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ABSTRACT

This paper investigates the small sample-size problem in i-vector
based speaker verification systems. The idea of i-vectors is to rep-
resent the characteristics of speakers in the factors of a factor ana-
lyzer. Because the factor loading matrix defines the possible speaker-
and channel-variability of i-vectors, it is important to suppress the
unwanted channel variability. Linear discriminant analysis (LDA),
within-class covariance normalization (WCCN), and probabilistic
LDA are commonly used for such purpose. These methods, how-
ever, require training data comprising many speakers each provid-
ing sufficient recording sessions for good performance. Performance
will suffer when the number of speakers and/or number of sessions
per speaker are too small. This paper compares four approaches to
addressing this small sample-size problem: (1) preprocessing the i-
vectors by PCA before applying LDA (PCA+LDA), (2) replacing
the matrix inverse in LDA by pseudo-inverse, (3) applying multi-
way LDA by exploiting the microphone and speaker labels of the
training data, and (4) increasing the matrix rank in LDA by gener-
ating more i-vectors using utterance partitioning. Results based on
NIST 2010 SRE suggests that utterance partitioning performs the
best, followed by multi-way LDA and PCA+LDA.

Index Terms— Speaker verification, i-vectors, LDA, utterance
partitioning, multi-way LDA.

1. INTRODUCTION

Current state-of-the-art speaker verification systems typically repre-
sent the acoustic characteristics of a speaker by converting his/her
variable-length utterances into fixed-length vectors. These vectors,
called identity vectors or i-vectors for short [1], live on a low-
dimensional space known as the total variability space. Given a
training set containing utterances produced by many speakers, the
total variability space can be obtained by factor analysis [1, 2].
This space represents the possible variability, including speaker and
channel variability, of i-vectors. Specifically, the GMM-supervector
[3] representation of an utterance is given by'
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where m is the GMM-supervector representation of the universal
background model (UBM), T is a low-rank loading matrix repre-
senting the total variability space, and w is the i-vector that com-
prises the factors (latent variables) representing the speaker’s char-
acteristics. Therefore, instead of using the high-dimensional super-

' A GMM-supervector is formed by stacking the mean vectors of a Gaus-
sian mixture model.

vector m to represent the speaker s, the i-vector approach repre-
sents a speaker by a low-dimension vector w, typically of dimen-
sion 400. During verification, given a test utterance, the i-vector wy
corresponding to the test utterance is compared with the i-vector of
the claimed identity using the cosine distance measure.

Representing the i-vectors in a low-dimensional space opens
up opportunity for using machine learning techniques such as lin-
ear discriminant analysis (LDA) [4], within-class covariance nor-
malization (WCCN) [5] and probabilistic LDA (PLDA) [6] to sup-
press session- and channel-variability. The key idea is to estimate
the channel variability from these training data and to project the
target and test i-vectors to a subspace with minimum channel vari-
ability. While these techniques have achieved state-of-the-art perfor-
mance in recent NIST Speaker Recognition Evaluations (SRE), they
require multiple training speakers each providing sufficient numbers
of sessions to train the transformation matrices. When the number
of training speakers and/or number of recording sessions per speaker
are insufficient, numerical difficulty or error will occur in estimating
the transformation matrices, resulting in inferior performance. This
paper investigates and proposes several approaches to overcoming
this resource-constrained scenario:

1. PCA+LDA. The numerical difficulty in estimating the trans-
formation matrices is due to insufficient rank in the within-
speaker covariance matrix. We investigated using PCA to
project the training i-vectors to a lower dimension space prior
to computing the within-speaker scatter matrix [7, 8]. With
the reduction in the dimension of i-vectors, the rank require-
ment of LDA and WCCN can be reduced to a comfortable
level for reliable estimation of the LDA and WCCN transfor-
mation matrices.

2. Pseudo-inverse LDA. The rank deficiency problem can be
avoided by replacing the inverse of the within-speaker scatter
matrix by its pseudo inverse [9, 10]. The idea is that dur-
ing eigen-decomposition, any components with eigenvalues
smaller than a threshold will be automatically discarded by
the pseudo-inverse procedure.

