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Abstract

In this paper, we apply the NetFV and NetVLAD layers for the
end-to-end language identification task. NetFV and NetVLAD
layers are the differentiable implementations of the standard
Fisher Vector and Vector of Locally Aggregated Descriptors
(VLAD) methods, respectively. Both of them can encode a se-
quence of feature vectors into a fixed dimensional vector which
is very important to process those variable-length utterances.
We first present the relevances and differences between the clas-
sical i-vector and the aforementioned encoding schemes. Then,
we construct a flexible end-to-end framework including a con-
volutional neural network (CNN) architecture and an encoding
layer (NetFV or NetVLAD) for the language identification task.
Experimental results on the NIST LRE 2007 close-set task show
that the proposed system achieves significant EER reductions
against the conventional i-vector baseline and the CNN tempo-
ral average pooling system, respectively.

Index Terms: language identification, NetFV, NetVLAD, end-
to-end, variable length

1. Introduction

Language identification (LID) is a kind of utterance-level
paralinguistic speech attribute recognition task with variable-
length sequences as inputs. For the input utterances, the dura-
tion might range from a few seconds to several minutes. Be-
sides, there are no constraints on the lexical words thus the
training utterances and test segments may have phonetic mis-
match issue [1]]. Therefore, our purpose is to find an effective
and robust method to retrieve the utterance-level information
and encode them into fixed dimensional vector representations.

To address the variable-length inputs issue for acoustic
feature based LID, many methods have been proposed in the
last two decades. The deterministic Vector Quantization (VQ)
model is used for LID in [2} 3. VQ assigns the frame-level
acoustic features to the nearest cluster in codebook and cal-
culates the VQ distortions. Every language is characterized
by an occupancy probability histogram. Compared to VQ, the
Gaussian Mixture Model (GMM) is capable to model the com-
plex distribution of the acoustic features [4] and generates soft
posterior probabilities to assign those frame-level features to
Gaussian components. Once the GMM is trained, the zero-
order and first-order Baum-Welch statistics can be accumulated
to construct a high dimensional GMM Supervector [1} |5, 6],
which is considered as an utterance-level representation. Fur-
thermore, the GMM Supervector can be projected to a low
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rank subspace using the factor analysis technique, which re-
sults in the i-vector [[7, 8. Recently, the posterior statistics
on each decision tree senones generated by the speech recogni-
tion acoustic model are adopted to construct the phonetic aware
DNN i-vector [9], which outperforms the GMM i-vector in LID
tasks [[10} [11} [12]] due to the discriminative frame level align-
ments.

More recently, some end-to-end learning approaches are
proposed for the LID task and achieved superior perfor-
mances [13,/14]. However, these methods may lack the flexibil-
ity in dealing with duration-variant utterances. This is mainly
because the deep learning module (fully-connected layer) or
the development platform usually requires fixed-length inputs.
Each utterance with different number of frames has to be zero
padded or truncated into fixed-size vectors. This is not a de-
sired way to recognize spoken languages, speaker identities or
other paralinguistic attributes on speech utterances with various
durations. To address this problem, recurrent neural networks
(RNN), e.g. Long Short-Term Memory (LSTM) [15]], is intro-
duced to LID and the last time-step output of the RNN layer is
used as the utterance-level representation [16]. Stacked long-
term time delay neural networks (TDNN) is adopted to span a
wider temporal context on the inputs and a hierarchical structure
is built to predict the likelihood over different languages [17].
Alternatively, modules like temporal average pooling (TAP),
are proposed to perform statistic measures on the length-variant
feature sequences in order to generate fixed dimensional repre-
sentations for LID [18} [19]. These end-to-end systems perform
well, however, the simple statistic measures are performed glob-
ally on all the frame level features (e.g. average pooling) which
may smooth out the information on each clusters. In our early
works, we imitate the GMM Supervector encoding procedure
and introduce a learnable dictionary encoding (LDE) layer for
the end-to-end LID system [20, 21]. The success of LDE layer
in the end-to-end LID framework inspires us to explore different
encoding methods which may be feasible for the LID task.

