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Abstract
In a typical voice conversion system, previous works utilized
various acoustic features (such as the pitch, voiced/unvoiced
flag and aperiodicity) of the source speech to control the
prosody of converted speech. However, prosody is related with
many factors, such as the intonation, stress and rhythm. It is
a challenging task to perfectly describe prosody through hand-
crafted acoustic features. To address these difficulties, we pro-
pose to use prosody embeddings to describe prosody. These em-
beddings are learned from the source speech in an unsupervised
manner. To verify the effectiveness of our proposed method, we
conduct experiments on the popular benchmark database CMU-
ARCTIC, and our Mandarin corpus. Experimental results show
that our proposed method can improve the speech quality and
speaker similarity of the converted speech. What’s more, we
observe that our method can even achieve promising results in
singing conditions.
Index Terms: Voice conversion (VC), Phonetic posteriorgrams
(PPGs), Prosody embeddings, LPCNet vocoder

1. Introduction
Voice conversion (VC) aims to modify the source speaker’s
voice to sound like that of the target speaker while keeping the
linguistic content unchanged. VC is an important research topic
due to its wide applications, such as development of personal-
ized speaking aids for speech-impaired subjects [1, 2, 3], novel
vocal effects of singing voices [4, 5], and a voice changer to
generate various types of expressive speech [6, 7].

The conventional voice conversion approach usually needs
parallel training data, which contains pairs of the same tran-
scription utterances spoken by different speakers [8, 9, 10].
However, building such parallel data corpus is a highly expen-
sive task. To address this problem, researches have proposed
some methods for a voice conversion system that does not re-
quire the parallel training data [11, 12, 13]. Recently, pho-
netic posteriorgrams (PPGs) have been successfully applied to
non-parallel VC and achieved both high naturalness and high
speaker similarity of the converted speech [14, 15]. PPG is
a sequence of frame-level linguistic information representa-
tion obtained from the speaker-independent automatic speech
recognition (SI-ASR) system. The PPGs based VC frameworks
mainly have two key components: the conversion model and the
vocoder. The conversion model converts PPGs extracted from
the source speech into acoustic features of the target speaker.
Then the vocoder uses these converted features to synthesize
the speech waveform of the target speaker. However, we ob-
serve two limitations with existing works [16, 17].

Firstly, earlier works [16, 17] mainly utilized acoustic fea-
tures (such as the pitch, voiced/unvoiced flag and aperiodicity)
of the source speech to control the prosody of the converted
speech. However, prosody is related with many factors, such as

the intonation, stress and rhythm. It is a challenging task to per-
fectly describe the prosody through acoustic features. The same
challenge also exists in Text-To-Speech (TTS). To address this
challenge, recent works learn to describe prosody that do not
require explicit annotations [18, 19]. Specifically, they use neu-
ral networks to learn prosody embeddings from the reference
speech in an unsupervised manner. These methods have demon-
strated their ability to generate speech with expressive styles.
Inspired by their success, we propose to use prosody embed-
dings to model prosody in the PPGs based VC frameworks.

Secondly, vocoders influence the quality of the converted
speech. Prior works utilized parametric vocoders (such as
STRAIGHT [20] and WORLD [21]). However, these vocoders
limit the quality of converted speech. To deal with this prob-
lem, researches focus on neural vocoders [22, 23]. WaveNet
[22] is one of the state-of-the-art neural vocoders. It predicts ev-
ery sample by the previous observations without much assump-
tions based on the prior knowledge related with speech. How-
ever, since WaveNet relies on sequential generation of one audio
sample at a time, it is hard to deploy in a real-time production
setting. Recently, an efficient neural vocoder called LPCNet
[24] is proposed. LPCNet combines linear prediction with re-
current neural network and directly predicts the excitation rather
than the sample values. Compared with WaveNet, LPCNet can
generate speech in real time. Meanwhile, since LPCNet de-
pends directly on the linear predictive coding filter shape, it can
better control over the outputs of the spectral shape. Therefore,
we apply LPCNet vocoder for speech generation.

