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Abstract
Compensation for channel mismatch and noise interference is
essential for robust automatic speech recognition. Enhanced
speech has been introduced into the multi-condition training
of acoustic models to improve their generalization ability. In
this paper, a noise-aware training framework based on two cas-
caded neural structures is proposed to jointly optimize speech
enhancement and speech recognition. The feature enhance-
ment module is composed of a multi-task autoencoder, where
noisy speech is decomposed into clean speech and noise. By
concatenating its enhanced, noise-aware, and noisy features for
each frame, the acoustic-modeling module maps each feature-
augmented frame into a triphone state by optimizing the lattice-
free maximum mutual information and cross entropy between
the predicted and actual state sequences. On top of the factor-
ized time delay neural network (TDNN-F) and its convolutional
variant (CNN-TDNNF), both with SpecAug, the two proposed
systems achieve word error rate (WER) of 3.90% and 3.55%,
respectively, on the Aurora-4 task. Compared with the best ex-
isting systems that use bigram and trigram language models for
decoding, the proposed CNN-TDNNF-based system achieves a
relative WER reduction of 15.20% and 33.53%, respectively. In
addition, the proposed CNN-TDNNF-based system also outper-
forms the baseline CNN-TDNNF system on the AMI task.
Index Terms: robust speech recognition, autoencoder, multi-
condition training, noise-aware training

1. Introduction
For nearly a decade, the development of deep learning-based
methods for automatic speech recognition (ASR) has advanced
significantly, regardless of whether the acoustic model (AM)
is trained using a deep neural network/hidden Markov model
(DNN/HMM)-based process or a phone-free end-to-end (E2E)
structure. In realistic situations, the speech input to an ASR
system may include a considerable amount of interference from
various types of background noise, and there may be a channel
mismatch between it and the training speech. Therefore, it is
very important to improve the robustness of ASR. This study is
focused on boosting the noise robustness of Gaussian mixture
model (GMM)/DNN-based ASR.

As described in [1], there are three deep learning-based ap-
proaches that can boost the robustness of ASR. The first ap-
proach uses speech enhancement (SE) models with various neu-
ral structures, such as the denoising autoencoder (DAE) [2, 3],
dense neural network [4], and generative adversarial network
(GAN) [5, 6], to pre-process the input speech. These SE mod-
els are usually trained to estimate the ideal ratio mask (IRM)
for speech or directly restore clean speech from noisy speech.
However, the training objective is not directly related to the ul-
timate goal of ASR, which is to minimize phone or word er-
rors. Therefore, the robustness of the downstream ASR system

largely depends on the performance of SE components [7, 8].
The second approach is multi-condition training (MCT),

which uses clean and noisy speech for acoustic modeling. The
purpose of MCT is to optimize the familiarity of the ASR sys-
tem with various types of noisy speech to avoid mismatches
between training and testing environments. Although MCT
still suffers from unexpected conditions and speech distor-
tion [9, 10], in several typical ASR competitions, such as the
CHiME challenge, it has been widely used through data aug-
mentation with noise addition or reverberation simulation [11].
In addition to noisy speech, the enhanced speech generated by
SE models can be added to the training set [3]. As a special
case of MCT, SpecAug directly applies certain spectrogram de-
formations to speech signals for data augmentation, which sig-
nificantly improves the ASR performance [12].

The third approach is joint training (JT), in which an SE
model consisting of an autoencoder [13, 14] or GAN [15] is
attached to the AM to minimize the losses of SE and ASR
in a unified manner. The ASR-related loss is mainly asso-
ciated with connectionist temporal classification or attention-
based sequence-to-sequence models in E2E systems [16, 17, 1].
As for the GMM/DNN topology, only the phoneme/state-level
cross entropy (CE) has been adopted in the literature so far
[13, 18, 8, 14]. JT compensates for the shortcomings of the
first approach in several ways. By keeping the contributions
of recognition and enhancement in balance, it prevents the en-
hanced speech from being over-smoothed. Enhanced speech
itself is a good source of feature-level data augmentation. For
example, Wang and Wang concatenated noisy mel-frequency
cepstral coefficient (MFCC) features and enhanced filter-bank
features as the input of the back-end AM [8], whereas Fan et al.
proposed a gated recurrent fusion method that fuses noisy and
enhanced features to address speech distortion [1]. Moreover, in
[13, 14, 16, 17], only the enhanced features were used as the in-
put of AM. In this case, the SE loss functions as a sample-level
regularizer to avoid overfitting.

