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ABSTRACT

In the existing cross-speaker style transfer task, a source speaker
with multi-style recordings is necessary to provide the style for a
target speaker. However, it is hard for one speaker to express all
expected styles. In this paper, a more general task, which is to pro-
duce expressive speech by combining any styles and timbres from
a multi-speaker corpus in which each speaker has a unique style,
is proposed. To realize this task, a novel method is proposed. This
method is a Tacotron2-based framework but with a fine-grained text-
based prosody predicting module and a speaker identity controller.
Experiments demonstrate that the proposed method can successfully
express a style of one speaker with the timber of another speaker
bypassing the dependency on a single speaker’s multi-style corpus.
Moreover, the explicit prosody features used in the prosody predict-
ing module can increase the diversity of synthetic speech by adjust-
ing the value of prosody features.

Index Terms— speech synthesis, multi-speaker, multi-style

1. INTRODUCTION
In recent years, enormous progress has been made in the neural text-
to-speech (TTS), which benefits from the development of sequence-
to-sequence (seq2seq) neural models [1, 2], making it possible to
synthesize highly intelligible and natural speech [3, 4, 5, 6]. Despite
the successful application of TTS in many scenarios, how to create
expressive synthetic speech that can be flexibly controlled in terms
of various speaking styles and speaker timbres is desirable for better
user experience. This paper proposes a new expressive speech syn-
thesis task that creates diversity synthetic speech by combining the
timbre and speaking style from different speakers.

To create a TTS system with the ability to synthesize various
expressive speech, a straightforward method is to train a TTS model
with a database with manual labels [7, 8, 9, 10, 11], for instance, a
database with manually labeled emotion categories [7, 9] or speaking
styles [11]. However, the limitation of these methods is obvious, i.e.,
it heavily depends on the training data and can not create new voice
by combining different speaker timbres and speaking styles. To
transplant a style to a target speaker for whom no labeled expressive
recording exists, the cross-speaker style transfer task has attracted
much attention [12, 13, 14, 9, 15, 16]. Reference embedding-based
cross-speaker style transfer models [12, 13, 14, 16, 17], typically
based on several general reference embedding methods [18, 19, 20],
have shown promising performance on the style transfer task.

∗Corresponding author.

While those cross-speaker transfer methods can successfully
produce expressive speech with a specific speaking style and a tim-
bre from a speaker who has no such a speaking style in the corpus,
they typically depend on a source speaker who has enough manually
labeled expressive sources. It requires a source speaker to be an
expert in expressing all expected styles with the aim to produce
synthetic speech with various styles. Anyway, it is impossible for
one source speaker to imitate all possible speaking styles and record
enough recordings. In contrast, it is much easier to obtain an expres-
sive corpus in which each speaker only speak one specific speaking
style that he or she is good at. With such a corpus, a practical task is
to build a TTS system that has the ability to produce synthetic speech
by combining different timbres and styles from different speakers,
which is referred to as speaker-related multi-style and multi-speaker
TTS (SRM2TTS).

However, it is non-trivial to achieve such a SRM2TTS task.
Compared with the traditional cross-speaker style transfer task,
in the SRM2TTS task, the timbre and style are closely entan-
gled, making it difficult to transfer styles across speakers with
reference-based methods. Taking inspiration from the success of
the label-assisted content-aware prosody prediction model on the
style transfer task [15], a novel method for the SRM2TTS task
is proposed in this work. Specifically, based on a typical neural
seq2seq framework, a content-aware multi-scale prosody modeling
module is proposed, which can provide the style information to the
TTS system based on the style label and input text. With an extra
speaker identity controller, the proposed method can distinguish
different styles and timbres, and thus can perform any combination
of speakers and styles for SRM2TTS. Experiments have shown that
the proposed method achieves good performance on synthesizing
expressive speech by combining any speaker timbre and speak-
ing style. Besides, benefit from the explicit modeling of prosody
features, the proposed method can flexibly control each prosodic
component, e.g., pitch and energy, which can increase the diversity
of synthesized speech.

