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Abstract—Indoor positioning based on the Wireless Fidelity
(WiFi) protocol and the Pedestrian Dead Reckoning (PDR)
approach is widely exploited because of the existing WiFi in-
frastructure in buildings and the advancement of built-in smart-
phone sensors. In this work, a hybrid algorithm that combines
WiFi fingerprinting and PDR to both exploit their advantages as
well as limiting the impact of their disadvantages is proposed.
Specifically, to build a probability map from noisy Received
Signal Strength (RSS), a Gaussian Process (GP) regression is
deployed to estimate and construct the RSS fingerprints with
incomplete data. Mean and variance of generated points are used
to estimate WiFi fingerprinting position by K-nearest weights
from the probability of visible RSS measurements of the online
phase. In addition, a particle filter is applied to fuse PDR
and WiFi fingerprinting by using the information from RSS,
inertial sensors and features of indoor maps. To demonstrate
the potential of the proposed framework, two case studies are
considered. In the first case, a comparison is made between
GP regression with K-Nearest Neighbours (KNN) method to
show the improvement with a sparse input data set. In the
second case, the proposed framework is compared to both the
fingerprinting approach as well as the PDR algorithm. The results
show significant improvements from our proposed framework.
The average positioning accuracy of our proposed system can be
lower than 1.2 m, which was reduced by 48% and 70% compared
with the WiFi fingerprinting and the PDR method, respectively.

Index Terms—Gaussian Process Regression, Particle Filter,
WiFi, Pedestrian Dead Reckoning, Indoor Positioning

I. INTRODUCTION

The widespread deployment of wireless technologies is
enabling numerous applications using indoor positioning, such
as health care monitoring, guided navigation in museums,
universities, malls, airports, and general industrial environ-
ments. Since the Global Positioning System (GPS) cannot
guarantee location service because a line-of-sight transmis-
sion between receivers and satellites is not possible in an
indoor environment, many approaches in current positioning
technologies have been proposed such as Ultra Wide Band
(UWB) [1], Radio Frequency Identification tags (RFID) [2],
Bluetooth Low Energy (BLE) [3], WiFi [4], [5], Pedestrian
Dead Reckoning (PDR) using inertial sensors [6]. Among
them, WiFi technology based on the Received Signal Strength
(RSS) has become a common solution for indoor positioning
because of the convenience of measuring this value directly
from smart-phones and other mobile devices.

In order to estimate position from RSS, path-loss model-
based or fingerprinting based approaches can be used. Firstly, a

“path-loss” based approach is a technique that converts the val-
ues of RSS from the access points to the mobile receiver into
distances based on a signal propagation model [7]. However,
the position relationship is highly complex due to multi-path,
metal reflection and interference noise [8]. Thus, the path-
loss model may not be adequately captured by an invariant
model. Secondly, fingerprinting/sense analysis is a technique
that estimates the position based on a scene analysis. This
technique estimates the user’s position relied on the similarities
between the RSS measurements of online phase and RSS
of the offline phase training [5], [9]. The main advantages
of WiFi fingerprinting are that it takes advantage of current
WiFi infrastructures and the location of the access points
can be unknown. On the other hand, the disadvantages of
the fingerprinting method include the need for dense training
coverage and the poor extrapolation of areas not covered
during the training phase. During the offline phase, it can
be extremely time-consuming and labour-intensive to build
substantially large fingerprinting databases [9].

Another widely adopted localization approach is PDR [10],
[6], which leverages inertial sensors to estimate the displace-
ment of pedestrians relatively to their previous position. The
main challenge in this approach is that the inertial sensors in
commercial smart-phones often suffer from imperfect calibra-
tion and noisy measurements [9]. In addition, step counting
is currently a major method to capture the walking path and
the movement of pedestrians [10]. The estimated location of
PDR is often drifted when travelling a long distance due to
inaccurate measurement of step detection, step length and
heading. The drift of PDR can be corrected to achieve high
accuracy by combining with WiFi fingerprinting using Kalman
filter [11] or Particle filter [12], [13], [14]. Even though
extensive work has been done in this area, some important
issues still need to be explored and resolved to improve
effectiveness and accuracy.

In this article, an indoor positioning system is presented. In
addition to WiFi RSS, it also utilises inertial sensors in smart-
phones and available maps of buildings. In particular, a novel
hybrid framework is proposed based on the combination of the
WiFi fingerprinting and PDR approaches, as shown in Fig. 1.
The proposed framework aims at achieving location robustness
and accuracy by combining a number of techniques:

• Constructing a ”WiFi map”. With the aim of reducing
the time needed for data training during the offline phase



Fig. 1: The proposed hybrid WiFi indoor positioning system.

and for improving the accuracy of WiFi fingerprinting,
a Gaussian process (GP) regression is deployed. This
makes it possible to obtain the mean and variance of the
considered WiFi map based on the correlation between
RSS of sparse training points.

