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Abstract
Labeled audio data is insufficient to build satisfying speech
recognition systems for most of the languages in the world.
There have been some zero-resource methods trying to per-
form phoneme or word-level speech recognition without labeled
audio data of the target language, but the error rate of these
methods is usually too high to be applied in real-world sce-
narios. Recently, the representation ability of self-supervise
pre-trained models has been found to be extremely beneficial
in zero-resource phoneme recognition. As far as we are con-
cerned, this paper is the first attempt to extend the use of pre-
trained models into word-level zero-resource speech recogni-
tion. This is done by fine-tuning the pre-trained models on IPA
phoneme transcriptions and decoding with a language model
trained on extra texts. Experiments on Wav2vec 2.0 and Hu-
BERT models show that this method can achieve less than 20%
word error rate on some languages, and the average error rate
on 8 languages is 33.77%.
Index Terms: zero resource speech recognition, multilingual
speech recognition

1. Introduction
For over 7000 languages in the world, only a few of them are
served by an Automatic Speech Recognition (ASR) service with
enough accuracy. The main barrier on the path to an accurate
speech recognition model for these low-resource languages is
the insufficiency of labeled training data. The cost to record
and transcript a high quality audio corpus is enormous. In con-
trast, usually, hundreds or thousands of hours of labeled data
is needed to train a state-of-art ASR model. Zero-resource
speech recognition provides an extreme solution by sharing a
well-trained acoustic model with the target language, and can
alleviate the reliance on labeled audio data.

The key point of zero-resource speech recognition meth-
ods is the ability to recognize language-independent acoustic
units. For instance, International Phonetic Alphabets (IPA) can
be used to transcript every language in the world, and are usu-
ally used as modeling units in zero-resource methods. Conven-
tionally, an IPA phoneme recognition model needs to be trained
in a supervised way with a large amount of labeled training data.
Recently, self-supervise pre-trained models provide a new way
to model such acoustic units. Some research [1] reveals that the
latent speech representations of the Wav2vec 2.0 model are re-
lated to phonetic information. Moreover, the HuBERT model is
directly trained to predict the hidden units provided by clus-
tering methods [2]. Pre-trained models have strong general-
ization ability [3], and are demonstrated to be useful in many
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low-source tasks [4, 5, 6]. Such ability is also helpful for our
zero-resource speech recognition task.

Before pre-trained models are introduced, zero-resource
methods usually focus on phoneme recognition, and the at-
tributes of phonemes are treated as key points to improve per-
formance. The Universal Phonemic Model (UPM) [7] describes
all the phonemes by some attributes (such as place or manner
of articulation). By comparing the attributes predicted by the
model with a pre-defined template, the final phoneme output
can be obtained. Allophone adds a projection layer at the end of
the model to map global phones to language-specific phonemes
[8]. Differentiable allophone [9], a modified version of allo-
phone, uses weighted finite-state transducers to represent this
phone-to-phoneme mapping in a differentiable way.

Self-supervised pre-train models bring a significant im-
provement to zero-resource phoneme recognition tasks. Gao
et al. extract features from Wav2vec 2.0 then use them to train
an end-to-end (E2E) model, and get better generalization in un-
seen languages [10]. Xu et al. simply fine-tune the Wav2vec 2.0
model on a multilingual training set and directly test this model
on unseen languages [11]. This method achieves a state-of-art
phoneme error rate (PER) on their test set. This proves that
pre-trained models can represent audio in a phonological way
without supervised training. Even if the phonemes are miss-
ing in the training set, they can still give a relatively accurate
approximation.

There are also some works focusing on word-level speech
recognition without pre-training methods. Prasad et al. train
a Deep Neural Network Hidden Markov Model (DNN-HMM)
hybrid model on a rich-resource language which is similar to the
target, and replace the language model with another one trained
on extra text of the target language [12]. This method needs
texts, an expert lexicon and phoneme mapping between source
and target languages, but these resources are easier to get than
labeled audio.

We believe that the representation ability of pre-trained
models can also help in word-level speech recognition. In this
paper, we achieve a word error rate (WER) of 13.1% on the
Common Voice Interlingua test set without using any labeled
Interlingua training data, and the test on 8 languages shows
that our method can get an average WER of 33.77%. Our
method only needs around 5k sentences for each language to
train the language models, and the lexicons are also generated
by grapheme to phoneme (G2P) tools without expert knowl-
edge. We also optimize the fine-tuning and decoding steps to
get better WER. We add word split symbols when fine-tuning,
split the diphthongs and triphthongs and extend the lexicon
with some possible additional pronounces. Our model signif-
icantly outperforms supervised hybrid and E2E models when
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Figure 1: An overview of our method. Notice that the diphthong
is split in the model output. Zero-resource recognition may in-
troduce extra mistakes in model output, which can be corrected
by the extended lexicon.

extremely low text or audio resources are available.

