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Abstract—In this study, we present an extension to our previous
efforts on automatically detecting text-dependent segmental mis-
pronunciations by Cantonese (L1) learners of American English
(L2), through modeling the L2 productions. The problem of seg-
mental mispronunciation modeling is addressed by joint-sequence
models. Specifically, a grapheme-to-phoneme model is built to
convert the prompted words to their corresponding possible
mispronunciations, instead of the previous characterization of
language transfer through phonological rules. Experiments show
that the proposed approach can better capture the mispronun-
ciations compared with the use of phonological rules.

I. INTRODUCTION

“Mispronunciations” refer to incorrect or inaccurate pro-
nunciations, or simply “errors”. Generally speaking, for non-
native speakers, there can be supra-segmental errors [1] -
occurring in lexical stress, utterance-level stress, intonation
and phrasing, etc.. There can also be segmental errors, e.g.
a common mispronunciation made by Cantonese learners of
English is to produce /b ow f/ for /b ow th/ (“both”). Here, a
phonetic unit in the target language (especially if non-existent
in the learner’s mother tongue) may be substituted with on
that exists in the mother tongue.

The goal of Computer-Aided Pronunciation Training
(CAPT) for language learning is to detect mispronunciations
produced by non-native learners and provide appropriate feed-
back to help them improve. In a typical scenario, the system
prompts the learner with a sentence or paragraph to read
aloud, and preferably detailed feedback is presented to the
learner after the recorded speech is analyzed. For example, a
learner may mispronounce the word “rice” as /I ay s/ (“lice”),
and the CAPT system should be able to respond: “You have
mispronounced the phone /r/ as /I/.”

There has been a great deal of research on mispronunciation
detection to promote Computer-Aided Pronunciation Training
(CAPT) during the past two decades [2]. Most of them
can be classified into two categories: (1) use of confidence
measures based on ASR, e.g. GOP [3] and Scaling Posterior
Probability [4]; and (2) classification using other acoustic-
phonetic features, e.g. LDA on formants and durations [5],
etc.

In our previous work, we adapted the ASR-based framework
for mispronunciation detection by the incorporation of linguis-
tic knowledge and the introduction of an extended pronunci-
ation dictionary or network [6][7][8][9]. We also show that
optimizing the recognizer’s performance metrics in terms of
“false acceptances”, “false rejections” and “diagnostic errors”
is equivalent to minimum word error discriminative training,
and the error minimization can lead to significant performance
boost for the acoustic models [10]. The bottleneck of the
recognizer is the inability to capture as many possible mis-
pronunciation patterns as possible.

The paper aims to break the bottleneck by showing how the
use of grapheme-to-phoneme generation [11] can be applied
to the mispronunciation modeling task.

Our operating assumption is that we can use the ARPABET
to phonetically transcribe L2 English.

The paper is organized as follows: The second section deals
with the corpus preparation. In the third section, the generation
of text-dependent mispronunciation is modeled. The joint-
sequence model originally proposed for grapheme-to-phoneme
conversion is briefly reviewed in the fourth section. The
experimental results and conclusions are given in the fifth and
sixth sections, respectively.

II. CORPUS PREPARATION

Our investigation is based on the CU-CHLOE corpus [12],
which contains recordings of 100 Cantonese-speaking learners
of English (50 male and 50 female) reading minimal pairs,
confusable words, phonemic sentences and the Aesop’s Fable
“The North Wind and the Sun”.

We split the whole corpus into training and testing sets
where the speakers are disjoint, but the text prompts for record-
ing are the same. This means that the training set provides
full lexical knowledge of the test set in terms of canonical
pronunciations. However, the training set does not offer any
knowledge about mispronunciations made by speakers in the
test set. So if the errors are repeated, we claim that the
error generalizes across speakers and are worthy of modeling.
There are indeed errors that are quite idiosyncratic (speaker-
dependent) and are constrained to few speakers. Our objective



TABLE I
STATISTICS ON THE TRAINING AND TESTING SET OF THE CU-CHLOE

CORPUS.
[ Sets [ #of words # of pronunciations _ # of mispronunciations |
training 435 3,794 3,308
testing 435 3,568 3,085
L1 negative transfer
© ©
Fig. 1. A graphical model describing the relationship between the canonical

pronunciations and the surface observations. C - canonical pronunciations; O
- observed pronunciations.

is to model with high priority the more “common” errors that
are generalizable across speakers.

The statistics of the sets in terms of the number of distinct
words, pronunciations and mispronunciations are shown in Ta-
ble I. There is a total of 1448 overlapping mispronunciations in
the training and testing sets. The speech has been annotated by
well-trained linguists with the ARPABET phonetic symbols.

