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Abstract

Recently, the end-to-end training approach for multi-channel

ASR has shown its effectiveness, which usually consists of a

beamforming front-end and a recognition back-end. However,

the end-to-end training becomes more difficult due to the inte-

gration of multiple modules, particularly considering that multi-

channel speech data recorded in real environments are limited in

size. This raises the demand to exploit the single-channel data

for multi-channel end-to-end ASR. In this paper, we system-

atically compare the performance of three schemes to exploit

external single-channel data for multi-channel end-to-end ASR,

namely back-end pre-training, data scheduling, and data simu-

lation, under different settings such as the sizes of the single-

channel data and the choices of the front-end. Extensive exper-

iments on CHiME-4 and AISHELL-4 datasets demonstrate that

while all three methods improve the multi-channel end-to-end

speech recognition performance, data simulation outperforms

the other two, at the cost of longer training time. Data schedul-

ing outperforms back-end pre-training marginally but nearly

consistently, presumably because in the pre-training stage, the

back-end tends to overfit on the single-channel data, especially

when the single-channel data size is small.

Index Terms: multi-channel end-to-end ASR

1. Introduction

In recent years, significant progress has been made in automatic

speech recognition (ASR). However, speech recognition in far-

field scenarios is still a challenging task [1, 2]. To be specific,

Fu et al. [3] report an over 30% character error rate (CER) on

AISHELL-4, which is recorded in distant-talking conference

scenario, and Watanabe et al. [2] report an over 50% word error

rate (WER) on CHiME-6, which is recorded in everyday home

environments with distant microphones.

Leveraging multi-channel signals with beamforming has

been shown to improve speech recognition performance in far-

field scenarios [1, 2, 4, 5]. Conventionally, the beamforming

front-end and the ASR back-end are optimized separately under

different criteria. The enhanced output produced by the beam-

former is then processed with the single-channel ASR back-

end. This conventional approach is known to have the draw-

back that the optimization objectives for the two sub-tasks are

not matched and the information flow between them is unduly

limited [6, 7]. Recently, this drawback has been re-visited by

building multi-channel speech recognition system with a uni-

fied neural network [4, 5, 8, 9]. In such models, gradients from

the back-end can be propagated to the front-end, which is typi-

cally a neural beamformer.

Despite promising results, training a multi-channel end-to-

end ASR system, which is composed of several modules, has

been shown to be much more difficult than training a single-
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channel ASR system [4, 10, 11]. Specifically, straightforward

optimization of a multi-channel end-to-end system often does

not converge [12], or leads to sub-optimal results [4]. An-

other difficulty is that multi-channel data are relatively more

expensive to collect. To address these issues, exploiting single-

channel data in multi-channel end-to-end systems has been

studied. For example, it is suggested that the front-end and

the back-end are initialized with the corresponding pre-trained

models respectively [4, 12]. In MIMO-SPEECH [10], data

scheduling, which means every batch is randomly chosen ei-

ther from the multi-channel set or from the single-channel set

during training, is proposed to regularize the training process.

It has been shown that the multi-channel ASR can benefit from

training on the simulated multi-channel data [1]. Although

the three methods (pre-training, data scheduling and data sim-

ulation) of using external single-channel data in multi-channel

ASR systems are previously known in the literature, previous

studies have not yet evaluated and compared them systemati-

cally. The results from previous individual works are not di-

rectly comparable to each other, since they are not evaluated in

a common experimental setup. On top of these previous studies,

the main contributions of this paper are:

1) We conduct a suite of experiments to compare the

three methods in utilizing single-channel speech to improve

the multi-channel end-to-end ASR system. Thorough analy-

ses under different experiment settings are given, including the

choices of the front-end and the amounts of the single-channel

speech data. It is found that data scheduling outperforms back-

end pre-training marginally but nearly consistently, presumably

because that in the pre-training stage, the back-end tends to

overfit on the single-channel data. Data simulation is more ex-

pensive but outperforms the other two, which may be due to the

fact that the simulated multi-channel data augment the train-

ing data for both front-end and back-end, while back-end pre-

training and data scheduling only augment the training data for

back-end.