In this paper, we adopt NetFV [22] and NetVLAD [23]
in our end-to-end LID task and explore the feasibility of this
two methods. NetFV is the “soft assignment” version of stan-
dard Fisher Vector (FV) [24. 125} 26| and is differentiable which
could be easily integrated to an end-to-end trainable system.
Meanwhile, Vector of Locally Aggregated Descriptors (VLAD)
proposed in [27] is a simplified non-probabilistic version of
the standard FV and similarly, VLAD is further enhanced as
a trainable layer named NetVLAD in [23]. Standard FV and
VLAD have been widely employed in computer vision tasks
such as image retrieval, place recognition and video classifica-
tion [26, 27, 28]. Moreover, both NetFV and NetVLAD are
considered as more powerful pooling techniques to aggregate
variable-length inputs into a fixed-length representation. This
two encoding layers have been widely used and perform well



in vision tasks [22] 23| 29]]. As for the LID task, we employ
a residual networks (ResNet) [30] as the front-end feature ex-
tractor, and use NetFV or NetVLAD to encode the variable-size
CNNs feature maps into fixed-size utterance-level representa-
tions. Experimental results on NIST LRE 07 show that the pro-
posed method outperforms the GMM i-vector baseline as well
as the TAP layer based end-to-end systems. Moreover, the pro-
posed end-to-end system is flexible, effective and robust in both
training and test phases.

The following of this paper is organized as follows: Sec-
tion [2] explains the LID methods based on the GMM i-vector,
NetFV and NetVLAD as well as the overall end-to-end frame-
work. Experimental results and discussions are presented in
Section [3 while conclusions and future works are provided in
Sectiond]

2. Methods

In this section, we elaborate the mechanisms of the GMM Su-
pervector, NetFV and NetVLAD. Besides, we explain the rel-
evances and differences of these three encoding schemes. Fur-
thermore, we describe our flexible end-to-end framework in de-
tails.

2.1. GMM Supervector

Given a C-component Gaussian Mixture Model-Universal
Background Model (GMM-UBM) with parameters set A\ =
{ae, ey Be,c = 1,2,...,C}, where ae, pe and 3. are the
mixture weight, mean vector and covariance matrix of the ¢”
Gaussian component, respectively, and a L-frame speech utter-
ance with D dimensional features X = {x;,i = 1,2,...,L},
the normalized ¢ component’s Supervector is defined as
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where P(c|x., \) is the occupancy probability for a; on the ¢
component of the GMM, the numerator F. and the denominator
N_ are referred as the zero-order and first-order centered Baum-
Welch statistics. By concatenating all of the F. together, we
derive the high dimensional Supervector F € REPX! of the
corresponding utterance is

F=[FF, . . F". @)

Then, the supervector F can be projected on a low rank sub-
space using the factor analysis technique to generate the i-
vector.

2.2. NetFV Layer
2.2.1. Fisher Vector

Let X = {x;,i = 1,2,...,L}, ; € RPX!, denote the se-
quence of input features with L frames, the generation process
of the data X is assumed to be modeled by a probability den-
sity function wy with its parameters . As argued in [24} 31],
the gradient of the log-likelihood describes the contribution of
the parameters to the data generation process and can be used
as discriminative representation. The gradient vector of X w.r.t.
the parameters A can be defined as

1
GX = AL log ux(X). A3)

A Fisher Kernel is introduced to measure the similarity between
two data samples [24] and is defined as

K(X,Y) = (GX)'Fy'GY, )

where Y is a sequence of features like X, and F) is the Fisher
information matrix [24] of the probability density function u:

Fy = Exu, [Valoguy(X)Valogur(X)'].  (5)

Since the F) is a symmetric and positive semidefinite matrix,
we can derive the Cholesky decomposition of the form F =
B/ B,, where B, is a lower triangular matrix. In this way, the
Fisher kernel K (X,Y) is a dot-product between the normal-
ized vectors G f = B, Gi(, where gi‘ is referred as the Fisher
Vector of X. We choose a K-component GMM to model the
complex distribution of data, then ux (x;) = S5, axur (@),
where A = {ag, pr, Xk, k = 1,2,..., K} is the parameters
set of the GMM. The gradient vector is rewritten as