Our contribution can be summarized as follows: (1) Synthesiz-
ing expressive speech by combining any style and timbre based on
a multi-speaker database in which each speaker has a unique speak-
ing style is first proposed in this work. The realization of this task
has profound implications from a perspective of usability. (2) A
novel method, which can realize the combination and control of any
style and timbre on expressive speech synthesis, is proposed. (3) Ex-
tensive experiments have shown that with a novel fine-grained text-
based prosody modeling module the proposed method can explicitly
model and flexibly control the prosodic components.
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2. PROPOSED MODEL

The proposed framework is illustrated in Fig. 1. As shown, the
proposed model is a typical attention-based seq2seq framework, in
which the backbone of the encoder-decoder structure is based on
a modified Tacotron2 [4]. Besides, a novel text-based fine-grained
prosody module is included to predict the prosody, and the speaker
identity controller is to control the timbre of synthetic speech.

2.1. The backbone of the encoder-decoder framework

Following [9], a slightly modified version of Tacotron2 [4] is used
as the encoder-decoder backbone. The encoder consists of a pre-
net, which is composed of two fully connected layers, and a CBHG
module [21]. The decoder is composed of an autoregressive recur-
rent neural network (RNN) and generates attention queries at each
decoder time step. Here, the GMM attention mechanism is used,
which has shown a good performance on modeling long sequence
speech [22, 23]. To control the timbre of synthesized speech, an
additional speaker embedding with dimension of 256 is concate-
nated with the RNN input in the decoder. Same to the original
Tacotron2 [4], the post-net which is a five-layer convolution net-
work is also adopted. Speech in this framework is represented by
mel-spectrograms, and multi-band WaveRNN [6] is adopted to re-
construct waveforms from predicted spectrograms.

2.2. Text-based fine-grained prosody module

As mentioned in the introduction, when there is an exact correspon-
dence between the speaking style and speaker identity, the speaker
information and style information would be deeply entangled from
a global perspective. Therefore, it is crucial to find the essential dif-
ference between the speaker information and style information. Ac-
tually, the speaker information, typically the timbre, is global infor-
mation, which means the timbre related to speaker identity basically
will not change along with the speaking style. In contrast, the speak-
ing style, which is generally presented by fine-grained prosody, is

mainly local information and will varies with different speech units.
Direct presenting the prosody as a global embedding is hard to dis-
tinguish from the speaker embedding in our case. Instead, a fine-
grained prosody encoder, as shown in Fig. 1, is proposed to model
the phoneme-level prosody. During the training stage, the prosodic
features are represented by pitch, duration, and energy, all of which
are at the phoneme level. Meanwhile, a text-based prosody predic-
tor is optimized with the input of text encoder’s output and the style
embedding. During the inference stage, the prosody predictor is to
provide the speaking style information for speech synthesis.

Prosody predictor The structure of the prosody predictor is
shown in Fig. 2. It consists of five one-dimension convolutional
layers and one linear transformation layer. Each of the convolutional
layer is followed by layer normalization, ReLu activation function,
and dropout. Considering the temporal nature of prosodic se-
quences, a position-coding vector is added to the input. To optimize
the prosody predictor, the L1 loss is used to calculate the devia-
tion between the predicted prosody and the ground-truth prosody
features.

Multi-scale prosody encoder The speaking style of human
speech has rich and subtle changes even within the same utterance.
These changes are generally reflected in different scales. To obtain
better representation from prosodic features, a multi-scale encoder
as shown in Fig. 3, is proposed in our framework. The input prosody
features are first convolved with a one-dimensional convolution filter
bank F = {f1, . . . , fm} where fi has a width of i. In practice, m
is 8 in the proposed model. The outputs of the convolution groups
are stacked together, and the processed sequence is further passed
to the maximum pooling layer and 1-D convolution layer. Then we
use a layer of bidirectional LSTM (BLSTM) to extract the forward
and backward sequence features. With this multi-scale modeling
method, we can explicitly obtain the local and contextual features
from the prosodic components.

2.3. Style control

Since the proposed method is based on explicit prosody features,
it allows us to control the prosody feature by adjusting its value.
Specifically, by multiplying or dividing the prosody features by a
scale, we can flexibly control the prosody of the synthesized speech
to further enhance the expressiveness of synthesized speech.

2.4. Training and generation

The training loss of the proposed model is shown in

L = Ltaco + Lprosody, (1)

where Ltaco is the loss function of Tacotron2 [4], and Lprosody is
prosody loss. The training and inference stages are illustrated in
Fig. 1. At the training stage, ground-truth prosody features are used



Table 1: Comparison of our proposed method with Multi-R and PB in terms of style and speaker similarity MOS with confidence intervals
of 95%. The higher value means better performance, and the bold indicates the best performance out of three models in terms of each style.