III. MODELING THE TEXT-DEPENDENT PRODUCTION OF
MISPRONUNCIATIONS

Previous works based on context-senstive phonological rule
modeling [6][7][8][9] is basically assuming that the L2 learn-
ers will apply the phonological characteristic of their L1 for
the L2, and this phenomenon dominates. The joint effect of
these rules on a canonical pronunciation can transduce it into
a batch of possible mispronunciations. This process can be
illustrated as a graphical model in Figure 1.

By inspecting a lot of annotated word pronunciations in
the corpus, we find there are mainly three causes of mis-
pronunciations: (1) L1 negative transfer, e.g. “the” can
be mispronounced as /d ax/; (2) Incorrect letter-to-sound
conversion, e.g. “analyst” can be realized as /aenax lay st/
due to its orthographic similarity with “analyze”, and we call
it “mispronunciation by analogy”; (3) Misread words, e.g.
“cloak” is sometimes mistaken for “clock”. Due to the rela-
tively small number of samples of mispronunciations caused
by misread words, we neglect factor (3) in our analysis.

Based on these observations, we first construct an intuitive
graphical model describing explicitly the cause-effect relations
among “prompted word”, its “canonical pronunciation(s)” and
the “observed pronunciations” as shown in Figure 2. Each
directed edge represents the dependency between the two
random variables involved. For example, the edge from W
to C can be interpreted as the dictionary-lookup or memory
recall by the learner, and C' here is hidden since we can not
observe it throughout the process; Likewise, the edge from
C to O indicates the effect of L1 negative transfer, which
is the same as the phonological process depicted in Figure
1; The edge from W to O characterizes the letter-to-sound
conversion.

We see that the observation O has two possible causes: W
and C. Since we do not have the ground truth of whether

L1 negative transfer

Fig. 2. Directed acyclic graph representing the cause and effect relations
among the prompted words, the canonical pronunciations and the observed
surface mispronunciations. W - prompted words; C - canonical pronunciations;
O - observed pronunciations.

letter-to-phone L1 negative transfer
O, o ©

Fig. 3. A new graphical model compactly representing the dependencies
among the prompted words, the canonical pronunciations and the mispronun-
ciations. W - prompted words; F - phone sequences in mind; O - observed
pronunciations.

an observed pronunciation is more likely to be caused by
L1 negative transfer or incorrect letter-to-sound conversion,
directly estimating the parameters of this graphical model is
not easy. To simplify this model, we introduce another latent
variable H between W and O, and decompose the edge from
W to O, denoted by Pr(O|W), to:

Pr(O|W) =Y Pr(O|H)Pr(H|W) (1)
H

Again, Pr(O|H) explains the course of L1 negative transfer
and Pr(H|W) can be regarded as letter-to-phone conversion
by the learner. If we merge the variable H and C' for a new
latent variable F', a compact equivalent form of the original
model is depicted in Figure 3.

This simplification is valid, because it captures the cognitive
process of mispronunciation production. Image when a learner
is given some text prompt to read aloud, he may immediately
generate a sequence of phonemes in his mind. The sequence
can be produced by his own knowledge of letter-to-phone se-
quence conversion if the learner is not familiar with the word,
or the sequence can possibly be the result of a “dictionary
look-up” or memory recall if he is informed about the word.
When the phoneme sequence is articulated, it may be further
distorted by the mechanism of L1 negative transfer.

Now, the problem has been casted to estimating Pr(O|W)
instead of estimating the structure of Pr(O|C') in [10][13], and
it looks extremely similar to the grapheme-to-phoneme con-
version problem. We reference the state-of-the-art technique of
generative joint-sequence model. A brief review will be given
in the next section.



IV. THE BISANI AND NEY’S JOINT-SEQUENCE MODEL

The approach taken by Bisani and Ney for grapheme-to-
phoneme conversion is generative [11]. Given a sequence of
letters g, the task of grapheme-to-phoneme conversion can be
formalized as getting the N-best phone sequence ¢ such that
p(¢|g) is maximized. By Bayes’ decision rule, it is equivalent
to maximizing p(g, ¢).

The joint probability p(g, ) can be expressed as:

> plo) )

q9€S(9,9)

p(g,¢) =

where ¢ = (g, ¢), called a graphone, is the pair of a letter
sequence and a phoneme sequence of possibly different length.
S(g, ®) is the set of all co-segmentations of g and ¢:

S(g,9) =

Equation (2) is simply saying the joint probability p(g, ¢)
is determined by summing over all matching graphone se-
quences. Hence, p(g,¢) has been reduced to a probability
distribution p(gq) over graphone sequences ¢ = ¢1,...,qxK,
where K = |g| is the length of the graphone sequence g.