• Motion estimation of PDR. To detect motion and calculate
the movement of pedestrians using smart-phones, we aim
at improving the step detection and stride length algo-
rithm by using only the accelerometer. Besides, instead
of using the absolute heading from the compass, we
apply Magdwick filters [15] by combining values from
the accelerometer and the gyroscope to avoid the effect
of magnetic fields on the magnetometer and to estimate
the relative heading.

• Location hybrid method. An efficient method is proposed
to evaluate the user’s position by real-time RSS mea-
surement and the WiFi map. Then, a hybrid method is
applied by using a particle filter for combining the WiFi
estimation with the PDR and the features of the building
map. This hybrid makes the indoor positioning system
able to achieve high accuracy and robustness.

The rest of the paper is organised as follows. The WiFi
fingerprinting, PDR and hybrid method are described in
Section II. The experimental setup and the discussion of
the experimental results are outlined in Section III. Finally,
conclusions and future works are discussed in Section IV.

II. METHODOLOGY

In this section, the WiFi fingerprinting based on the GP
regression to build a WiFi map is presented. Furthermore,
improvements of different methods for PDR are described.
Finally, the proposed hybrid algorithm for indoor positioning
is introduced.

A. Building WiFi fingerprinting maps by using a Gaussian
process regression

Fingerprinting techniques require high-density training data
to achieve high accuracy. However, the data collection is
labour intensive. In this proposed framework, a GP regres-
sion is used to minimise the training time and to improve
the effectiveness of WiFi fingerprinting [5]. GP has many
advantages that makes it applicable for indoor positioning
systems using WiFi RSS [4], [5]. It is non-parametric, con-
tinuous and correctly handles uncertainty in both process and

estimation [16]. GP is especially useful because of the noisy
RSS WiFi measurements due to various phenomena such as
reflection, scattering and diffraction.

To generate a WiFi map using GP regression for the indoor
positioning system from the training data, the GP relies on a
covariance function kernel that establishes the correlation of
values at different points. Assuming that r = {ri, i = 1, ..n}
is the observed RSS vector that includes n received access
points (AP) at corresponding coordinate points in d dimension
x = {xi, i = 1, ..n}, xi ∈ Rd, so that the pair (xi, ri)
represents the training data. Each observation ri can be related
to a transformation f(xi) through a Gaussian noise model
from a noisy process as: ri = f(xi) + ε , where {ε} is
the generated measurement noise from a Gaussian distribution
with zero mean and variance σ2

i . Any two output values, rp
and rq are assumed to be correlated by a covariance function
based on their input values xp and xq :

cov(rp, rq) = k(xp,xq) + σ2
nδpq, (1)

where k(xp,xq) is a kernel, σ2
n is the variance , δpq is 1 if

p = q and 0 otherwise. The kernel function considered in this
work is squared exponential kernel as equation:

k(xp,xq) = σ2
f exp

(
(xp − xq)2

2l2

)
, (2)

where σ2
f is the signal variance and l is the length scale that

determines how strongly the correlation between points drops
off.

From equation 1, the covariance over the corresponding ob-
servations r for all input values x becomes: cov(r) = K+σ2

nI,
where, K is the n×n covariance matrix of all pairs of training
points. Then, training points are generated by the posterior
distribution over function x∗ = {x∗

i , i = 1, ..m}, given the
training data set x, r by:

p(r∗|x∗,x, r) ∼ N (µr∗ , σ
2
r∗), (3)

µz∗ = kT
∗ (K + σ2

nIn)−1z,

σ2
z∗

= k∗∗ − kT
∗ (K + σ2

nIn)−1k∗.
(4)

where k∗∗ = cov(x∗,x∗) is the vector variance of generated
points x∗ and k∗ = cov(x∗,x) is the vector of covariance
between x∗ and training points x. In this work, The conjugate
gradient descent method is utilised to optimise the hyper
parameters of the function kernel. The WiFi map is built up
by predicted points spaced 1m×1m apart.