In addition to the above-mentioned methods with the help
of SE, noise-aware training (NAT), which appends “noise vec-
tors” to the input feature sequence, has also attracted attention
in robust ASR [9, 19, 20]. The main difference between them is
whether the noise vectors are estimated through noise detection
[9, 20] or directly derived from noisy speech [19]. Noise repre-
sentations in NAT is learnable using neural networks. NAT can
also be thought of as a type of feature-level data augmentation.

In this paper, we propose a unified framework that com-
bines MCT, JT, and NAT to achieve robust ASR. The frame-
work is implemented on GMM/DNN AMs trained using the
lattice-free maximum mutual information (LF-MMI) criterion
[21]. As shown in Table 1, the main novelty of this study is
twofold. First, the simultaneous optimization of the frame-level
cross-entropy, utterance-level LF-MMI, and acoustic feature re-
construction error is unprecedented in JT-based robust ASR.
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Table 1: JT-based methods for robust ASR. EnhC and Enh rep-
resent the enhancement component and the enhanced feature,
respectively. G/D denotes the GMM/DNN topology.

Method Topo. EnhC Augment.

Gao et al. (2015) [13] G/D DAE -
Mimura et al. (2016) [14] G/D DAE -
Wang et al. (2016) [8] G/D T/F IRM Enh
Kundu et al. (2016) [19] G/D FL Enh & Noise
Liu et al. (2018) [15] E2E GAN -
Liu et al. (2019) [16] E2E T/F PSA -
Soni et al. (2019) [17] G/D T/F IRM -
Fan et al. (2021) [1] E2E T/F IAM Enh

Ours G/D DAE Enh & Noise

Second, the introduction of noise-aware training and data aug-
mentation with noise not only strengthens the capability of the
enhancement component to extract purer enhanced speech, but
also enables the subsequent AM to utilize the estimated noise
feature to filter out the noise in noisy speech more effectively.

2. Proposed Models
Fig. 1 illustrates the schematic diagram of our proposed neu-
ral architecture, where two additional components and AM are
sequentially connected and trained jointly. This work has been
open-sourced at https://github.com/Sinica-SLAM/
kaldi-SENAN.

2.1. Acoustic Model

The AM converts a frame representation xin into triphone-state
scores. The input xin is the concatenation of three types of fea-
tures: noisy features and the i-vector xnsy , enhanced features
xenh, and noise-aware features xnse.

xin = xnsy ⊕ xenh ⊕ xnse, (1)

where ⊕ denotes the concatenation operator.
The AM, parameterized by θ, generates the triphone-state

scores (see the top black block in Fig. 1). In this study, the
AM was implemented on a factorized time-delay neural net-
work (TDNN-F) or its variant with convolutional layers (CNN-
TDNNF) [22, 23, 24]. We derived two ASR-related objective
functions. The first is the CE between the predicted triphone-
state scores and ground truth defined by

LCE = −
U∑
u=1

Tu∑
t=1

log pθ(s
ut|xutin), (2)

where U is the number of training utterances, Tu is the number
of frames of utterance u, and sut and xutin are the true triphone-
state label and acoustic input of the t-th frame of utterance u,
respectively. The label is derived by GMM-based forced align-
ment. The second is based on MMI, a discriminative criterion
designed to maximize the probability of the reference transcrip-
tion while minimizing the probabilities of all other transcrip-
tions [25]. As in [26], the LF-MMI is defined as

FLF−MMI =

U∑
u=1

log
pθ(x

u
in|Mwu)P (Mwu)

pθ(xuin|Mden)
, (3)

where wu is the reference word sequence of utterance u. The
composite HMM graph Mwu represents all possible state se-
quences pertaining to wu and is called the numerator graph.
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Figure 1: The proposed speech-enhanced and noise-aware
acoustic model, where the three black blocks are directly related
to loss functions during training.

Mden is the denominator graph that models all the possible se-
quences. It has traditionally been estimated using lattices be-
cause the full denominator graph can become large and signifi-
cantly slow the computation. Povey et al. derived MMI training
of DNN/HMM models using a full denominator graph (hence,
the name lattice-free) [21].