3. Multi-way LDA. In the classical i-vector based approach, co-
variance analysis is only applied to the speaker domain for
computing the within-speaker scatter matrix and between-
speaker scatter matrix. The assumption is that each training
i-vector has a speaker label and that each speaker provides
a number of utterances (i-vectors) using a variety of micro-
phones. However, the approach ignores the fact that in most
cases the same set of microphones are used in the recording
sessions for all training speakers. We propose exploiting this
extra information to strengthen the discriminative capability



of LDA (see Section 4 for details). We refer to this approach
as “Multi-way LDA”.

4. Utterance Partitioning. We applied our previously proposed
utterance partitioning technique [11, 12] to create more ses-
sions and i-vectors per training speaker to estimate the trans-
formation matrices. More precisely, rather than using a sin-
gle i-vector to represent a full-length utterance, the utterance
is partitioned into a number of sub-utterances whose length is
long enough for the i-vectors to capture the speaker character-
istics. For example, if a full-length utterance is divided into
four sub-utterance, a total of five i-vectors can be obtained.

Our key findings are that when the number of sessions per
speaker for training the LDA and WCCN projection matrices is
less than four, both PCA and pseudo-inverse can help alleviate
the numerical difficulty occurred in estimating the inverse of the
within-speaker scatter matrices. It was found that multi-way LDA
can make better use of the structured information in the training
i-vectors, thus resulting in better performance than both PCA+LDA
and pseudo-inverse LDA. The best performance is achieved by ut-
terance partitioning. The reason is that, unlike the other methods,
utterance partitioning can make the full use of the limited training
data by avoiding the information contents of i-vectors to become
saturated [12].

2. RELATED WORK ON SMALL SAMPLE-SIZE
PROBLEMS

There are many applications in which the dimensionality of data is
larger than the number of training samples. For examples, in mi-
croarray data analysis [13], the number of genes tends to be much
larger than the number of samples. In face recognition [14], the fea-
ture dimension is usually very high because it is proportional to the
number of pixels. In machine learning literature, this is known as the
small sample-size problem.

To apply LDA for classification or dimension reduction, the
small sample-size problem will become an issue when the number
of training samples is small but the feature dimension is high. This
is because the LDA solution requires the computation of the inverse
of the within-class scatter matrix, which may become singular when
the number of training samples is small. Over the years, a number
of methods have been proposed to address this problem.

A simple approach is to use PCA to reduce the dimension of
the original vector before applying LDA to find the optimal discrim-
inant subspace [7, 8]. The method is known as PCA+LDA in the
literature. The dimension of the PCA projection space is selected
such that the within-class scatter matrix becomes nonsingular so that
LDA can be applied without numerical difficulty. The singularity
problem has also been overcome by replacing the matrix inverse by
pseudo-inverse [9, 10] or by adding a constant to the diagonal ele-
ments of the scatter matrix [15]. The former is called pseudo-inverse
LDA and the latter is known as regularized LDA. The advantage of
pseudo-inverse LDA is that components with eigenvalues smaller
than a threshold are automatically discarded, thus avoiding the sin-
gularity problem. While it can be shown that the regularized scatter
matrix is always nonsingular, the regularized LDA is harder to use
because the amount of diagonal offset needs to be determined by
cross validation. A more general formed of regularized LDA is the
penalized LDA [16]. Instead of adding a positive diagonal matrix
to the scatter matrix, penalized LDA adds a symmetric and positive
semi-definite matrix to the scatter matrix in order to produce spa-
tially smooth LDA coefficients.

More recently, null-space LDA [17, 18] and orthogonal LDA
[19, 20] have been proposed to address the small sample-size prob-
lem. In null-space LDA, the between-class distance is maximized
in the null space of the within-class scatter matrix. The singularity
problem is implicitly avoided because no matrix inverse is needed.
The method reduces to the conventional LDA when the within-class
scatter matrix has full rank. In orthogonal LDA, the discriminant
vectors are orthogonal to each other, and the optimal transformation
matrix is obtained by simultaneous diagonalization of the between-
class, within-class, and total scatter matrices. Again, the singularity
problem has been avoided because matrix inverse is only applied to
the diagonal matrix containing non-zero singular values [19]. It has
been shown that when the rank of the total scatter matrix is equal
to the sum of the rank of the between-class and within-class scatter
matrices, orthogonal LDA is equivalent to null-space LDA [20].