L
1
Gf\( = EZVA log ux (). 6)

i=1

From the approximation theory of the Fisher information ma-
trix 24} 25} 128]], the covariance matrix X can be restricted to
a diagonal matrix, that is X5 = diag(o',%), o, € RP*X1. More-
over, the normalization of the gradient G by By = F N 1/2
is simply a whitening of the dimensions [31]. Let ~;(k) be the
posterior probability of ; on the £ GMM component,
aguk(e;)

O S o) "
The gradient w.r.t. the weight parameters o, brings little addi-
tional information thus it can be omitted [31]]. The remain gra-
dients of o; w.r.t. the mean and standard deviation parameters
are derived [31] as:
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T ®

1 (i — pi)?
\/E%(k)( 0,’% 1)' ©)
By concatenating the gradients in Eq. we get the gradient
vector G, (x;) with dimension 2D x 1. With the K -component
GMM, the Fisher Vector of @; is in the form of

G(x:) = [G1(z)",Ga(x:)T, ..., Gr(x)"]",  (10)

which is a high dimensional vector in R2PKEX1 Finally, for the
utterance-level representation, the Fisher Vector of the whole
sequence X is approximated by a mean pooling on all G(x;),

Vi logus(x:) =

Vo-k 1ogu)\(a:i) =

L
1
Gx = Z;g(mi). (1)

2.2.2. NetFV

Once the FV codebook is trained, the parameters A of the tradi-
tional FV are fixed and can’t be jointly learnt with other mod-
ules in the end-to-end system. To address this issue, as pro-
posed in [22]], two simplifications are made to original FV: 1)
Assume all GMM components have equal weights. 2) Simplify
the Gaussian density ux(x;) to

1 _
eXp{_i(mi_Mk)Tzk 1(wi—uk)},
(12)
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Figure 1: Schematic diagram of end-to-end LRE framework.

Let wy = 1/0 and by, = —py, and with the assumption of
) = diag(o}), the gradients in Eq‘ Eq.@]and the posterior
probability 7; (k) in Eq. are respectively rewritten as the final
form of NetFV [22]:

Vi logun (i) = vi (k) [wr © (2 + br)], (13)

Vo, logu () = %%(k)[('wk © (i + by)” — 1], (14)

exp{—3 (wk O (i +b1))" (wir © (@i +bk))}
ey exp{—5 (we® (@i +be))T (we O (i +be))}
15)
The three modified equations above are differentiable so the

parameters set, i.e., {ws,bsr}, can be learnt via the back-
propagation algorithm.

vi(k)=

2.3. NetVLAD Layer

VLAD is another strategy used to aggregate a set of feature de-
scriptors into a fixed-size representation [27]]. With the same
inputs X = {x;,¢s = 1,2,...,L} as FV and K clusters as-
sumed in VLAD, i.e., {px, k = 1,2,..., K}, the conventional
VLAD aligns each x; to a cluster p. The VLAD fixed-size
representation V' € R¥*P is defined as

V(k) = Zﬁk(iﬂi)(mi - M), (16)

where i (x;) indicates 1 if py is the closest cluster to «; and
0 otherwise. This discontinuity prevents it to be differentiable
in the end-to-end learning pipeline. To make the VLAD differ-
entiable, The authors in [23] proposed the soft assignment to
function B (x;), that is

exp(wkT:ci + br)

Pe@s) = SR exp(wr s + b))

a7

where wy, € RP*! and by, is a scale. By integrating the soft
alignment By (x;) into Eq. the final form of differentiable
VLAD method is derived as

L T,
Vi =3 ol b))

i=1 Zf:l exp(wgwi + bc)

which is so-called NetVLAD [23]] with the parameters set of
{pr, we,be, k =1,2,..., K}. The fixed-size matrix in Eq.[1§]
is normalized to generate the final utterance-level representa-
tions.