In this paper, we propose a new PPGs based VC frame-
work for any-to-one voice conversion. The main contributions
of this paper lie in three aspects: 1) To better control the prosody
of converted speech, we propose to learn prosody embeddings
from the source speech in an unsupervised manner; 2) To syn-
thesize speech with close to natural quality in real time, we
propose to use the LPCNet vocoder for speech generation; 3)
Experimental results on the popular benchmark datasets CMU-
ARCTIC and our Mandarin corpus demonstrate the effective-
ness of our proposed method. We find that our method can im-
prove the speech quality and speaker similarity of the converted
speech. Meanwhile, our method can even achieve promising
results when the source speech is a singing song.

The remainder of this paper is organized as follows: In
Section 2, we describe our baseline voice conversion system.
Section 3 presents our proposed VC framework with prosody
embeddings. Section 4 illustrates the experimental data, setup,
results and discussion in detail. Finally, we give a conclusion of
the proposed work in Section 5.

2. Baseline system
We present our baseline voice conversion approach using the
pitch for prosody control and LPCNet for speech synthesis.
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Figure 1: The framework of the baseline system.

2.1. Linear Prediction Coding Net (LPCNet)

LPCNet [24] is a WaveRNN [23] variant that uses the neu-
ral networks to generate speech samples from Bark-Frequency
Cepstral Coefficients (BFCCs) [25], pitch period and pitch cor-
relation parameters. In this work, we use the code published
by the Mozilla team [24] with some modifications. To bet-
ter control high frequency features, we increase 18-dimensional
BFCCs to 30-dimensional BFCCs. What’s more, we utilize the
OpenBLAS toolkit to accelerate the LPCNet inference. There-
fore, our acoustic features contains 30-dimensional BFCCs, 1-
dimensional pitch period and 1-dimensional pitch correlation.

2.2. Framework Overview

In the training stage (Figure 1(a)), we extract the acoustic fea-
tures Y ∈ RT×Da , PPGs L ∈ RT×Dp , pitch f0 ∈ RT×1 and
voiced/unvoiced flag (vuv) fvuv ∈ RT×1 from the given speech
data of the target speaker, where T is the number of frames. Da

and Dp represent the feature dimension of the acoustic features
and PPGs, respectively. To control the prosody of generated
speech, we form the input features by concatenating the pitch,
vuv and PPGs, denoted as F = [L; f0; fvuv] ∈ RT×(Dp+2).
Then a CBHG [26] conversion model is trained to map the in-
put F to the output acoustic features. Concretely, the CBHG
[26] conversion model consists of a bank of 1-D convolutional
filters, followed by highway networks and a bidirectional GRU.

In the conversion stage (Figure 1(b)), we first extract the
PPGs, pitch and vuv features from the source speech. As the
feature mismatch exists between the source speaker’s pitch and
the target speaker’s pitch, a linear conversion is applied:

logf0y = (logf0x − µx) ∗
(
σy

σx

)
+ µy (1)

where µx and σx are the mean and variance of the source speak-
ers log f0, respectively. µy and σy are the mean and variance of
the target speakers log f0. logf0x and logf0y are the source
and converted f0 in logarithmic domain, respectively. Then
we concatenate the PPGs, converted pitch and vuv features to-
gether. These representations are used as the input to the con-
version model to predict the converted acoustic features. Fi-
nally, we feed these converted acoustic features to the LPCNet
vocoder for speech generation.

2.3. Limitations

Despite the good performance of the baseline system, it still has
some limitations. Firstly, the pitch detection algorithms face
challenges in some challenging situations (e.g., singing condi-
tions [27]). Secondly, the prosody is related with many factors,
including the intonation, stress, rhythm and pitch. However, we
only utilize the pitch to control the prosody of the generated
speech, thus limiting the speech quality of converted speech.

3. Proposed Method
To overcome above limitations, we utilize the reference en-
coder [18] to learn prosody embeddings from the input speech.
The reference encoder is plugged into the baseline system and
trained without any other supervision except for the VC’s re-
construction error.