3. I-VECTOR BASED SPEAKER VERIFICATION

Because i-vectors contain both speaker and channel variation in the
total variability space, inter-session compensation plays an impor-
tant role in the i-vector framework. It was found in [1] that pro-
jecting the i-vectors by LDA followed by WCCN achieves the best
performance.

The idea of LDA is to find a set of orthogonal axes for mini-
mizing the within-class variation and maximizing the between-class
separation. In the i-vector framework, the i-vectors of a speaker con-
stitute a class, leading to the following objective function [4]:

A= arg;nax {tr {(ATSwSA) - (ATSbSA)} } 2)

where A defines the optimal discriminant subspace on which the i-
vectors should be projected, S., s is the within-speaker scatter matrix,
and Sy, is the between-class scatter matrix. Given a set of training
i-vectors {w;-;i =1,...,5,j=1,..., M;} where S is the number
of training speakers and M; is the number of utterances from the ¢-th
training speaker, these two scatter matrices are written as:
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where p’ = J%fl Z;\Ql w§- is the mean i-vector of the ¢-th speaker
and p is the global mean of all i-vectors in the training dataset. Max-
imizing Eq. 2 leads to the projection matrix A that comprises the
leading eigenvectors of S+ Sp..

WCCN [5] was originally used for normalizing the kernels in
SVMs. In the i-vector framework, WCCN is to normalize the within-
speaker variation. Dehak et al. [1] found that the best approach is
to project the LDA reduced i-vectors to a subspace specified by the
square-root of the inverse of the following within-class covariance
matrix:

M,

i
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where ,u = M ZM‘ ATw! and A is the LDA projection matrix.
The WCCN prOJectlon matrlx B can be obtained by Cholesky de-
composition of W~* = BB.
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During verification, the cosine distance between the claimant’s
i-vector (w;) and target-speaker’s i-vector (w;) in the LDA+WCCN
projection space [21]:

(B"ATw;,B"ATw,)
[B7ATw. [ [BTATw. |
The score is then further normalized (typically by ZT-norm [22])
before comparing with a threshold for making a decision.

(6)
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4. MULTI-WAY LINEAR DISCRIMINANT ANALYSIS

Conventional LDA uses the information of speaker labels and a
variety of microphone recordings per speaker to obtain the within-
speaker and between-speaker scatter matrices. As a result, the
method performs covariance analysis on the speaker domain only,
ignoring the fact that the training speakers typically use the same set
of microphones for recording. Here, we propose exploiting this extra
information to strengthen the discriminative capability of LDA.

More precisely, the i-vectors of the training speakers are ar-
ranged in a grid, where the rows represent the speakers, the columns
represents the microphones, and each element in the grid repre-
sents an i-vector. The dimension of i-vectors is firstly reduced by
projecting the i-vectors to a subspace that maximizes the within-
microphone variation, which represents the dispersion of i-vectors
along the columns of the grid. The objective function is:

C = argmax [tr (CTSme)] i=1,...,L (@)
Cifle;[|=1
where C = [c1 c2 -+ cr] defines the optimal discriminant sub-

space of dimension L on which the i-vectors should be projected
and S, is the within-microphone scatter matrix:
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where p; = éZil w) is the mean i-vector of the j-th micro-

phone, S is the number of training speakers, and M is the number
of microphones. Maximizing Eq 7 leads to the projection matrix
C that comprises the L leading eigenvectors of S,,.,,. Then, conven-
tional LDA can be applied to the dimension reduced i-vectors, which
amounts to finding a subspace that maximize the speaker separabil-
ity but minimize the within speaker variability (along the rows of the
grid).

Note that unlike PCA where the labels of training data are ig-
nored, Egs. 7 and 8 make use of both speaker and microphone labels
of the training data. The use of microphone labels is expected to find
a more discriminative subspace than the one found by PCA. Because
for each column in the grid, the i-vectors are produced by different
speakers using the same microphone, more discriminative subspace
can be found by maximizing the separability of different speakers
using the same microphone. It is however not desirable to minimize
the between-microphone variability because the rank of between-
microphone scatter matrix Sy, is typically very small. For example,
in our experiments, the maximum value of M is §, meaning that the
rank of Sy, is only 7.

