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Abstract—Orthogonal frequency division multiplexing (OFD-
M) is a leading technology in the field of broadband wireless
communications. In OFDM systems, a high peak-to-average
power ratio (PAPR) is a critical issue, which may cause a
nonlinear distortion and reduce power efficiency. To reduce the
PAPR, partial transmit sequences (PTS) technique can be applied
to the transmit data. However, the phase factor sequence selection
in PTS technique is a non-linear optimization problem and it
suffers from high complexity and memory use when there is a
large number of non-overlapping sub-blocks in one symbol. In
this paper a novel modified elite chaotic artificial fish swarm
algorithm for PTS method (MECAFSA-PTS) is proposed to gen-
erate the optimum phase factors. The MECAFSA-PTS method
is evaluated with extensive simulations and its performance is
compared with quantum evolutionary and selective mapping
algorithms. Our results show that the proposed MECAFSA-PTS
algorithm is efficient in PAPR reduction.

Index Terms—OFDM, PAPR, partial transmit sequence, arti-
ficial fish swarm algorithm.

I. INTRODUCTION

Recent advances in broadband mobile communication tech-
nologies expand the scope of applications of orthogonal fre-
quency division multiplexing (OFDM) [1]. OFDM has been
intensively studied and widely applied in many areas, such
as Asymmetric Digital Subscriber Line (ADSL), Wireless
Local Area Networks (WLAN), and Long Term Evolution
(LTE). In OFDM systems, A high peak-to-average power ratio
(PAPR) will not only reduce power efficiency but also destruct
the orthogonality of subcarriers. Therefore, one of the major
challenges in designing OFDM systems is PAPR reduction.

A number of signal scrambling and signal distortion tech-
niques have been proposed for PAPR reduction, such as Se-
lective Mapping (SLM), Partial Transmission Sequence (PTS),
clipping, phase optimization, coding schemes, constellation
shaping, etc. Amongst these methods, PTS is an effective tech-
nique for achieving low PAPR. The key to achieve such a goal
lies in the phase factors selection algorithm, which must have a
good balance between complexity and performance. However,
in the phase factors selection, the computational complexity
grows exponentially with the number of subcarriers, and the
problem is NP hard. In this context, many methods have been
proposed, including SLM, quantum evolutionary algorithms
(QEA) and simulated annealing (SA) algorithms.

A PTS technical using the simulated annealing (SA) meth-
ods has been proposed in [2]. This algorithm was shown
to perform well when the number of subcarriers is small.
However, when the number of subcarriers is large, the rate
of convergence is low and the algorithm can easily converge
to a local optimum. An artificial bee colony algorithm for
PTS technical (ABC-PTS) has been attempted in [3]. In their
work the authors study a PTS with artificial bee colony. They
also compare ABC-PTS with the particle swarm optimization
(PSO) method. Another method called QEA-PTS based on the
QEA has been used for the PTS method in [4]. The proposed
method minimizes the PAPR using the knowledge related to
quantum computing and evolutionary algorithms. However, the
convergence speed is still low because of the sequential nature
of the QEA operations. Moreover, QEA can easily fall into
premature convergence, which makes it difficult to converge
to the global optimum when the number of subcarriers is high.

Artificial fish swarm algorithm (AFSA) is a heuristic search
algorithm based on animal social behavior and swarm intel-
ligence, which was firstly proposed in literature [5] in 2001.
As a novel evolutionary algorithm with easy implementation,
AFSA shows many promising characteristics such as strong
robustness and adaptive ability for many optimization prob-
lems. However, as each artificial fish (AF) has a limited vision,
the traditional AFSA is easy to fall into a local optimum,
which always leads to a premature and suboptimal solution.
Moreover, due to the randomness of behaviors, the AF with
best position in the swarm will not be recorded in traditional
AFSA, which means the optimal solution may be lost during
the iterative process. In this case, the convergence speed of
the algorithm will become very slow.

In order to get to the global convergence, based on the
traditional ASFA, this paper proposes a new modified elite
chaotic artificial fish swarm algorithm for the PTS method
(MECAFSA-PTS). Then MECAFSA-PTS is used for solve
the PAPR reduction problem in OFDM systems. MECAFSA-
PTS has a fast global convergence rate and strong robustness,
and its implementation is flexible.