2. Approach
To utilize the representation ability of pre-trained models on
zero-resource ASR, we still need 2 extra steps. Firstly, these
models should be fine-tuned on other languages to set up a
projection from self-supervise phone-level units to real IPA
phonemes. Secondly, a lexicon and a language model are
needed to perform the decoding step.

For fine-tuning, we want to adjust the pre-trained model to
this cross-lingual scenario. As in Figure 1, we add the word split
symbol (“|”) between the phoneme transcriptions in the train-
ing set when fine-tune the pre-trained model, and diphthongs
are split in both training and valid set to reduce the out-of-
vocabulary (OOV) phonemes when decoding unseen languages.

For decoding, we adjust the lexicons to make our model
perform better when recognizing unseen languages. To be spe-
cific, when generating the lexicons, additional pronunciations of
some words are generated using the Sequitur G2P [13] model
to make the decoder more possible to generate correct words.

2.1. Self-supervised pre-trained models

We select XLSR-53 [14], HuBERT-large [2] and Data2vec-
large[15] as our pre-trained models. XLSR-53 contains a con-
volutional feature encoder which can map raw audio input into

latent speech representations, and a deeper transformer network
mapping speech representations into context representations.
Besides, during training, speech representations are quantized
into a fixed code book by Gumbel-Softmax [16], and contrastive
loss is calculated by selecting the correct quantized representa-
tion from K (K = 100) uniformly sampled distractors [14].

The HuBERT model is similar to XLSR-53 in structure,
but it uses off-line clustering to generate phoneme-level hidden
units as “pseudo-labels”, and such pseudo labels are used as the
targets of self-supervised training. HuBERT uses cross-entropy
loss in optimization.

The Data2vec-large model is also similar to the above two
models in structure, but uses a self-distillation method in train-
ing. The model tries to predict the representations of the masked
input, and the corresponding ground truth representations are
generated by the unmasked version of the input using the same
model.

2.2. From hidden units to phonemes

Self-supervise pre-trained models can recognize phoneme-level
hidden units, but these units still should be mapped to real IPA
phonemes to build the lexicon. This is done by fine-tuning the
pre-trained models on a phoneme recognition task. Thanks to
the strong representation ability of pre-trained models, we can
simply add a linear layer on top of the transformer part and
fine-tune them with a training set of dozens of hours, and the
languages of the training set are not those in the testing set.

2.3. Vowels splitting

Different languages have different phoneme set, so the existence
of out-of-vocabulary phonemes can not be avoided in zero-
resource speech recognition. Xu et al. address this by a map-
ping between OOV phonemes and corresponding substitutions
in the training set [11] . By our observation, OOV phonemes
can be divided into two kinds. Some phonemes contain at-
tributes that are not covered in the training set, and they have
to be mapped to some similar ones; the other phonemes, es-
pecially diphthongs and triphthongs, can be split into monoph-
thongs that usually can be found in the training set. Base on
such an observation, we split all the diphthongs and triphthongs
in the transcriptions when training , so the pre-trained model can
be adjusted to such a transformation, and can recognize unseen
diphthongs and triphthongs as separated monophthongs when
testing.

2.4. Lexicon extending

Recognizing an unseen language is a great challenge for the
acoustic model, and it is obvious that some phonemes may be
recognized as similar ones, which sets a barrier to the accuracy
of decoding. In our opinion, a flexible lexicon may help in this
scenario. Some auto-generated additional pronounces may be a
remedy for the mistakes of the acoustic model and help to get
the correct decoding results.

Our lexicon extending method includes two steps. Firstly,
we use a generated lexicon to train another G2P model by Se-
quitur toolkit [13]. Secondly, we feed the words in the lexicon
back to the new G2P model and get possible additional pro-
nounces of the words. In practice, we noticed that injecting too
many wrong pronounces may harm the word error rate, espe-
cially for the shorter words, so we only generate lexicon indexes
for words longer than 5 characters, and for the remaining parts,
only those with confidence over an certain threshold is selected



as the final result.