2.2. Speech-enhanced and Noise-aware Network (SENAN)

If xenh and xnse in Eq. 1 are discarded, our proposed model
is reduced to the conventional MCT-based framework. The
speech-enhanced and noise-aware network (SENAN) φ, con-
structed with dense layers, decomposes the frame-wise noisy
features xnsy into the speech-enhanced and noise-aware parts,
i.e., yenh and ynse. Then, the aggregation functions output
xenh and xnse from yenh and ynse by

[xenh,xnse] = [Aenh(yenh), Anse(ynse)], (4)

where [yenh,ynse] = φ(xnsy), and A(·) denotes the aggrega-
tion function, which is used to leverage the contextual or sta-
tistical information near the working frame. As shown in Fig.
1, the aggregation function can consider the current frame only
(CUR), the current frame appended with one preceding and one
following frame (CONT), the concatenation of two statistical
measurements (the mean and variance vectors) derived from a
context window of 150 frames (STAT) [27], and single-head
self-attention in a local range of five preceding and two follow-
ing frames around the current frame (SAT) [28]. Based on pre-
liminary results, we use CONT as the aggregation function for
yenh, and evaluate the four functions for ynse in this paper.

To ensure that the enhanced features yenh and estimated
noise ynse are as similar as possible to the corresponding clean
speech and true noise, respectively, we minimize the mean
squared error (MSE) defined by

L{enh,nse}MSE =
U∑
u=1

Tu∑
t=1

∣∣∣∣yut{enh,nse} − ŷut{clean,nse}
∣∣∣∣2

2
, (5)

where ||·||22 is the 2-norm operator. yutenh is the predicted en-
hanced MFCC vector, and ŷutclean is the corresponding MFCC

https://github.com/Sinica-SLAM/kaldi-SENAN
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vector extracted from clean speech. yutnse is the predicted noise
MFCC vector, and ŷutnse is the corresponding MFCC vector ex-
tracted from the true noise signal.

2.3. Final Objective Function

The final objective function L to be minimized by backpropa-
gation is a combination of ASR-related, speech-enhanced, and
noise-aware losses, and is expressed as

L = αLCE −FLF−MMI + β(LenhMSE + LnseMSE), (6)

where α and β are weighting factors. In previous studies in [29,
30, 31], only the CE and MSE metrics were jointly optimized
in AM training. In our experiments, we set α to 5 as in most
previous studies and heuristically set β to 0.2.

3. Experimental Settings
We used the Kaldi toolkit [32] to implement our models, and
evaluated them on two datasets: the Aurora-4 corpus [33] and
the AMI meeting corpus [34].

3.1. Datasets and Derivation of Noise

Aurora-4 [33] is a medium-level vocabulary task. The transcrip-
tions were based on the Wall Street Journal corpus (WSJ0) [35].
The dataset contains 16 kHz speech data with additive noise and
linear convolutional channel distortion, which were syntheti-
cally introduced into clean speech. The training set contains
7,138 utterance pairs from 83 speakers, where each pair con-
sists of clean speech and speech corrupted by one of six differ-
ent noises at 10–20 dB SNR. The test set was generated by the
same types of noise and microphones and was grouped into four
subsets: clean, noisy, clean with channel distortion, and noisy
with channel distortion, which are referred to as A, B, C, and
D, respectively. The speech data were recorded by two micro-
phones, one of which was a near-field microphone. The speech
recorded by this microphone can be considered clean and noise-
free. In contrast, the speech recorded by the second microphone
can be considered noisy speech. According to the assumption
that noisy speech can be represented by the sum of a speech sig-
nal and a noise signal [36], we adjusted the volume of the noisy
speech and subtracted the clean speech from the noisy speech
to obtain the corresponding noise as the ground truth.

The AMI task is more challenging than the Aurora-4 task.
The AMI corpus [34] contains approximately 77 h of meeting
recordings, including 107 k utterances for training and 12.6 k
utterances (8.7 h) for testing. The speech signals were cap-
tured and synchronized by multiple microphones, including in-
dividual head microphones, lapel microphones, and one or more
microphone arrays. In this task, we took the speech recorded
by individual head microphones and the standard SDM (single
distant mic.) as the clean speech and the corresponding noisy
speech, respectively. The method used for obtaining the noise
was the same as that used for the Aurora-4 task.

3.2. Data Preparation and Preprocessing

Our training data (noisy and clean speech) were first organized
for standard GMM training/alignment to derive the frame-wise
triphone-state ground truth. To avoid overfitting the neural net-
work to improve its robustness, speed and volume perturbations
[37] were used to triple the amount of the training data. The tri-
gram language model (LM) provided by the Kaldi recipe with
a closed 5 k vocabulary was used in the Aurora-4 task, whereas

Table 2: WERs (%) on Aurora-4 with respect to different aggre-
gation functions for the predicted noise features. AM: TDNN-F
without SpecAug.