This paper is organized as follows. In Section II, we describe
the mathematical model and objective function. In Section III,
we describe the implementation details of the MECAFSA-PTS



method. In Section IV, both simulation results and discussion
are presented. Finally, Section V gives the conclusions.

II. SYSTEM MODEL

This section describes the system model of PTS selec-
tion with respect to the input symbol sequence. In previous
work, Jung-Chieh et al formulated PTS selection as a multi-
dimensional optimization problem [4], which is adopted in this
work.

We assume that each OFDM symbol consists of L subcar-
riers and the complex envelope of the transmission signal is
given by:

xn =
1√
L

L−1∑
l=0

Yle
i2πnl( 1

L ) (1)

where n is the discrete time index, i equal to
√
−1, and Y =

[ Y0 Y1 · · · YL−1 ] is the input symbol sequence.
The peak-to-average power ratio can be written as:

PAPR = 10log10

max
{
|xn|2

}
E
{
|xn|2

} (2)

where E denotes the expected value operation.
In the OFDM system, we can divide the input data Y =

[ Y0 Y1 · · · YL−1 ] in to V non-overlapping sub-blocks
{Yv, v = 0, 1, · · · , V − 1}, which can be shown as

Y =

V−1∑
v=0

Yv (3)

Given a set of input data Y , our objective is to select an
appropriate phase weighting sequence to minimize the PAPR.
A phase weighting sequence can be expressed as a vector with
length V , which can be represented as:

D = [ d0 d1 · · · dV−1 ] (4)

where v ∈ [1, V − 1], and {φv, v = 0, 1, · · · , V − 1} is phase
factors selected from the range φv ∈ [0, 2π), dv = exp(jφv)
is the phase weighting factor. In practice, the phase factors are
select from a limited set, which can be represented as:

φv ∈
{
ei2πω/W |ω = 0, 1, · · ·W − 1

}
(5)

where W is the set of permitted phase factors. In this paper we
only consider ω = 0, 1, 2, 3, which means dv ∈ {1, i,−1,−i}.

After selecting a proper phase weighting factor, it is mul-
tiplied by the input data to reduce the PAPR, which can be
represented as:

Y ′ = Y ·D = [ d0Y0 d1Y1 · · · dV−1YV−1 ] (6)

After being optimized by the phase weighting factor, the
discrete time transmitted signal can be represented as xn

′(D).
The side information D will be passed to the receiver through
other channels.

So the objective function can be summarized as follows:

Minimize

f(D) =
max

{
|xn

′(D)|2
}

E
{
|xn

′(D)|2
} (7)

subject to

φv ∈
{
ei2πω/W |ω = 0, 1, · · ·W − 1

}
(8)

If we want to minimize the fitness function f(D), we
must select each phase factor from the set φv ∈{
ei2πω/W |ω = 0, 1, · · ·W − 1

}
. Moreover, as changing a

common angle on all sub-blocks cannot change PAPR, we
can just consider the solution space in WV−1 and ignore the
value of d0.

III. PAPR REDUCTION BASED ON MECAFSA

Inspired by the natural swarm behaviour of the fish, artificial
fish swarm algorithm (AFSA) is an optimization method
with similar features of the genetic algorithm such as the
objective function and iterations. Based on swarm intelligence,
it searches the global optimum in the solution space for com-
plex nonlinear high dimensional problems based on different
behaviours. In order to achieve the global optimum and to
improve the convergence speed, in this section, we propose the
new modified elite chaotic artificial fish swarm algorithm for
PTS method (MECAFSA-PTS) to solve the PAPR reduction
problem in OFDM systems.

A. The principle of the traditional AFSA

AFSA keeps a fish swarm with a fixed number of artificial
fish (AF), and the position of each AF is a potential solution
of the problem. The water area equals to the whole search
space. The AF swims towards a position with more food in the
water area iteratively, which means the movement is driven by
nutrition. The concentration of food depends on the problem
utility function, so the algorithm can achieve optimization by
AF swarm searching behavior. The AF communicate with
other AFs through behavior, which means information about
concentrations of food spreads within the swarm. In AFSA,
a pair of AF individuals has a distance value, which can
be Hamming distance of two encoded AF. Each AF has a
visual area value, which means the AF can only see and
follow another AF when the distance between two AF is
within a certain range. In nature, fish swim to the place with
more nutrition, and usually gather in groups to avoid dangers
and enemy. By detailed observation, the behavior of fish is
abstracted as three typical behaviors: prey, swarm and follow.