Style style similarity MOS speaker similarity MOS

Multi-R [12] PB [15] Proposed Multi-R [12] PB [15] Proposed

Story 3.59±0.058 3.65±0.056 3.77±0.058 3.83±0.049 3.91±0.049 4.01±0.047
Anchor 3.48±0.061 3.61±0.057 3.79±0.058 3.74±0.050 4.01±0.047 4.04±0.048
CS 3.22±0.060 3.78±0.062 3.84±0.059 3.81±0.046 3.84±0.048 3.84±0.046
Poetry 2.84±0.057 3.88±0.060 4.14±0.054 3.82±0.049 3.88±0.050 3.86±0.047
Game 2.78±0.054 3.81±0.060 4.03±0.059 3.90±0.045 3.92±0.049 4.04±0.048

Overall 3.18±0.023 3.74±0.027 3.91±0.026 3.82±0.021 3.91±0.022 3.96±0.021

as input of the prosody encoder. At the inference stage, the prosody
features are predicted based on the input text and style id.

3. EXPERIMENTS

3.1. Experimental setup

3.1.1. Database

To evaluate the performance of the proposed method in the SRM2TTS
task, an internal Mandarin multi-speaker corpus, in which each
speaker has a unique speaking style, is employed in the experi-
ments. There are a total of six speakers, each with their own unique
style, including reading, radio anchor, story telling, customer ser-
vice (CS), poetry and game character. Compared with the first four
speaking styles, the latter two have stronger expressiveness, which
are recorded by a child and a game character respectively. The total
duration is 20 hours, and all recordings are down-sampled to 16kHz.
Ten sentences of each speaker are randomly selected as the test set
for subjective evaluation.

3.1.2. Evaluation metrics

In the SRM2TTS task, a good model should has the ability to pro-
duce synthetic speech with the expected speaking style and timbre.
Therefore, the synthesized results are evaluated in terms of style sim-
ilarity and speaker similarity.

Style similarity: The style similarity is to compare the similar-
ity between the expected speaking style of natural speech and that
of synthetic speech. Here, a Mean Opinion Score (MOS) evaluation
with the human rating experiment is conducted to evaluate this sim-
ilarity. Among the speakers from the adopted database, the speaker
with the reading style (DB11) is a public database. Therefore, in the
evaluation, DB1 is adopted as the target timbre to express different
speaking styles. Twenty (gender-balanced) native Mandarin listen-
ers are invited to participate in the evaluation.

Speaker similarity: The speaker similarity is to compare the
similarity between the expected timbre of natural speech and that of
synthetic speech. Similar to the evaluation of style similarity, MOS
evaluation is conducted in the subjective test.

3.2. Comparison with other methods

To evaluate the performance of the proposed model on the SRM2TTS
task, two state-of-the-art style transfer methods, i.e., Multi-R [12]

1The dataset is available at http://www.data-baker.com/hc_
znv_1.html

Table 2: Ablation study of different prosody component in terms of
style similarity MOS with confidence intervals of 95%. w/o means
without.

Method Proposed w/o energy w/o duration w/o pitch w/o all

Story 3.76±0.0493.74±0.0503.55±0.053 3.65±0.0653.41±0.044
Anchor 3.85±0.0423.76±0.0483.67±0.063 3.73±0.0493.37±0.045
CS 3.87±0.0543.80±0.0493.44±0.054 3.66±0.0573.22±0.042
Poetry 3.97±0.0453.81±0.0503.27±0.044 3.59±0.0622.93±0.039
Game 3.91±0.0413.83±0.0443.13±0.043 3.49±0.0412.77±0.036

Overall 3.87±0.0213.79±0.0223.42±0.021 3.63±0.0213.14±0.020

and PB [15], are compared in this work. Multi-R [12] is a Tacotron-
based method with multi-reference to transfer the prosody. PB [15]
is a cross-speaker style transfer model based on prosodic bottleneck.
For the fair comparison, the compared Multi-R and PB take the same
Tacotron backbone as our proposed model.

The MOS evaluations in terms of style similarity and speaker
similarity are shown in Table 1. As can be seen from the table,
our model achieves the best performance in terms of all style cat-
egories. Note that the reference-based method Multi-R obtains the
lowest MOS scores with all speaking styles. This is mainly because
that when each speaker has a unique speaking style this reference-
based method is hard to decouple the timbre and style of the speaker.
Therefore, when the imitated speaking style is significantly different
from the reading style, i.e., game and poetry, the performance of this
reference-based method performs much worse. In contrast, the label-
based PB and our method achieve better style similarity MOS scores,
which is probably caused by that the distinctive speaking style makes
it easier for participants to judge, indicating the effectiveness of the
label-based method on this SRM2TTS task. Compared with PB,
our proposed method achieves 4.5% relatively higher style similar-
ity MOS averaging all style categories.