2.4. Insights into NetFV and NetVLAD

Focusing on the GMM supervector (Eq. [I), the gradient com-
ponents w.r.t. mean in Fisher Vector (Eq. [) and the VLAD ex-
pression (Eq.[I6), we can found that these three methods calcu-
late the zero-order and first-order statistics to construct fixed di-
mensional representations in a similar way. The residual vector
measures the differences between the input feature and its cor-
responding component in GMM or cluster in codebooks. And
all the three aforementioned methods store the weighted sum of
residuals. However, they might have different formulas to com-
pute the zero-order statistics. As for Fisher Vector, it captures
the additional gradient components w.r.t. covariance which can
be considered as the second-order statistics. Above all, these
three encoding methods have theoretical explanations from dif-
ferent perspectives but result in some similar mathematics for-
mulas. Motivated by the great success of GMM Supervector,
the NetFV and NetVLAD layers theoretically might have good
potential in paralinguistic speech attribute recognition tasks.

Compared to the temporal average pooling (TAP) layer,
NetFV and NetVLAD layers are capable to heuristically learn
more discriminative feature representations in an end-to-end
manner while TAP layer may de-emphasize some important in-
formation by simple average pooling. If the number of clusters
C' in NetFV or NetVLAD layer is 1, and its mean is zero, the
encoding layer is just simplified to TAP layer.

Our end-to-end framework is illustrated in Fig. [} It com-
prises a CNNs architecture with C' output channels, an encoding
layer with cluster size K and a fully connected layer. Taken the
variable-length features X € RP*% as input, the CNNs struc-

ture spatially produces a variable-size feature maps in ROXE,
where L’ is dependent on the input length L. The encoding
layer then aggregates the feature maps into a fixed-size repre-
sentation V in R And the fully connected layer acts as
a back-end classifier. All the parameters in this framework are
learnt via the back-propagation algorithm.

3. Experiments
3.1. 2007 NIST LRE Closet-set Task

The 2007 NIST Language Recognition Evaluation(LRE) is a
closed-set language detection task. The training set consists the
datasets of Callfriend, LRE 03, LRE 05, SRE 08 and the devel-
opment part of LRE 07. We split the utterances in training set
into segments with duration in 3 to 120 seconds. This yields
about 39000 utterances. In the test set, there are 14 target lan-
guages with 7530 utterances in total. The nominal durations of
the testing data are 3s, 10s and 30s.

3.2. Experimental Setup

Raw audio is converted to 7-1-3-7 based 56 dimensional shifted
delta coefficients (SDC) feature, and a frame-level energy-based
voice activity detection (VAD) selects features corresponding to
speech frames. We train a 2048-component GMM-UBM with
full covariance and extract 600-dimensional i-vectors followed
by the whitening and length normalization. Finally, we adopt
multi-class logistic regression to predict the language labels.
For the end-to-end LID systems, the 64-dimension mel-
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Figure 2: The training loss curves of end-to-end systems.

filterbank coefficients feature is extracted along with sliding
mean normalization over a window of 300 frames. Afterwards,
the acoustic features are fed to a random initialized ResNet-34
networks with 128 output channels to produce the utterance-
dependent feature maps. The temporal average pooling (TAP)
is adopted as the encoding layer to build the baseline end-to-end
system. Meanwhile, the cluster size K ranges from 16 to 128
by step power of 2 to find out the best parameter setup in NetFV
and NetVLAD layers, respectively. The softmax and cross en-
tropy loss are integrated behind the fully connected layer. Fi-
nally, a stochastic gradient descent (SGD) optimizer with the
momentum 0.9, the weight decay 1 x 10~* and the initial learn-
ing rate 0.1 is used for the back-propagation. The learning rate
is divided by 10 at the 60*" and 80" epoch.

To efficiently train the system, we set the mini-batch size of
128 in data parallelism over 4 GPUs. For each mini-batch data,
a truncated-length L is randomly sampled from [200,1024],
and is used to truncate a segment of continuous L-frame fea-
tures from a 7-frame utterance. The beginning index of trun-
cation randomly lies in the interval of [0,7 — L — 1]. Con-
sequently, a mini-batch data with unified-length samples in
R!28%64xL 5 Joaded and L may change for different mini-
batches. In the test phase, all the speeches in 3, 10 and 30 sec-
onds durations are tested one-by-one on the same trained model.
No truncation is used for the arbitrary-duration utterances.