B. Representation of Artificial Fish and Swarm

In MECAFSA-PTS, each AF individual is equivalent to a
phase weighting sequence D= [ d1 d2 · · · dV−1 ]. Each
AF is encoded into a vector, where V is the number of the
non-overlapping sub-blocks in one symbol, dv is the vth phase
weighting factor of AF position, and each dv is selected from
the set 1,-1,i,-i, v ∈ [1, V −1]. For example, when the number



of non-overlapping sub-blocks V = 16, a possible solution
vector can be: D = { i −i · · · 1 }1×15.

Suppose that in the swarm there are K AF in-
dividuals. The whole swarm can be represented as:
PAF= { D1 D2 · · · DK }. If there are more AF in the
swarm, the MECAFSA-PTS convergence speed is faster, but
the computational complexity will be higher.

The Logistic map was first proposed in [6], which can be
expressed by

xl+1 = 4xl(1− xl) (9)

where xl is a number between 0 and 1. The Logistic map can
generate chaotic numbers with low complexity, it has chaotic
behaviour and non-linear characteristics.

MECAFSA-PTS uses (9) to generate the chaotic sequence,
and then uses a simple map to generate each initial AF, which
can be shown as:

dv =


1 0 < xv < 0.25
−1 0 .25 ≤ xv < 0.5
i 0 .5 ≤ xv < 0.75
−i 0 .75 ≤ xv < 1

. (10)

Before the iteration starts, the iteration counter is set to zero.

C. Distance, Visual area and Concentration Factor

The distance between two AF individuals {Di, Dj} is
denoted as disij = ∥Di −Dj∥, where ∥Di −Dj∥ denotes
the Hamming distance between the two AF vectors. The
visual area V ISi represents the vision distance of ith AF
individual, which means Di cannot see Dj if the Hamming
distance ∥Di −Dj∥ > Vi. Let ni represent the number of AF
individuals within the visual area of Di, and ntotal represent
the total number of AF individuals in the whole swarm. If the
ratio of ni

ntotal
≥ δ, it means the area is overcrowded, Di will

get away from this area and prey for other food.

D. Objective Function

The objective function of MECAFSA-PTS can be repre-
sented as the food concentration, and the aim of the algorithm
is to find the position with the highest food concentration
with AF individuals. As we need to minimize the PAPR,
the objective function of MECAFSA-PTS can be show as
−f(D), and all parameters have same meaning with that in
(7). According to (7), the PAPR has an inverse relationship
with the food concentration. So when the AF get to the
position with highest food concentration, the corresponding
phase weighting sequence has the lowest PAPR. As most AF
in the swarm swim to a better position iteratively, they finally
get the optimal phase weighting sequence.

E. Elite list of Artificial Fish

As the iteration characteristic of MECAFSA-PTS, we set
a elite list to record the best AF in position with the highest
food concentration. In another word, the corresponding phase
weighting sequence with the lowest PAPR is recorded. After

all AF individuals move to the new position in each iteration,
we will compare the best AF in the swarm with the individual
in elite list. If the best AF has a lower PAPR than the individual
in elite list, we will update the elite list with the best AF.

F. Behaviors of Artificial Fish

There are four behaviors in MECAFSA-PTS, follow be-
havior, swarm behavior, prey behavior and random behavior.
Unlike the traditional AFSA, each behavior has a fixed priority
in MECAFSA-PTS. The follow behavior has the highest pri-
ority, next the swarm behavior, followed by the prey behavior.
The random behavior has the lowest priority. Based on the
principles in section A, we can describe the behaviors of
MECAFSA-PTS as follow:

1) Follow behavior: The follow behavior of ith individual
Di will be executed, if two constraints are satisfied.