As for the speaker similarity, no obvious MOS difference exists
among three models, demonstrating that the style transfer in PB and
the proposed method does not bring obvious negative effect to the
timbre compared with Multi-R which has very limited style transfer
ability. Instead, the proposed method even achieves the best speaker
similarity MOS in terms all style categories except for CS and Po-
etry, indicating the good performance of the proposed method on the
SRM2TTS task.

3.3. Ablation study

The prosody prediction module plays an important role to realize the
SRM2TTS task. In the prosody prediction module, several prosody

http://www.data-baker.com/hc_znv_1.html
http://www.data-baker.com/hc_znv_1.html


components, including pitch, energy, and duration, are considered
in our method. To show the effectiveness of each component in the
SRM2TTS, an ablation study is performed by comparing the pro-
posed method with several variants that achieved by dropping one
or all prosody components. The results are shown in Table 2, in
which the style similarity is evaluated by the MOS score. Note that,
when all of these three prosodic components are removed, which is
referred to as w/o all in Table 2, the model degenerates into a gen-
eral multi-speaker model. Due to that the human rating experiments
in Table 2 and Table 1 are performed in two individual groups, the
MOS scores of the proposed method in these two tables are slightly
different.

As can be seen from this table, dropping any prosodic compo-
nent would result in significant performance drop in terms of the
style similarity. Specifically, the dropping of the duration brings
the biggest drop, in which the style similarity MOS is 11.7% rel-
atively lower than the proposed method. When no prosody com-
ponent is adopted, i.e., w/o all, this model is unable to perform the
style transfer task. Instead, it is just a multi-speaker TTS model
that can only produce synthetic speech with the timbre and style that
belongs to the same speaker in the corpus. All of these results in-
dicates the importance of each prosody component in our prosody
modeling module. In addition to the effect on the style similarity,
those prosody components also show important roles in the manual
control of prosody in synthetic speech, which will be demonstrated
in Section 3.4.
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3.4. Style control

Since we explicitly use the prosody features, i.e., pitch, duration,
and energy in the prosody prediction module, we can easily control
the prosody by adjusting the prosody features. For instance, we can
simply multiply the duration by a scale to control the speaking rate.

Figs. 4-6 present different pitch, energy, and Mel spectrums of
synthesized speech by adjusting the pitch, energy, and duration re-
spectively. As can be seen, the adjusting of the prosody features can
exactly control the corresponding prosody of synthesized speech,
indicating that our prosody encoder can model the explicit inde-
pendent prosody components in the final synthesized speech. Even
though the larger scale means the greater change to the correspond-
ing prosodic component, the scale cannot be infinite. For instance,
too short duration or too small energy would affect intelligibility.
In the experiment, we found that the pitch and energy can be ef-
fectively controlled within a scale of 20%, and the duration can be
successfully controlled within a scale of 50%. Synthesized samples
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Fig. 6: Mel spectrums of synthesized speech with duration compo-
nent increases by 20%, does not adjust, decreases by 20%.

are presented at the demo page2, and we encourage readers to listen
to them.

4. CONCLUSION

In this paper, a general stylized speech synthesis task is proposed.
This task, referred to as SRM2TTS, aims to produce expressive syn-
thetic speech by combining any speaking style of one speaker with
a timbre of another speaker. Compared with existing style transfer
task, this proposed task is more general and practical as it can bypass
the dependency on a source speaker who has to record all expected
speaking styles. Therefore, the realization of this task is promising
for many application cases.

With the aim to achieve this SRM2TTS task, a novel style
modeling method based on explicit prosody features is proposed.
This proposed method is based on the backbone of Tacotron2 and
with a fine-grained text-based prosody prediction module and a
speaker controller. Extensive experiments have shown that the pro-
posed method can successfully express the style of one speaker
with the timbre of another speaker. Furthermore, the explicit use
of the prosody feature in the prosody prediction module allows us
to control the prosody manually, which can produce more diverse
expressive synthetic speech.

2Audio samples can be found on the project page https://
qicongxie.github.io/SRM2TTS

https://qicongxie.github.io/SRM2TTS
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