3.1. Framework Overview

During training (Figure 2(a)), different from the baseline sys-
tem, we also learn prosody embeddings P ∈ RT×De from
the reference encoder, where De represents the feature dimen-
sion of prosody embeddings. To control the prosody of con-
verted speech, we form the input features by concatenating the
pitch f0 ∈ RT×1, voiced/unvoiced flag fvuv ∈ RT×1, PPGs
L ∈ RT×Dp and prosody embeddings P ∈ RT×De , denoted
as F = [L; f0; fvuv;P ], where F ∈ RT×(Dp+De+2). Then, a
CBHG [26] conversion model is trained to map the input F to
the output acoustic features.

At run-time (Figure 2(b)), we first extract the pitch, vuv,
PPGs and prosody embeddings for an arbitrary source speech.
Then we transform the pitch of the source speaker into that of
the target speaker by the linear conversion in Eq. (1). We con-
catenate these representations as the input, and transform the
input to acoustic features by the conversion model. Finally, we
use LPCNet for speech generation.

3.2. Reference Encoder

Speech is encoded to prosody embeddings using the reference
encoder. Earlier works focused on fixed-length prosody embed-
dings regardless of the length of the input speech [18]. These
prosody embeddings lose the temporal information. However,
the temporal information is an important aspect of prosody.
Therefore, we focus on variable-length prosody embeddings.



Figure 2: The framework of the proposed system.

Figure 3: The prosody reference encoder module. A 6-layer
stack of 2D convolutions with ReLU activations, followed by a
single-layer GRU with 1 unit and a tanh activation.

As shown in Figure 3, the reference encoder takes a mel-
spectrogram I ∈ RT×Dm as the input, where T is the length
of the mel-spectrogram and Dm is the feature dimension. This
network contains 6-layer 2D-convolutional layers. Each layer is
composed of 3×3 filters with 1×2 stride, SAME padding and
ReLU activation. The number of filters in each layer are [32, 32,
64, 64, 128, 128]. The outputs of the last convolutional layer is
fed to a uni-directional Gated Recurrent Unit (GRU) with one
unit and tanh activation. The outputs of GRU at every timestep
form the variable-length prosody embeddings P ∈ RT×De .

Meanwhile, we also test following modifications in the ref-
erence encoder: 1) CoordConv [28] can augment the positional
information to the input. As positional information is useful
to encode prosody sequentially [29], we use CoordConv for
the first convolutional layer. 2) Bi-directional GRU can get
the information from frames occurring before and after itself
in the mel-spectrogram. As the contextual information is use-
ful to encode prosody, we replace uni-directional GRU with bi-
directional GRU. However, we do not observe performance im-
provement with these modifications. Therefore, we utilize the
reference encoder in Figure 3 to extract prosody embeddings.

4. Experiments and Discussion
In this section, we first present our experimental databases.
Then, we illustrate implementation details of our proposed
method and several baseline models. Finally, we compare
our method with baseline approaches via subjective measures.
Speech samples from the following experiments are available
online at https://zeroqiaoba.github.io/voice-conversion.

4.1. Corpus Description

Our experiments are conducted on two databases: 1) CMU-
ARCTIC American English database [30]; 2) Our Mandarin
Voice Conversion database. The CMU ARCTIC database con-
sists of 4 native American English speakers (2 male BDL and
RMS, 2 female CLB and SLT), and each speaker has 1,134
sentences. Intra-gender and inter-gender conversions are con-
ducted between following pairs: CLB to BDL (F2M), CLB to
SLT (F2F), RMS to BDL (M2M) and RMS to SLT (M2F). Our
Mandarin Voice Conversion database contains 2 native Man-
darin Chinese speakers (1 female TS, 1 male SONG). TS has
15000 sentences and SONG has 500 sentences. Our experi-
ments are conducted between SONG to TS (M2F).

To increase the amount of training samples, we perform
data augmentation by means of speed perturbation. Speech per-
turbation is a technique of changing speech speed without the
tone changed. It is performed on original signals with speed
factor 0.4, 0.6, 0.8, 1.0 and 1.2. In our voice conversion ex-
periments, we use 1,000 sentences for training, and another 20
non-overlap utterances of each speaker are used for evaluation.