Aggregation Func. A B C D Avg.

CURR 1.61 3.59 3.12 9.88 6.11
CONT 1.87 3.53 3.34 9.61 6.00
STAT 1.74 3.29 3.01 9.60 5.86
ATTN 1.77 3.41 3.03 9.53 5.89

the trigram LM trained with the transcriptions of the training set
was used in the AMI task.

To extract acoustic features, spectral analysis was applied
to 25-ms speech frames every 10 ms. For each frame, 40 high-
resolution MFCCs were derived by discrete cosine transform
conducted on 40 mel-frequency bins. Utterance-level mean sub-
traction was used for feature normalization. The noisy features
were formed by concatenating the acoustic features and the 100-
dimensional speaker-related i-vector [38].

3.3. Neural Structures

3.3.1. Speech-enhanced and noise-aware network

We used the multi-task autoencoder (MTAE) in [39] to con-
struct the SENAN φ in Fig. 1. MTAE has triangular-shaped
shared units, and is a unified structure with a denoising autoen-
coder and a “de-speeching” autoencoder. There are 1,024 and
2,048 nodes in the first and last hidden layers, respectively. The
number of nodes increases linearly from low to high hidden lay-
ers, and the number of hidden layers is five.

3.3.2. Acoustic model

One of the best neural structures for realizing the AM θ in Fig. 1
is the factorized form of TDNN [23], called TDNN-F. TDNN-F
and TDNN have the same structure, but the layers of the former
are compressed by singular value decomposition and trained by
random initialization with semi-orthogonal constraints in one
of the two factors of each matrix [24]. Our TDNN-F was con-
structed with 13 hidden layers, each containing 1,024 hidden
nodes and 128 linear bottleneck nodes. The parameters of the
final layer were factorized using a 192-node linear bottleneck
layer. The mini-batch sizes were set to 128 and 64. The initial
and final effective learning rates were set to 0.01 and 0.001, re-
spectively, and the total number of training epochs was set to 20.
In our CNN-TDNNF model, there were six convolutional layers
followed by nine TDNN-F layers. The time offsets and height
offsets were set to “-1, 0, 1” in terms of Kaldi for all convolu-
tional layers, and the number of filters in the six convolutional
layers was set to 48, 48, 64, 64, 64, and 128, respectively. The
parameters of the TDNN-F layers and hyperparameters were set
to the same value as in the TDNN-F system. The total number
of training epochs was set to 10.

In addition, we applied SpecAug to the input of the AM dur-
ing training. It involves deformation in two dimensions: tem-
poral and feature-level masking.

4. Experimental Results
4.1. Primary Results

First, we compared four types of aggregation functions for the
predicted noise features in Fig. 1 on Aurora-4. Table 2 shows
that STAT outperforms the other three functions, presumably



Table 3: WERs (%) on Aurora-4 with respect to TDNN-F and
CNN-TDNNF. -/+ denote without/with, respectively. Proposed†

is the oracle case, where SENAN is removed and the en-
hanced/noise features (i.e., yenh/ynse in Eq. 4) are replaced
by ŷclean/ŷnse derived from clean speech and true noise.

TDNN-F A B C D Avg.

-SpecAug
Baseline 1.74 3.83 3.29 10.31 6.42

Proposed 1.74 3.29 3.01 9.60 5.86

Proposed† 1.55 1.60 1.63 1.62 1.61

+SpecAug Baseline 1.33 2.55 2.15 6.28 4.03

Proposed 1.59 2.45 2.30 6.01 3.90

CNN-TDNNF A B C D Avg.

-SpecAug Baseline 1.55 3.28 3.03 9.49 5.80

Proposed 1.85 3.57 2.97 9.32 5.87

+SpecAug Baseline 1.31 2.27 1.89 5.74 3.66

Proposed 1.23 2.13 2.02 5.61 3.55

Table 4: State-of-the-art benchmarks on Aurora-4 with respect
to bigram and trigram language models used for decoding.

Method A B C D Avg.

bi-
gram

CAT-VDCRN [40] 2.95 4.17 3.70 8.55 5.92

Proposed 2.20 3.42 3.34 7.36 5.02

tri-
gram

CNN-Raw [41] 2.70 4.40 4.00 6.40 5.10

Proposed 1.14 2.14 1.91 5.25 3.39

because statistical information can more consistently describe
the noise pattern in noisy speech. Therefore, STAT will be used
in the following experiments.