5. EXPERIMENTS

Speech Data and Acoustic Features: The extended core set of
NIST 2010 Speaker Recognition Evaluation (SRE) was used for per-
formance evaluation. This paper focuses on the interview and micro-
phone speech of the extended core task, i.e., Common Conditions 1,

2,4,7 and 9. The equal error rate (EER) and the new minimum De-
tection Cost Function (DCF) were used as performance indicators.
NIST 2005-2008 SREs were used as development data (UBM, total
variability subspace training, LDA, WCCN, T-norm, and ZT-norm).
Only the interview and microphone speech of male speakers in these
corpora were used. Silence regions of the utterances in these corpora
were removed by a VAD [23]. Cepstral mean normalization [24] was
then applied to the MFCCs, followed by feature warping [25] using
a window of 3 seconds. 19 MFCCs together with energy plus their
Ist- and 2nd-derivatives were extracted from the speech regions of
each utterance, leading to 60-dim acoustic vectors.

Total Variability Modeling and Channel Compensation: The i-
vector systems use a gender-dependent UBM with 1024 mixtures.
We selected 6,102 utterances from 191 speakers (each with at least
8 utterances) in NIST 2005-2008 SRE to estimate a total variability
matrix with 400 total factors. A modified version of the BUT JFA
Matlab code was used for i-vector training and scoring. Before cal-
culating the verification scores, LDA and WCCN projections were
performed for channel compensation. We used the same data set for
training the total variability matrix to estimate the LDA and WCCN
matrices. After LDA and WCCN projections, the dimension of i-
vectors was reduced to 150.

Scoring Method and Score Normalization: We adopted cosine
distance scoring. ZT-norm [22] was used for score normalization.
288 T-norm utterances and 288 Z-norm utterances (each from a dif-
ferent set of speakers) were selected from the interview and micro-
phone speech in NIST 2005-08 SREs.

6. RESULTS AND DISCUSSIONS

6.1. Comparison of Different Methods

This experiment aims to investigate the performance of three differ-
ent methods for solving the small sample-size problem. These meth-
ods are PCA + LDA, pseudo-inverse LDA, and utterance partition-
ing. Table 1 shows the performance achieved by these approaches
when the number of recording sessions per training speaker (M) in-
creases from 2 to 8 or above. The performance is obtained by con-
catenating the scores under Common Conditions 1, 2, 4, 7, and 9
in NIST 2010 SRE. The performance achieved by “Without LDA
and WCCN” is considered as the baseline. For “LDA+WCCN?”, the
performance is very poor when M < 3, because the within-speaker
scatter matrix is close to singular. Only when M > 4, the benefit
of LDA+WCCN becomes apparent. These observations also agree
with the findings in [26].

Table 1 also shows the following properties:

1. when M < 3, pseudo-inverse LDA can help avoid the sin-
gularity problem. However, this methods lead to i-vectors
that perform even poorer than those without LDA+WCCN
projections. When the within-class scatter matrices have full
rank (M > 4), the performance of pseudo-inverse LDA is the
same as the classical LDA.

2. Preprocessing the i-vectors by PCA can not only avoid the
singularity problem but also help the LDA to find a better
projection matrix. However, when the rank of within-class
scatter matrices is too low (e.g., when M = 2), the perfor-
mance of PCA is poorer than those without LDA+WCCN
projections. Moreover, the effect of PCA diminishes when
the number of recordings per training speaker is sufficient
(M > 8).

3. Utterance partitioning is an effective way to produce more
informative i-vectors from a single utterance, thus effectively