Constraint 1: The ratio of ni

ntotal
< δ, where ni is the number

of AF individuals within the visual area of Di, ntotal is the
total number of AF individuals in the whole swarm, and is
the crowd factor.

Constraint 2: Within the visual area of Di, at least one
artificial fish has a lower PAPR than Di.

If the above two constraints are met, Di will follow and
move to an individual Dj within the visual area. Dj must
have a lower PAPR than Di. If more than one individual meet
the constraints, Di will select a random one amongst them. If
any constraint is not satisfied, Di will try the swarm behavior.
Different from the traditional AFSA, the prey behavior will
not be executed immediately if the constraint is not satisfied.

In each iteration, there is a maximum limit of moving steps
Smax. First we calculate vector Dsub by using Dj −Di, then a
binary sequence rand is multiplied with vector Dsub. In binary
sequence rand, there are Smax elements equal to 1, and (V −
1−Smax) elements equal to 0, where V is the number of non-
overlapping sub-blocks in one OFDM symbol. The positions
of both 1 and 0 elements are random in the binary sequence. In
this way, the number of different elements between Di and Dj

is smaller than Smax, and Di swims toward a better artificial
fish Dj . This process can be shown as:

Dsub = rand · (Dj −Di) (11)

Dnew
i = Di +Dsub (12)

where the operator · is the point multiplication operation.
2) Swarm behavior: If any constraint of the follow behavior

is not satisfied, the ith individual Di will try the prey behavior.
The swarm behavior will carry out if the following two
constraints are satisfied:

Constraint 1: The ratio ni

ntotal
< δ, all the parameters have

the same meaning as in section 1).
Constraint 2: There are at least two artificial fish within the

visual area of Di.
If the above two constraints are satisfied, we calculate the

total number of neighborhoods within the visual area, calculate



the center position of them, and let Di swim to the center
position.

Assume there are Nb neighborhoods within the visual area,
the kth neighborhood Dk can be represented as a vector
Dk= { dk1 · · · dkv · · · dkV−1 }1×(V−1), and each akl
is selected from the set 1,-1,i,-i. The center position of
neighborhoods Dcerter can be calculated as:

Dcerter = f(
1

Nb

Nb∑
k=1

Dk) (13)

where k is the index of the neighborhoods, and Dcerter

is the center position of the neighborhoods. Assume
Dcenter= [ d1

′ · · · dv
′ · · · dV−1

′
], we need to use

a simple map function f() to fix the position:

dv
′ = f(

1

Nb

Nb∑
k=1

dkv) =



1 π
4 ≤ arg

(
1
Nb

Nb∑
k=1

dkv

)
− < π

4

i 3π
4 ≤ arg

(
1
Nb

Nb∑
k=1

dkv

)
< π

4

−1 5π
4 ≤ arg

(
1
Nb

Nb∑
k=1

dkv

)
< 3π

4

−i 7π
4 ≤ arg

(
1
Nb

Nb∑
k=1

dkv

)
< 5π

4

(14)
where arg() is the phase angle function. To facilitate the
representation, the phase angle is limited to the range (−π

4 ,
7π
4 ]

instead of the traditional range (−π, π]. In this way, we get a
new individual Dcerter. Then MECAFSA-PTS updates Di by
(15) and (16):

Dsub = seq · (Dcerter −Di) (15)

Dnew
i = Di +D2

sub (16)

All the parameters are same as (11) and (12).
3) Prey Behavior: If any constraint of the swarm behavior

is not satisfied, the ith individual Di will try the prey behavior.
First a random artificial fish is generated within the visual area
of Di. Specifically, MECAFSA-PTS generates an individual
Dj , and makes sure the Hamming distance ∥Di −Dj∥ ≤
V ISi, where V ISi is the visual distance of ith AF individual
Di. Firstly we select random V ISi positions on vector Di,
and generate V ISi numbers between 0 and 1 with the Logistic
map as (9). Then we change the value on these positions on
vector Di into the set 1,-1,i,-i with a simple map (10). In this
way, a new artificial fish Dj is generated. Then we calculate
the PAPR of Dj . If the PAPR of Dj is lower than Di, Di is
moved toward to Dj with (11) and (12).

