provide comparative static analysis for the supermodular game,
in which the price vector in equilibrium point increases as
substitutability coefficient increased, i.e. the smaller spectrum
difference leads to the higher prices.
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