The graphone sequence can be further modeled using a
standard M-gram approximation:

{alag, U Ugge = 9509, U... Uy, = 0} (3)

K+1
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By introducing the symbol h to denote the sequence of
preceding joint units h; = (gj—amr41,---5qj—1)> Ng,n(Q)
is defined as the number of occurrences of the M-gram
Gj—M+1,---,qj In g. Starting from model parameters initial-
ized by assigning a uniform distribution over all graphones
satisfying certain manually set length constraints, an EM
procedure is employed to re-estimate the model parameter 6,
iteratively:
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where 7' is the number of training samples.

Standard M-gram language modeling techniques including
“evidence-trimming” to avoid over-fitting and “model smooth-
ing” to extend the generalizability are later applied when
ramping up the lower-order model to a higher-order one.

Q‘gza oi; )nq, (Q)

p(g;9)
6
Eq’ES(gimp(q';9)”q»h(q) 6)

p(qlh; 0") = 7)

Given the estimated the model, an N-best search is per-
formed based on the posterior p(¢|g):

_p(9,9)  2qes(g.e)P(@)
plolg) = P80 — Zesstas ®
where,
=> plg,0)= > pla) )
¢ g(q)=g

V. EXPERIMENTS
A. Baseline Setup

In [10][13], the context-sensitive phonological rules takes
the form:

p—=v /N _p

This rule is interpreted as follows: v in the target language
may be pronounced as i) when following A and preceding p.
In [6] and [7], the A and p in the context can include multiple
phones, a group of phones (e.g. the set of vowels, denoted by
the symbol “V”) or no phones, while ¢ and v in the rewrite
mapping are restricted to a single phone.

The rules {r;} are expressed as Finite State Transducers
using the open-source toolkit OpenFST [14]. The Extended
Recognition Network (expressed as Finite State Acceptor)
comprising the possible pronunciations [9] can be obtained
by applying the rules to the canonical pronunciation ¢ based
on the following expression:

(10)

U ((Id) Ur;))o ((Idx)Ury)o...o((Idx)Ury) (11)

where o is the composition operation, U is the union operation,
x is the closure operation, N is the number of rules and Id is
the identity FST which transduces every input symbol to the
output intact. The expression is simply saying that each rule
can be independently applied to any location of the canonical
pronunciation if there is a match. The respective outputs by
each rule are unified, to which the rules are further applied in
a cascade fashion.

The rules in [9] are manually derived from second-language
acquisition literature, and are thus knowledge-based. Later,
data-driven rule extraction approaches are proposed [10][13].
¢ and 1) are allowed to incorporate multiple phones to capture
interesting patterns from the data, but the context is restricted
to one single phone only, and the symbol “#” is used to denote
word boundaries.

In [13], to form a basic set of rules, the manually labeled
L2 transcriptions in the training set are first aligned with their
canonical pronunciations using phonetically-sensitive align-
ment [8] and then all mismatched phone pairs are extracted
with their left and right contextual phones. To alleviate false
alarms, these rules are first sorted in descending order accord-
ing to the number of occurrences in the training set, and then
they are pruned incrementally to optimize for their F-measure
[13]. Since it is combinatorially hard to determine the set of
rules given a particular set size, especially when some of the



TABLE 11
PERFORMANCE OF THE KNOWLEDGE-BASED RULE AND THE DIFFERENT
SETS OF DATA-DRIVEN RULES PRUNED BY THE NUMBER OF SUPPORTING
SAMPLES IN THE TRAINING SET. THE “PRECISION” AND “RECALL”
SHOWN BELOW ARE ALL WORD-BASED.

rules threshold training testing
Knowledge precision recall precision recall
23.98% 15.96% 23.66% 16.88%
3 7.81% 34.70% 7.22% 34.39%
4 9.07% 30.77% 8.53% 31.05%
5 12.80% 26.09% 12.34%  27.81%
. 6 16.10% 24.33% 1572%  25.48%
data-driven
7 20.65% 21.49% 20.80%  23.21%
8 21.95% 19.62% | 22.35%  21.43%
9 25.22% 17.50% 25.78% 19.19%
10 54.45% 16.26% | 55.47% 17.76%

rules have the same number of occurrences, in this study we
prune rules according to different thresholds of occurrences.
For the sake of comparison, we define the following measures:

o precision - the number of modeled mispronunciations
over the number of mispronunciations returned by the
rule set;

o recall - the number of modeled mispronunciations over
the number of mispronunciations found in the evaluation
set.