B. Pedestrian Dead Reckoning
PDR is the technique that uses Inertial Measurement Units

(IMU) to estimate the movement of a person by detecting
steps, estimating stride lengths and the directions of mo-
tions. An IMU is integrated into most of the smart-phone
and provides triaxial orthogonal accelerometers, gyroscopes,
magnetometers, and even pressure sensors. PDR determines
the next position using the previous position, step length and
walking direction, which is expressed as follows:

xk = xk−1 + Lk

[
cos(θk)
sin(θk)

]
, (5)



where xt is the state vector of the device at time step k,
Lk is the step length and θk is the walking direction at time
step k. Some significant problems needs to be solved, such as
estimation of step detection, step length, and walking direction.

1) Step Detection: Steps can be detected by measure-
ments from accelerometers [11] or gyroscopes. In [12], an
accelerometer is used by Normalised Auto-correlation based
Step Counting. In this paper, we use an accelerometer based on
the technique in [12], [10] with some slight modifications. The
algorithm for step detection consists of the following steps:

• Step 1. Calculate the magnitude for the normalisation
factor of every sample i:

ai =
√
a2xi

+ a2yi
+ a2zi . (6)

• Step 2. Calculate the local acceleration deviation, to the
foot activity and to remove gravity:

σai =
1

w

i+w∑
j=i

(aj − āj), (7)

where āj is a local mean acceleration value, computed
by this expression: āj = 1

w

∑i
q=i aq , and w defines the

size of the averaging window (w = 50 samples).
• Step 3. To discriminate between the state of walking and

the state of standing, the deviation is gained by 10 times
using the accumulated window (wg = 10), according to
the following equation: σd =

∑i+wg

j=i (σaj
), where σd is

the deviation for the step detection.
• Step 4. Thresholding: a first threshold is applied to

detect the step with high accelerations, the value can
be calibrated by the user at T (m/s2). If σdi

> T and
previous value σdi−1

< T , the steps will increase by one.
Fig. 2 shows the magnitude of the accelerator deviation before
and after using the accumulated window of this algorithm from
an experiment. The threshold can be calibrated by the users
through an Android application to fit with these smart-phone.
In our experiments, we set a threshold equal to 4.

Fig. 2: The step detection from the accelerometer with the
proposed algorithm.

2) Stride Length Estimation: Stride Length (SL) at every
detected step is necessary to calculate the travelled distance by
the person while walking. The SL can be approximated as a
constant value [13]. however, it varies significantly depending
on the person and according to different parameters, such
as the length of the legs, walking speed and frequency. In
this work, we use the algorithm proposed by Weinberg that
achieve high accuracy by using an accelerometer with the PDR
technique [10] for dynamic walking. The Weinberg algorithm
is as follows:

• Compute the magnitude of accelerations, ai, as in eq. 6
• Low-Pass filter this signal (ãi = LP (a)i). We use a filter

of order 4 and cut-off frequency at 3 Hz.
• Estimate the SL using the Weiberg expression:

L = K 4

√
ãjmax − ãjmin, (8)

where ãjmax and ãjmin are the maximum and minimum
acceleration values after the low-pass filter, respectively. K
is the coefficient that needs to be selected experimentally or
calibrated. This approach takes the dynamics of step length
during walking into consideration.

3) Walking Direction Estimation: To track the user’s path
in PDR, the most crucial factor is the pedestrian walking
direction. It can be estimated from orientation sensors, such
as magnetometers and gyroscopes. The compass calculates the
phone orientation relative to the perceived magnetic north [12].
However, the magnetometer will be affected by noise. There-
fore, an accelerometer is also used as an alternative or in
combination with the magnetometer to improve accuracy [10].
By fusing the output from these sensors, the heading can
be accurately estimated by different algorithms, such as an
Kalman filter [11], Complimentary filter, Madgwick filter, or
Mahony filter [15]. It is important to have a reference for
the heading direction for initialisation. Since it would be
inconvenient for a user to start with a specific direction [11],
we calculate the relative direction using an accelerometer and
a gyroscope with a Madgwick filter [15]. It is not necessary
to measure the absolute heading since an accurate heading-
change estimation can be determined by using the particle
filter. This is enough to guide the particles to propagate in the
right direction.