3. Experimental Setup

3.1. Datasets

We chose Common Voice [17] and Librispeech dataset [18] for
training ans testing. Common Voice is an open-source multi-
lingual dataset including over 70 languages, and its total data
amount is over 2500 hours. We chose 17 languages with bet-
ter G2P models from Common Voice version 5.1 for our ex-
periments, in which 9 languages for training and 8 languages
for testing. Besides, a subset of Librispeech 100 hours is also
combined with the Common Voice training set. For all these
languages, we use G2P to transform their transcriptions into
phonemes.

As mentioned above, our zero-resource method is audio-,
but it still needs some text of target languages to train a language
model and generate a lexicon. For the languages in the testing
set, we select at most 10 hours of corresponding training set and
used their transcriptions to train the language models. For those
languages with less than 10 hours of audio, all the data is used.
Table 1 shows the details of the dataset.

Table 1: Details of training and testing set. “Lang. Code” is
the shorten for each language.

Split Language Lang. Code Total Hours

Training

Czesh cs 26
Welsh cy 83
German de 692
English en 100
Esperanto eo 83
Spanish es 290
French fr 554
Portuguese pt 48
Russian ru 105
Swedish sv-SE 10

Tesing

Greek el 6
Basque eu 88
Interlingua ia 5
Italian it 130
Georgian ka 3
Dutch nl 42
Polish pl 104
Romanian ro 5

3.2. Baselines

We use a Kaldi Time-Delay Neural Network (TDNN) hybrid
model [19] and an Espnet [20] end-to-end conformer model as
our baselines. The baseline hybrid model is 11-layer TDNN
which is trained on 40-dim MFCC features. The baseline E2E
model has a 12-layer conformer encoder and a 6-layer trans-
former decoder. We extract 80-dim Fbank features for E2E
training, and use speed perturbing and SpecAugment [21] for
data augmentation.

3.3. Text pre-processing and normalization

We use Espeak-ng1 to transform words into phoneme transcrip-
tions. To make the transformation more accurate, we only keep
five kinds of characters: letters in the target language’s alpha-
bet, letters in the English alphabet, spaces, apostrophes and hy-
phens. We also lowercase all the characters before G2P. We
add “|” as a word splitting symbol when conversion. We also
split all the diphthongs and triphthongs, and delete all the stress
marks in the final g2p results.

3.4. Model fine-tuning

We use the fairseq [22] open-source pre-trained models. For
the fine-tuning of all models, we freeze the CNN feature ex-
tractor and and only change the linear layer on the top and the
transformer blocks. We set the max update steps at 25k, and
the transformer parts are fixed in the first 10k updates. We use
the “tri-stage” learning rate scheduler in fairseq, which linearly
increases the learning rate to the settled value in the first 10%
steps, keeps it for the next 40%, and exponentially decays it to
5% of the original value in the last 50% steps. The model is
trained on a GTX3090 GPU and it takes around 6 hours to fin-
ish the 25k steps. We simply select the last checkpoint as the
final result without early stopping.

3.5. Lexicon extending and decoding

Our lexicons are generated and normalized in the same way as
the transcriptions. After obtaining the lexicons, we use the Se-
quitur G2P toolkit to extend the lexicons. 5-order models are
trained using the generated lexicons, and 4 possible candidates
are generated for each word in the original lexicon. We first
delete the words with less than 5 characters, and for the reset,
only the ones with top 10% confidence are selected as the final
output and are combined with the original lexicons.

We use Flashlight python binding [23] as the beam search
decoder. For each target language, a 5-gram Kenlm [24] lan-
guage model is trained on the mentioned extra texts. For the
remaining unseen phonemes in the lexicon after vowels split-
ting, we map them to the nearest ones in the fine-tuning lexicon
[11]. The decoding beam is set to 50, and we use Sclite2 to get
the final WER.

4. Results
4.1. Comparison with the baselines

Firstly, to measure the performance of our method, we compare
our models with baseline models which are trained on different
sizes of labeled data. We choose Basque and Italian for these
experiments, which are relatively rich resource languages in
Common Voice. Figure 2 shows that our zero-resource method
can have comparable performance with the supervised baseline
models trained on around 10 hours of labeled audio. Generally,
texts usually cost less to obtain than audio data in practice. As
a result, it can be expected that our model may get better results
than training a model from scratch in such a scenario. On the
other hand, baseline models outperform our method when the
training data is over 10 hours. This shows that when enough
labeled data can be obtained, it may be better to train the model
or try other transfer learning methods.

We then test our method in low-resource scenarios. In this

1https://github.com/espeak-ng/espeak-ng
2https://github.com/usnistgov/SCTK



Figure 2: Comparison of the proposed method and the baseline
models on different sizes of training data. Our zero-resource
method have competitive performance when training data is
less than 10 hours.