The statistic on these different sets of rules is shown in Table
II. One the one hand, the data-driven rules can outperform
the knowledge-based rules in terms of both precision and
recall (see the row with a threshold of 9 in Table II); On
the other hand, data-driven rules offer more flexibility in
optimizing for the mispronunciation detection and diagnosis
performance [13]. As the data-driven rules are more favorable
than knowledge-based rules, the knowledge-based rules are not
further analyzed. Only the sets of data-driven rules are setup
as the baseline.

Although the recall of the rule sets seems to be low, we point
out that among the data-driven rules, even the rule set with
the lowest recall (see last row of Table II) can capture 9666
mispronounced tokens out of 14414 mispronounced tokens in
the training set (67.06%), and 9197 out of 13624 in the testing
set (67.51%), due to the repeated occurrences of common
erTors.

B. Experiments on the Joint-sequence model

Our implementation of the grapheme-to-phoneme joint-
sequence model is based on the Open-source Sequitur G2P
toolkit. All pairs of letter sequence (prompted word) and
phoneme sequence (annotated pronunciation) in the training
set are used to estimate the joint-sequence models.

To compare the performance of the joint-sequence model
fairly with the data-driven rules, for each word in the training
set, we generate from the joint-sequence model the same
number of N-best pronunciations as are returned by the
respective sets of data-driven rules. The precision versus recall
plot for these two approaches is shown in Figure 4. We see

1 - - - -
*  data—driven (train)
+  joint-sequence (train)
0.8} + % data—driven (test)
+ O joint-sequence (test)
+
061 +
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Fig. 4. Precision versus recall plot for the data-driven rules and the joint-
sequence models in both training and testing sets.

the precision recall curve by the joint-sequence model extends
away significantly from the origin. This is explained by the
joint-sequence model’s capability to model directly the letter-
to-sound errors in the data, while in such cases the data-driven
rule approach based on alignments between the canonical
pronunciation and the mispronunciation would possibly leads
to many unjustifiable phonological rules that generalize poorly.

C. Mispronunciation Detection and Diagnosis

To further investigate the effect of predicting mispronun-
ciations by joint-sequence models on the acoustic models,
we carry out mispronunciation detection and diagnosis by
populating each word’s phone lattice with its possible mis-
pronunciations predicted by the joint-sequence model.

We train cross-word, tied-state, Gaussian mixture, triphone
HMMs on TIMIT in Maximum Likelihood, and adapt those
with the training set using Constrained Maximum Likelihood
Linear Regression [15] to compensate for the mismatch be-
tween the native and non-native model space.

This model is utilized to align the mispronunciation phone
lattices from both the data-driven rule and the joint-sequence
model with the L2 speech in the testing set. In general,
the recognition performance in terms of the percentage of
matching words (having the same phone sequence) between
the manual transcription and recognition output is shown in
Figure 5. By using the lattice from the joint-sequence model,
the percentage of matching word tokens is higher than those
yielded by the data-driven rules almost everywhere.

Since most of the “Diagnostic Errors” are caused by failing
to include the actual mispronunciation in the lattice [10], and
the joint-sequence model is designed specifically to tackle this
problem, we inspect particularly at the “Diagnostic Accuracy”
in the testing set, which is defined as the number of correct
word diagnosis (correctness in identifying the type of word
mispronunciations, e.g. identifying /r ay s/ — [/l ay s/ )
over the number of truly detected word errors. A comparison
of the diagnostic accuracy between the joint-sequence model
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Fig. 5.  Performance of the recognition in terms of word accuracy in

the testing set. The rules are pruned according to different thresholds of
occurrences, and the same number of N-best pronunciations are generated
from the joint-sequence model as are returned by the respective sets of data-
driven rules.
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Fig. 6. Comparison of the recognizer’s diagnostic accurarcy between the

lattice generated by joint-sequence model and the one generated from the
data-driven rule.

and the data-driven rule is illustrated in Figure 6, and the
joint-sequence model seems achieves higher accuracy over the
data-driven rules on the accuracy. This confirms our claim on
constructing decoding lattice by possible word mispronuncia-
tions more accurately.

VI. CONCLUSIONS

In this work, we formalize the sub-problem of mispronunci-
ation modeling in ASR-based text-dependent mispronunciation
detection as a grapheme-to-phoneme conversion problem. The
state-of-the-art joint-sequence model is applied to predict pos-
sible mispronunciation patterns for each word. Experimental
results on our L2 speech corpus shows it can populate the
extended recognition network with mispronunciation patterns
more accurately and compactly. Correspondingly, it also offers

mispronunciation diagnosis improvement on our baseline ASR
system. Combining it with discriminative training [10] is
expected to boost the system performance of mispronunciation
detection and diagnosis further.
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