Then, we evaluated the WERs of different AMs on Aurora-
4. Note that our proposed model can be regarded as a combi-
nation of the baseline and SENAN. Several observations can be
made from Table 3. First, when using TDNN-F as AM, with
or without SpecAug, our proposed model outperforms the base-
line in most test subsets. The average WER is reduced by 8.72%
(from 6.42% to 5.86% with SpecAug) and 3.23% (from 4.03%
to 3.90% without SpecAug). Although the WER reduction is
relatively small when SpecAug is used, the system combin-
ing SpecAug and SENAN still achieves the best performance
(WER=3.90%). The results show that the two data augmen-
tation techniques can complement each other. Second, when
CNN-TDNNF is used as AM but without SpecAug, our pro-
posed model performs slightly worse than the baseline because
of its weak performance in Sets A and B. The results imply that
our proposed model may underfit the training set, which was
recorded using the same Sennheiser microphone as Sets A and
B. However, when viewed optimistically, our proposed model is
still better than the baseline in terms of handling real situations,
as shown by the results of Sets C and D. Among all models,
the proposed model combining CNN-TDNNF, SENAN, and
SpecAug achieves the lowest WER of 3.55%. Third, in the or-
acle experiment, the average WER reached 1.61%, where the
estimated clean speech and noise are replaced by ground truth.
This result confirms that we are on the right track, but our model
still has considerable room for improvement.

Table 5: WERs (%) and relative changes over Baseline on AMI.

Method Dev rel. % Eval rel. %

CNN-TDNNF (Baseline) 33.6 - 37.0 -
+ SpecAug 33.2 1.19 35.9 2.97
+ SENAN (Proposed) 32.2 4.17 35.5 4.05

Table 6: Ablation studies on Aurora-4, where AGG is the aggre-
gation function, and “+” means accumulating.

Method WER % rel. %

TDNNF (Baseline) 6.42 -
+ SENAN (enhanced only) 6.17 3.89
+ SENAN (enhanced only w/ AGG) 6.08 5.30
+ SENAN (enhanced & noise w/ AGG) 5.86 8.72
+ SpecAug 3.90 39.25
+ Replaced with CNN-TDNNF 3.55 44.70

Next, we compared our best model (CNN-
TDNNF+SENAN+SpecAug) with the best methods in
the literature for the Aurora-4 task. Following the practice of
these methods, the forced alignment of noisy speech before
training neural AMs was directly obtained from that of the
corresponding clean speech. The results in Table 4 confirm the
superiority of the proposed model. Note that the subtle WER
difference (3.55% in Table 3 vs. 3.39% in Table 4) is due to the
different forced alignment of noisy training speech.

Finally, we evaluated the proposed model on the more chal-
lenging corpus AMI. The results in Table 5 again demonstrate
that both SpecAug and SENAN can improve recognition perfor-
mance, and they complement each other. It is also worth noting
that standing on the shoulders of SpecAug, SENAN can further
substantially reduce the WER on the Dev set (4.17%−1.19% =
2.98% > 1.19% = 1.19%− 0%).

4.2. Ablation Studies

Our proposed model contains two key components: SENAN
and the aggregation function. SENAN is reduced to a denois-
ing autoencoder if the predicted noise feature ynse in Fig. 1 is
discarded. We conducted a series of ablation studies by adding
or changing network components to demonstrate their efficacy.
The results in Table 6 show that each component does contribute
to the performance.

5. Conclusion
In this paper, we have proposed an architecture that combines
speech enhancement and acoustic modeling to achieve robust
ASR and a joint training mechanism that involves ASR-related
losses, in particular the lattice-free MMI, and feature recon-
struction errors. The key component, SENAN, plays an im-
portant role in separately extracting enhanced speech and noise
features from noisy speech. Through appropriate aggregation
functions, the two features extracted by SENAN can be com-
bined with the noisy speech feature to boost the ASR perfor-
mance. They enable acoustic models to filter out non-speech
content from noisy speech in a more effective way than con-
ventional SE plus AM frameworks. Our experimental results
have shown that the proposed models outperform the baseline
models without SENAN on the Aurora-4 and AMI tasks, and
outperform the state-of-the-art methods on the Aurora-4 task.
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