No. of utts. per speaker (M) MinNDCF EER (%)
Systems 2 [ 3[4 [S5ST6[7[=>8 Systems M=7][M=8||M=7]M=38
gg)) z{i)i“’“tvbgg;“d WCEEN ;gg gg‘s’ 162-;0 1525610 142-5690 142-2620 122-;0 (A) Without LDA and WCCN 090 | 090 | 12.60 | 12.60
(C) PI-LLDA + WCCN 19.02[20.90 | 6.98 | 5.51 | 459 | 422 | 2.98 (B) LDA + WCCN _ 0.9 _ 15.29
(D) PCA + LDA + WCCN 1337 ] 9.05 | 629 | 5.14 | 432 | 3.86 | 2.98 (C) PI-LDA + WCCN 1.00 | 099 || 2333 | 15.29
(E) UP-AVR + LDA + WCCN || 6.14 | 5.08 | 4.46 | 3.88 | 3.83 | 3.65 | 2.90 (D) PCA + LDA + WCCN 0.97 0.96 1027 | 9.13
(a) EER(%) (E) MW-LDA + WCCN 0.92 0.93 9.97 8.85
No. of utts. per speaker (M)
Systems 2 [3[4]5]6]7]>8 Table 2: The performance of Multi-way LDA and other LDA meth-
(A) Without LDA and WCCN ][ 0.90]0.90] 0.90 [ 0.90 [ 0.90 [ 0.90 | 0.90 ods. MW-LDA + LDA: Multi-way LDA. M = x means each speaker
(B) LDA + WCCN 1.00 | 1.00 | 0.87 | 0.81 | 0.76 | 0.75 | 0.63 only has x recordings for training the LDA and WCCN matrices. “-”
(C) PI-LDA + WCCN 0.99 | 1.00 | 0.87 | 0.81 | 0.76 | 0.75 | 0.63 denotes the situation where singularity occurs when estimating the
(D) PCA + LDA + WCCN 1.00]0.95]0.88 [ 0.82]0.77 [ 0.73 ] 0.63 projection matrices.
(E) UP-AVR + LDA + WCCN [[0.91 [ 0.87 | 0.82]0.78 [ 0.75 | 0.74 | 0.65
(b) MinNDCF

Table 1: The performance of different methods for alleviating the
small sample-size problem in LDA. M = x means each speaker
only has x recordings for training the LDA and WCCN matrices.
M > 8 means each speaker provides at least 8 recordings, with
an average of 31 recordings per speaker. “LDA”: the conventional
LDA; “PI-LDA”: pseudo-inverse LDA; “PCA + LDA”: perform
PCA before LDA.
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Fig. 1: EER versus the dimension after PCA projection. M = z
means each speaker only has x recordings for training the LDA and
WCCN matrices.

avoiding the singularity problem in LDA. It also achieves the
best performance among all methods investigated.

Fig. 1 shows the effect of varying the dimension of PCA projec-
tion on the performance of PCA+LDA. The results suggest that when
the number of sessions per speaker (M) is equal to two, PCA cannot
help the LDA for all projection dimension. In fact, the performance
is even poorer than that without LDA (dotted line). This is caused
by insufficient data for training the LDA, even though PCA can alle-
viate the singularity problem. The result also suggest that setting the
PCA projection dimension close to the rank of within-class scatter
matrices is not a good idea when M < 3.

6.2. Multi-way Linear Discriminant Analysis

To compare the effectiveness of PCA+LDA and multi-way LDA,
we selected 63 male speakers from NIST 2008 SRE for training the
LDA and WCCN projection matrices. Unlike the previous experi-
ments, these speakers use the same set of microphones in the record-
ing sessions. This arrangement allows us to arrange the training i-

207
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Fig. 2: EER versus the dimension of the projected i-vectors in the
first stage of PCA+LDA and multi-way LDA. The number of record-
ings per speaker is 8 (M = 8). Refer to Section 6 for the explanation
of “Ist stage”.

vectors in a grid, as explained in Section 4.

Note that both PCA+LDA and multi-way LDA divide the inter-
session compensation into two stages. In the 1st stage, i-vectors
are projected into a lower dimensional space via PCA or via the
matrix C in Eq. 7. Then, in the 2nd stage, the dimension of the
projected i-vectors is further reduced by LDA to 60.> Fig 2 shows
the effect of varying the projection dimension in the first stage for
both PCA+LDA and multi-way LDA. Evidently, the performance of
both methods has a similar trend with respect to this dimension, with
multi-way LDA always performs slightly better than PCA+LDA for
all projection dimensions. Table 2 also shows that multi-way LDA
outperforms PCA+LDA.

7. CONCLUSION

Four techniques aiming to alleviate the small sample-size problem
in estimating the LDA and WCCN projection matrices in i-vector
based speaker verification have been compared. It was found that
utterance partitioning is the most effective way to alleviate the small
smaple size problem, followed by multi-way LDA and PCA+LDA.

ZBecause rank (S;;'Sp) = min {400, 5 — 1} = 62, the projected di-
mension should be set to a value smaller than this rank.
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