3.3. Evaluation

The training losses of the end-to-end systems are sliding
smoothed with window size of 400, and illustrated in Fig. 2]
The NetFV and NetVLAD based systems converge faster and
reach lower losses than that of the temporal average pooling
(TAP) layer. With a closer look, NetFV is slightly better than
NetVLAD but both of them are competitive in the training
phase. The language identification results are presented in Ta-
ble[T}] The performance is measured in the metrics of the aver-
age detection cost Cuyg and equal error rate (ERR). From the
Table [T] the end-to-end systems including TAP, LDE, NetFV
and NetVLAD layers significantly outperform the conventional
GMM i-vector baseline. It shows that the proposed end-to-end
framework for the LID task is feasible and effective. The results
of the systems based on the TAP and the remarkable LDE layers
are provided in our early works [20].

Moreover, we step further to compare the performances of

Table 1: Performances on 2007 NIST LRE task

Coavg(%)/EER(%)
3s [ 10s [ 30s

20.46/17.71 | 8.29/7.00 | 3.02/2.27
9.24/10.91 | 3.39/5.58 | 1.83/3.64
8.25/7.75 |2.61/2.31|1.13/0.96
9.47/9.04 |2.96/2.59 | 1.31/1.08
8.95/8.37 |2.88/2.49|1.35/1.31
8.91/8.26 |2.88/2.74|1.19/1.15
9.05/8.64 |291/2.72|1.27/1.34
8.23/8.06 |2.90/2.62 |1.36/1.17
ResNet34 NetVLAD 32 8.87/8.58 |3.10/2.50 | 1.46/1.15
ResNet34 NetVLAD 64 8.59/8.08 | 2.80/2.50 | 1.32/1.02
ResNet34 NetVLAD 128 8.72/8.44 |3.15/2.76 | 1.53/1.14
Fusion system 6.14/6.86 |1.81/2.00 | 0.89/0.92

System description

GMM i-vector
ResNet34 TAP
ResNet34 LDE 64
ResNet34 NetFV 16
ResNet34 NetFV 32
ResNet34 NetFV 64
ResNet34 NetFV 128
ResNet34 NetVLAD 16

the TAP, NetFV and NetVLAD encoding layers. Both NetFV
and NetVLAD based systems achieve much lower Cyyg and
EER than the ones with TAP layer. Especially on the long utter-
ances (30s), the best Cyvg and EER of NetVLAD could be rel-
atively reduced by 27.87% and 71.98% respectively w.r.t. the
results of TAP. If we concentrate on the NetFV and NetFV only,
the performances are generally getting better while the cluster
size ranges 16 to 64, and start to degrade when the cluster size
reaches 128. Therefore, larger cluster size in the encoding layer
may enhance the capacity of networks, however, more data and
training epochs may be required as well. In addition, the TAP
based system shows the accuracy rates of 75.49%, 89.71% and
93.56% on the 3s, 10s and 30s test set respectively while the
NetVLAD based system improves the accuracies to 76.14%,
91.43% and 96.85%. Overall, NetVLAD is slightly superior
to NetFV in the test phase and achieves the best performance
when the cluster size is 64.

Despite the best result corresponding to the NetVLAD is
slightly inferior to that of the LDE layer, the performances of
the NetFV, NetVLAD and LDE layers are comparable. What’s
more, these three powerful encoding methods are complemen-
tary. With the cluster size is 64, we fuse the three systems based
on the NetFV, NetVLAD and LDE respectively at the score
level. And as shown in the Table[T} the score level fusion system
further reduces the Cq.4 and EER significantly.

4. Conclusions

In this paper, we apply these two encoding methods in our end-
to-end LID framework to investigate the feasibility and perfor-
mance. The NetFV and NetVLAD layers are more powerful
encoding techniques with learnable parameters and are able to
encoding the variable-length sequence of features into a fixed-
size representation. We integrate them to a flexible end-to-end
framework for the LID task and conduct experiments on the
NIST LREO7 task to evaluate the methods. Promising experi-
mental results show effectiveness and great potential of NetFV
and NetVLAD in the LID task. This end-to-end framework
might also work for other paralinguistic speech attribute recog-
nition tasks, which will be our further works.
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