2) We integrate the multi-channel speech enhancement

front-end with the CTC-CRF1 based single-channel speech

recognition back-end [13, 14], and develop a multi-channel

end-to-end speech recognition system. With data augmentation

methods such as SpecAugment [15] and WavAugment [16], the

resulting system obtains competitive results on CHiME-4 and

AISHELL-4 benchmarks.

The rest of the paper is organized as follows. Section 2 out-

lines related work. Section 3 describes our multi-channel end-

to-end speech recognition system. The three methods to exploit

single-channel data are detailed in Section 4. Section 5 intro-

duces the experiment settings on the CHiME-4 and AISHELL-4

tasks, and the results are shown in Section 6. Section 7 presents

the conclusion.

1Other single-channel speech recognition models such as attention
based encoder-decoder (AED) and RNN-transducer could be used. The
comparison under these frameworks are left for further study.

http://arxiv.org/abs/2203.16757v2


2. Related Work

Recently, there have been growing interests in building end-to-

end systems for multi-channel ASR, which can be categorized

into two approaches: the approach of multi-channel acoustic

modeling without an explicit beamformer and the neural beam-

former based approach. In multi-channel acoustic modeling

without an explicit beamformer, the neural network is viewed

as a replacement for the conventional beamformer. For exam-

ple, [17] directly concatenates the multi-channel features and

improves far-field ASR performance over single-channel input.

However, such direct concatenation of the multi-channel fea-

tures burdens the training of the neural network with increas-

ing number of parameters [17] to capture the complex relation-

ships between microphones. Several novel neural operations

were proposed to alleviate this issue, such as 3-D CNN [9] and

quaternion neural networks [18]. In general, these methods re-

quire complex design of model architectures, and the models

depend on the microphone configurations. Therefore, once the

number and order of microphone channels are changed, the neu-

ral network has to be reconfigured and retrained.

In neural beamformer based approach, the neural beam-

former is cast as a differentiable component to allow joint op-

timization of the multi-channel speech enhancement with the

ASR criterion. This approach can be further categorized into

two types. The first type is the mask estimation method. The

neural network is used to estimate the time-frequency masks,

which are used to compute the statistics of speech and noise.

Using these statistics, the filter coefficients are then computed

within the framework of constrained optimization for noise

reduction, such as minimum variance distortionless response

(MVDR) and generalized eigenvalue (GEV) [4, 5]. The sec-

ond type is the filter estimation method. The neural network is

used to estimate the filter coefficients directly [19, 20]. In the

filter estimation method, the filter coefficients are less restricted

than in the mask estimation method, and their estimation be-

comes more difficult due to the high freedom of the filter coef-

ficients [5, 19]. Moreover, similar to the multi-channel acoustic

model without an explicit beamformer, the filter estimation net-

work also depends on the microphone configurations. In light of

the above trends, we choose the mask based neural beamformer

to build the multi-channel end-to-end speech recognition sys-

tem in this comparative study.

3. Multi-Channel End-to-End Speech
Recognition

In this section, we introduce our multi-channel end-to-end

speech recognition system, including the mask-based MVDR

neural beamformer as the front-end (FE), the CTC-CRF based

AM as the back-end (BE), and the overall processing pipeline.

3.1. The MVDR based front-end

We adopt the state-of-the-art MVDR neural beamformer [5,

21] as the front-end. MVDR reduces the noise and recovers

the signal component by applying a linear filter to the overall

observation vector:

x̂(t, f) =
C∑

c=1

h(f, c)× x(t, f, c) (1)

where x(t, f, c) ∈ C denotes the short-time Fourier transform

(STFT) coefficient at time-frequency bin (t, f) of the noisy sig-

nal at microphone c. x̂(t, f) ∈ C is the enhanced STFT coeffi-

cient, and C is the numbers of microphones. According to the

MVDR formulation [21], the time-invariant filter coefficient

h(f) = {h(f, c)}Cc=1 ∈ C
C is obtained by

h(f) =
Φ

−1

NN
(f)ΦSS(f)

tr{Φ−1

NN
(f)ΦSS(f)}

u

Here ΦSS(f) ∈ C
C×C and ΦNN(f) ∈ C

C×C are the cross-

channel power spectral density (PSD) matrices (also known as

spatial covariance matrices) for speech and noise signals respec-

tively, which are estimated via the mask-based approach [22].

u ∈ {0, 1}C is the one-hot vector, indexing the reference mi-

crophone, which can be selected by principal component anal-

ysis [22] or neural networks [5]. tr{·} denotes matrix trace.