C. Hybrid algorithm

As mentioned previously, only WiFi fingerprinting cannot
achieve high accuracy in indoor environments. Moreover, the
speed rate to get RSS measurements has significant latency.
In our experiments, the RSS is approximately updated every
two seconds. This means that the indoor positioning system
using only WiFi can experience a low response in real-time
navigation if pedestrians are moving fast. On the contrary,
PDR can provide a high position accuracy in a short range, but
it slowly drifts walking distance. In this work, a particle filter
is utilised to combine PDR with WiFi fingerprinting as shown
in Fig. 3. The particle filter is based on a set of randomly
weighted samples (i.e., the particles) representing the density



Fig. 3: The proposed hybrid framework for indoor positioning.

function of the user’s position. Each particle explores the
environment according to the motion model of the PDR.
These weights are updated at each step once a new position
from the WiFi fingerprinting is estimated. It is possible to
constrain moverments like crossing the walls of a building
map by forcing the weight at 0 for the particles having such
a behaviour. In this work, the WiFi fingerprinting position is
estimated by measuring the probabilities of new visible RSS in
generated training points (WiFi map). We compute K-nearest
weights of these probabilities. The steps of the algorithm are
as follows:

• Step 1: for each access point l, the likelihood is computed
as:

p(rl|x∗) =
1√

2πσ2
x∗

exp(− (rj − µr∗)2

2σ2
x∗

), (9)

where µz∗ and σ2
x∗

are the means and the variances of
predicted points x∗ from equation 4.

• Step 2: giving the location x∗, if each access point is
considered independently, we can compute the weights of
L visible access points in m = [0,M ] predicted training
points by sum of logarithm probability from equation 9
as: ψm =

∑L
l=1 log(p(rl|x∗))

• Step 3: Sort the weights, get K nearest weights (ψk, k =
[1,K],K ≤M ), then they are normalised by:

ψ̄k =
ψk∑K
k=1 ψk

(10)

• Step 4: Estimate WiFi fingerprinting position x̂wifiby

x̂wifi =

K∑
m=1

ψ̄mxm, (11)

where xm is the K nearest predicted training points.
Assuming the state of ith particle at step k as xi

k =
[xik, y

i
k, θ

i
k] has weight wi

k. The Particle filter algorithm to
combine WiFi fingerprinting and PDR is as follows:

• Step 1. Initialisation : set k = 0, generate randomly N
position and heading particles xi

0 and an equal weight
wi

0.
• Step 2. Prediction: determine a new position of each

particle based on walking direction θk and walking length
Lk with a different noise realisation. The motion model
for each particle at step k is shown in equation 5.

• Step 3. Correction/Observation: the weights update
equation is:

wi
k = wi

k−1p(zk|xi
k)p(xk|xk−1), (12)

where p(xk|xk−1) is checking information between the
new position and the map information to make sure
whether the wall is crossed or not. It is equal to 0 if
crossing a wall is impossible and 1 if possible. Then,
normalise the weights: w̄i

k =
wi

k∑N
j=1 wi

k

, i = 1, ..., N.

From the fingerprinting approaches, a position denoted zk
can be calculated by RSS measurements. The probability
distribution p(zk|xik) can be estimated as:

p(zk|xi
k) =

1√
2πσ2

exp(−||xwifi − xi
k||2

2.σ2
), (13)

where xi
k is the position of the ith particle at time step k,

σ2 is the variance based on the error of WiFi fingerprint-
ing. Then, the state estimation can be determined by:

x̂k =
1

N

N∑
i=1

xi
kw̄

i
k. (14)

• Step 4. Resampling : generate a new set of particle
{xi

k}Ni=1 by resampling with replacement N times from
{xj

k}Nj=1, with probability p{xi
k = xjk} = w̄i

k and using
a Sequential Importance Resampling (SIR) [17], which
tries to estimate the probability distribution.

III. EXPERIMENTAL RESULTS

In this section, we evaluate the effectiveness of our im-
proved framework. Our experiments are performed in two
different test-beds to evaluate the performance of different
WiFi techniques (GP and KNN in [13]) and compare the effec-
tiveness of the proposed framework with WiFi fingerprinting
and PDR, respectively.

A. Experimental setup

The first test-bed was at our laboratory room with size 11m
× 9.5m, using three access points that are created by a WiFi
module signal broadcast every 500ms. The training positions
as testing data are collected by an application using a Samsung
SG-G395F running Android 8.0.0.

The second test-bed was on the fifth floor of Krona building
in University of South-Eastern Norway (USN) with size 56.1m
× 61.5m, as shown in Fig. 4. The training data was placed
2.0 meters apart along the corridors. RSS and values of
accelerometer and gyroscope were collected using a data
logging application running on the smart-phone while the user
was walking on the specific trajectory. Then, this data was
saved to a CSV file for experimental evaluation.



Fig. 4: The map for navigation user position considered for
test-bed 2. The trajectory results of 3 different methods along
the corridors are shown.

B. Experiment Evaluation

Two metrics are used to evaluate our framework:

• Accuracy: use root mean square errors of the estimated
position and real position.

• Precision: it is consider how consistently the system
works i.e the robustness of position techniques. A Cu-
mulative probability function (CDF) of the distance error
is used to measure the precision of the system [9].