If the PAPR of Dj is higher than Di, we generate another
new AF with the above steps in the prey behavior. If it still
cannot find an AF with a lower PAPR after the maximum
number of times, the random behavior will be carried out.

4) Random Behavior: Generate V − 1 numbers between 0
and 1 with the Logistic map as (9), then change the value into
the set 1,-1,i,-i with the simple map (10). In this way, a new
artificial fish Dj is generated. This Dj can be either in the
visual area of Di or outside. Then Di will swim toward to
Dj with (11) and (12) regardless of the PAPR value of Dj .

G. Stopping Condition

Repeat four behaviors according to the priority order until
all AF in the swarm moved to another position. After that
update the elite list with the best AF in the swarm, and check
whether the algorithm has reached the maximum number of
iterations. If the algorithm has reached the maximum number
of iterations, end the algorithm and output the best AF on the
elite list as the result with the lowest PAPR. If algorithm has
not reached the maximum number of iterations, start the next
iteration and add one to the iteration counter.

IV. EXPERIMENTAL STUDY

In this section, we present the simulation results with differ-
ent algorithms for the PTS selection problem. To demonstrate
the effectiveness of the algorithms, we use the complementary
cumulative distribution function (CCDF) to evaluate the merits
of the algorithms. The CCDF function is defined as:

CCDF = P{PAPR > PAPR0} (17)

where P is the probability function.
The Matlab is used as the programming language in simula-

tion. The objective function of the SLM selection problem has
been computed using (7). In the simulations, the input symbol
sequence is considered uniformly distributed among all the
symbols and the all the symbols are modulated with QPSK.
In the following experiments, we set the number of symbols
to 1× 103. We also set the maximum number of iterations of
both QEA-PTS and MECAFSA-PTS to 20. For the purpose of
comparison, the 8 point SLM and the original simulation curve
are also presented. In order to fairly compare algorithms with
different numbers of subcarriers, the number of subcarriers
are set to 128. The same population size Pop = 40 has been
considered for both MECAFSA-PTS and QEA-PTS.

Fig. 1, Fig. 2 show the results for MECAFSA-PTS, QEA-
PTS and SLM to select the phase weighting factor for the
PAPR reduction problem with the phase weighting sequence
length equal to 4 and 8 respectively with the above parameter
settings. The maximum iterations are set to 20 for each
algorithm. We set the number of subcarriers to 128. The figures
also include the results for the CCDF with no PTS (referred
to as original in the figures).

As Fig. 1 shows, MECAFSA-PTS yields much better results
compared to QEA-PTS, SLM and the original. For example,
when the phase weighting sequence length is 4 and CCDF =
10−3, the PAPR0 for MECAFSA-PTS is around 6.9 dB, while
the result for QEA, SLM and original are 7.8 dB, 7.3dB and
9.9 dB respectively. In Fig. 2, we can get similar conclusions



Fig. 1. CCDF of the PAPR with V=4, subcarrier=128.

Fig. 2. CCDF of the PAPR with V=8, subcarrier=128.

that the reduction of the PAPR for MECAFSA-PTS is 1dB or
higher compared to the other algorithms when the number of
subcarriers is set to 128.

Fig. 3 illustrates the convergence of the mean PAPR value
of MECAFSA-PTS and QEA-PTS during the 50 iterations. As
it can be observed in Fig. 3, MECAFSA-PTS has shown better
results when compared with QEA-PTS approach. At the initial
20 iterations, the mean PAPR of both algorithms decrease.
After that QEA-PTS displayed premature convergence, which
means the QEA-PTS gets stuck in local minima that are hard
to escape. On the other hand, it can be seen that MECAFSA-
PTS produces lower PAPR results much faster than QEA-PTS.
It displays no premature convergence during the entire 50
iterations.

V. CONCLUSION

This paper proposes a new Modified Elite Chaotic Artifi-
cial Fish Swarm Algorithm (MECAFSA) for optimizing the

Fig. 3. Average PAPR change by generation with V=8, subcarrier=128.

PAPR in OFDM systems using a phase factors selection.
An objective function is designed to evaluate the algorithm
and simulations are performed to compare its performance
with algorithms based on quantum evolutionary and selective
mapping approaches. The results demonstrate the effectiveness
of the proposed algorithm.
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