Table 2: WER of the proposed and baseline models. The base-
line models are trained on no more than 10 hours of labeled au-
dio, and the language models are trained on the same amount of
texts. Specially, ka, el and eu have no language from the same
family in the training set. XLSR, Hu and D2v is for XLSR-53,
Hubert-large and Data2vec-large, respectively.

Lang. Code Baseline Proposed
E2E Hybrid XLSR Hu D2v

ro 99.5 99.28 41.4 41.1 49.5
ia 77.9 71.71 13.1 16.1 20.6
it 43.3 43.73 43.1 49.3 56.1
nl 51.9 10.26 35.0 44.1 57.1
pl 30.5 21.48 48.2 47.3 60.6

ka 78.0 79.50 40.0 33.7 45.8
eu 21.1 25.77 20.1 25.4 26.0
el 65.6 43.41 29.3 26.3 38.4

Avg 58.47 49.39 33.77 35.78 44.26

part, for the baseline models, we split a 10-hour subset for ev-
ery testing language, and for languages with less than 10 hours
of training data, all the data is used. Table 2 shows that our
methods can reach lower error rates than the supervised base-
line models, extremely when the training data is less than 10
hours.

In Greek, Romanian and Georgian, the HuBERT model
outperforms the XLSR-53 model. The HuBERT model is pre-
trained only on English unlabeled data, so this result shows that
the pre-trained model, especially the HuBERT model, does rec-
ognize some language-indepent acoustic units. The Data2vec-
large model has higher WER, which may indicate that the
Data2vec model is harder to transfer to other languages. This
model is pre-trained to predict contextualized representations,
which may have large variation between languages. On aver-
age, the XLSR-53 model can achieve lower WER, which shows
the importance of multi-lingual pre-training.

Languages in our test set include 7 language families. For
some of those languages (for example, Italian and Polish),
members from the same languages families can be found in the
training set, but for other languages, such as Basque, Georgian
or Greek, there is no such correspondence. The results show
that whether there exists a similar language in the training set
seems to have no influence on the final result. This proves the
universality of our method.

4.2. Ablation tests

To prove the effect of our optimization when fine-tuning and
decoding, we perform ablation tests of vowel splitting and lex-
icon extending on XLSR-53 pre-trained model. Table 3 shows
the details of our test.

Table 3: Details of ablation test. “Proposed” is the fine-tuned
XLSR-53 model. Diphthongs are not split when lexicons are not
extended.

Lang. Code Proposed w/o Splitting w/o Extending

eu 20.1 20.1 21.7
el 29.3 31.2 30.5
ro 41.4 41.6 43.0
ia 13.1 14.1 14.3
it 43.1 44.5 45.8
nl 35.0 35.5 37.6
pl 48.2 49.5 50.9
ka 40.0 40.0 40.1

Avg. 33.77 34.56 35.48

Vowel splitting is to alleviate the mismatching of phoneme
sets when recognizing unknown languages. In most of our test-
ing languages, diphthongs and triphthongs are the majority of
all the out-of-vocabulary phonemes. For instance, over 50%
of OOV phonemes in Italian, Dutch and Romanian are diph-
thongs or triphthongs, and the improvement after vowel split-
ting is greater. On the other hand, Basque has lower diph-
thongs/triphthongs rate, and its improvement is not so obvious.
Greek and Dutch are two exceptions. In Greek (el), all the OOV
phonemes are diphthongs or triphthongs, but the WER increases
after splitting. In Dutch (nl), none of the OOV phonemes are
split, but the WER decrease a little. We think these excep-
tions show the influence of vowel splitting on model fine-tuning.
Maybe depended on the way in which vowels are pronounced in
different languages, the influence could be positive or negative.

For every language, final WER decreases after inserting ex-
tra pronunciations. Notice that these improvements are real-
ized after deleting the lexicon indexes with less confidence, and
without this filtering, the WER usually increases. In our opin-
ion, this phenomenon shows that lexicon extending must be ap-
plied with caution and filtering threshold of word length and
confidence may need to be adjusted depending on languages.

5. Conclusion
In this paper, we apply self-supervise pre-trained model to
zero-resource speech recognition. We verify that with a small
amount of labeled fine-tune data of other languages and texts
of the target language, the pre-trained model can achieve a
relatively low word error rate on the test set. We find that
splitting the diphthongs and triphthongs when fine-tuning and
adding extra pronounces into the lexicon can further decrease
the WER. In a scenario where only text resources are available,
this method can be used to perform basic speech recognition;
and when a small amount of labeled audio can be used, this
method can perform better than training a model from scratch.
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