1) Test-bed 1: evaluation of sparse training data for WiFi
fingerprinting: Data set of training points were experimented
two maps in our laboratory room: map-1 consists of 48 sam-
ples data spatially distributed with 1.5m×1.5m grid spacing;
map-2 consists of 12 samples data spatially distributed with
3m×3m grid spacing. The results of two experiments with 22
testing samples is presented in Table I. Regarding map-1, the
mean errors of the GP method are slightly lower than the KNN
method. However, the position error confidence probability
within 80% is approximately 2.7m for both methods, as shown
in Fig. 5a. In the case of map-2 with sparse samples data , the
average error of the GP method is 2.05m, while the average
error of KNN is 2.3m. Furthermore, at the same 80 % of error
confidence probability, the error of KNN is about 3m, which
is near 0.6 m higher than the error of GP, as shown in Fig. 5b.
The results are shown in Table I. These results show that the
GP is able to accurately extrapolate the signal strength model
into the points for which no training data is available at all.

2) Test-bed 2: Comparison between the hybrid method with
WiFi fingerprinting and PDR: The trajectory results for three

method mean errors (1.5m) mean errors (3m)
GP 1.762 2.05

KNN [13] 1.86 2.3

TABLE I: Mean errors of two different method using training
data spatially distributed with 1m 1m and 3m × 3m grid
spacing.

WiFi with GP PDR Hybrid
Mean errors (m) 2.62 3.9 1.17

TABLE II: Result of mean errors for GP, PDR and Hybrid
method

different methods are shown in Fig. 4. The corresponding
cumulative distribution function of total positioning errors for
the three approaches are illustrated in Fig. 5c. The mean
errors of the three methods are shown in Table II. The green
points are the results from GP fingerprinting, the mean error
is 2.62m and mean error of the PDR method is 3.9m because
of inaccurate heading estimation during walking. While the
hybrid method can obtain a mean error of 1.17m by using
500 particles combined with checking walls from the map and
without an initialised start point. The trajectory is converged
after a few steps relied on WiFi estimation and wall-crossing
detection. The average positioning accuracy of the proposed
framework was reduced by 48% and 70% compared with the
WiFi fingerprinting and the PDR method.

Considering the computational time of the particle filter,
different experimental results are shown in Table III. The
higher number of particles for the filter reaches better accuracy.
However, the computational time is also higher. Constraining
the wall penetration of each particle reduces computation
time. In order to reduce computation cost on the smart-phone,
a server was built by using a Sailjs MVC framework [18]
running on a laptop. All of the databases of the WiFi finger-
printing map and building map are stored on the server using
MySQL.

IV. CONCLUSION AND FUTURE WORK

In this paper, we proposed a framework that combines WiFi
fingerprinting methods and Pedestrian Dead Reckoning (PDR)
by using a particle filter. The Gaussian Process Regression for
WiFi fingerprinting is deployed to generate a WiFi map that
can partially reduce the time of training data and high accuracy
for indoor environments. The proposed hybrid approach makes
it possible to address the well-known drift problem of the
PDR approach. This is possible by combining the PDR with
fingerprinting so that high accuracy can be achieved in a
certain area based on the Received Signal strength (RSS). This
approach also has the advantage that it can be easily deployed

Method Computation Time (ms) Particles
PDR + GP 58 200

PDR + GP + map 85 200
PDR + GP 220 500

PDR + GP + map 278 500
PDR + GP + map 830 1000

TABLE III: Results of the implemented hybrid methods con-
sidering the number of particles used in the filter and the
corresponding computational time.



(a) CDF of errors of two methods using map-1
of test-bed 1

(b) CDF of errors of two methods using map-2
of test-bed 1

(c) CDF of the location errors for the three
approaches of test-bed 2

Fig. 5: Cumulative probability functions results of experiment

in real situations. Moreover, a particle filter is leveraged in
our proposed framework to update each particle based on
the PDR motion model by using effective algorithms for step
detection, stride length and heading. Then, the position of WiFi
fingerprinting estimations is combined with feature maps for
each particle correction. The experiments were conducted in
a real building without additional infrastructures. The results
in experiments indicate the effectiveness of our proposed
framework.

The accuracy of our proposed framework also depends on
the features of indoor environments (e.g. narrow corridors with
walls), drifting value of the PDR method and the number of
access points. In future works, we will attempt to combine
extra information (i.e. landmarks) to achieve a higher locali-
sation accuracy. In this work, the stride lengths are computed
for offline calibration. thus, we will consider calibrating these
parameters while people are working inside the building.
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