4.2. Implementation Details

All features are extracted with 10ms window shift. WORLD
[21] is used to extract 1-dimensional pitch and 1-dimensional
vuv. LPCNet [24] is used to extract 32-dimensional acous-
tic features, including 30-dimensional BFCCs, 1-dimensional
pitch period and 1-dimensional pitch correlation. The librosa
toolkit [31] is used to extract 80-dimensional mel-spectrograms.
The 512-dimensional PPGs are extracted from the acoustic
model in SI-ASR, which is implemented using the Kaldi toolkit
[32] and trained on our 20,000 hours corpus.

https://zeroqiaoba.github.io/voice-conversion


(a) MOS test results with 95% confidence intervals to assess speech quality (b) Same/Different paradigm to assess speaker similarity

Figure 4: Subjective test results on the CMU-ARCTIC American English database.

(a) MOS test results with 95% confidence intervals

(b) Same/Different paradigm to assess speaker similarity

Figure 5: Subjective test results on our Mandarin Voice Conver-
sion database (for the SONG-to-TS pair).

The CBHG [26] conversion model has a bank of 1-D convo-
lutional filters, followed by highway networks (4 layers with 64
hidden units) and a bidirectional GRU (64 units for each GRU
component). Concretely, it has K = 16 sets of 1-D convolu-
tional filters, where the k-th set contains 128 filters of width k
(k ∈ [1,K]). As variable-length prosody embeddings have a
large enough capacity to copy the input speech, we use a very
small dimension of bottleneck size. In this paper, we use 1-
dimensional prosody embeddings. To optimize the parameters,
we use the Adam optimizer with a learning rate of 0.001. We
train our models for at least 100k steps with a batch size of 32.
Gradient clipping is also used for regularization.

Three systems are evaluated in the experiments. In ad-
ditional to the baseline system (Baseline) and the proposed
system (Proposed), another comparison system is also imple-
mented to verify the effectiveness of our proposed method.
Comparison system 1 (C1) [33]: It employs PPGs based map-
ping approach to voice conversion without using the parallel
training data. Firstly, it trains a multi-speaker average model
that maps PPGs to speaker-dependent acoustic features. Then, it
adapts a pre-trained multi-speaker model for the target speaker.
Finally, the WORLD vocoder [21] is utilized to generate the
converted waveform.

4.3. Subjective Evaluation

Followed with previous works [15, 17], the quality of the speech
samples and their similarity to the target speaker are evalu-
ated using the subjective evaluation. The Mean Opinion Score
(MOS) tests are conducted to assess speech quality. In the MOS
tests, listeners are asked to rate the converted speech on a 5-
point scale, ranging from 1 (completely unnatural) and 5 (com-
pletely natural). Meanwhile, we conduct the Same/Different
paradigm to assess speaker similarity. In this test, the listeners
are asked to compare and select whether the converted samples
are uttered by the same target speaker. In practice, 12 subjects
with normal hearing participate in all tests. 20 utterances in
the test set for each conversion pair are randomly selected and
converted using our proposed method and two baseline meth-
ods. The listeners are asked to use headphones and samples are
shown to them in the random order.

Subjective test results on the CMU-ARCTIC American En-
glish database and our Mandarin Voice Conversion dataset are
shown in Figure 4 and Figure 5, respectively. As can be
seen, C1 achieves worse performance in all conversion pairs.
These results suggest that LPCNet outperforms WORLD in
terms of both speech quality and speaker similarity. Mean-
while, we observe that the proposed method significantly out-
performs Baseline for the SONG-to-TS pair. As for other con-
version pairs in the CMU-ARCTIC database, we observe that
the performance of Baseline is comparable to that of Proposed.
We find the reason lies in two aspects. Firstly, the pitch de-
tection algorithm makes some errors in the singing conditions.
Secondly, the pitch cannot describe the prosody of the singing
songs perfectly. Since our method enables fine-grained control
the prosody of the generated speech via prosody embeddings,
we achieve better performance than Baseline.

5. Conclusions

In this paper, we propose a voice conversion framework based
on prosody embeddings and LPCNet. The prosody embed-
dings enable fine-grained control of the prosody of generated
speech. LPCNet can synthesize speech with close to natural
quality while running in real time. Subjective evaluations show
that the proposed method can achieve both high naturalness and
high speaker similarity in singing conditions.
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