3.2. The CTC-CRF based back-end

For the acoustic model (AM) for recognition, we adopt the

newly developed CTC-CRF [13]. Like CTC, CTC-CRF defines

the posterior of the label sequence l as the sum of the posterior

of the hidden state sequence π as follows:

pθ(l|x) =
∑

π∈B−1(l)

pθ(π|x) (2)

where B denotes the mapping that removes consecutive repeti-

tive labels and blanks in the hidden state sequence.

The posterior of π is further defined by a CRF:

pθ(π|x) =
exp(φθ(π,x))∑
π′ exp(φθ(π′,x))

(3)

Here φθ(π,x) denotes the potential function of the CRF, de-

fined as follows:

φθ(π,x) = log p(B(π)) +
T∑

t=1

log pθ(πt|x) (4)

where
∑

T

t=1 log pθ(πt|x) defines the node potential, calcu-

lated from the AM, and log p(B(π)) defines the edge potential,

realized by an n-gram language model of labels. By incorporat-

ing log p(B(π)) into the CRF potential function, the undesir-

able conditional independence assumption in CTC is naturally

avoided. It has been shown that CTC-CRF outperforms regular

CTC consistently on a wide range of benchmarks, and is on par

with other state-of-the-art end-to-end models [13, 14, 23].

3.3. The multi-channel end-to-end model

On top of the MVDR based FE and the CTC-CRF based BE, we

build a unified architecture for multi-channel end-to-end speech

recognition, and apply joint optimization (JO) of front-end and

back-end. Thus, the training loss is defined as:

L(θ) = − log pθ(l|Feature(x̂)) (5)

where x̂ is obtained by Eq. (1), and pθ is defined by combin-

ing Eq. (2) ∼ (4). Feature(·) is the feature extraction and pre-

processing function, including log fbank transformation, nor-

malization, and subsampling, as detailed in Section 5.2.

4. Methods to exploit single-channel Speech

4.1. Back-end pre-training

The first approach to exploiting single-channel speech data in

multi-channel end-to-end speech recognition system is to do



back-end pre-training [4]. Specifically, the training process con-

sists of two stages. In the first stage, the back-end AM is trained

with single-channel speech data. In the second stage, we per-

form joint optimization described in Section 3.3. In the multi-

channel end-to-end speech recognition model, the enhanced log

fbank feature produced by the front-end is supposed to be simi-

lar to the log fbank of single-channel (clean) speech [10]. Thus,

back-end pre-training is expected to provide a better initializa-

tion for the AM, compared with random initialization. How-

ever, the back-end may overfit on the single-channel (clean)

speech and degrade the performance of joint optimization, espe-

cially when pre-training is performed on a small single-channel

dataset, as shown later in our experiments.

4.2. Data scheduling

The second approach is data scheduling [10]. Different from the

two-stage pipeline described in Section 4.1, training with data

scheduling is conducted in a single stage. In data scheduling,

the training data comes from two sources: the multi-channel

set and the single-channel set. When the training batch comes

from the multi-channel set, we perform joint optimization de-

scribed in Section 3.3. Otherwise, we bypass the front-end and

only optimize the single-channel AM over the single-channel

batch. Under this mechanism, the back-end AM is trained with

both the original (unenhanced) and the enhanced single-channel

data, and would be more robust to the input variations [10].

Moreover, the back-end can be independently optimized when

the front-end is bypassed, which regularizes the training pro-

cess [10] and eases the training. In practice, we set the ratio be-

tween the single-channel batch size and the multi-channel batch

size to be #utts of single−channel data
#utts of multi−channel data

, so that we can sweep over

the whole single-channel data and the whole multi-channel data

with equal number of batches.

4.3. Data simulation

The third approach is to simulate multi-channel data using

single-channel data [24]. In this approach, we first define a

room to which the sound source (the single-channel wave sam-

ples) and a microphone array are attached. Then, a simula-

tion method is used to create artificial room impulse responses

(RIRs) between the source and microphones. The microphone

signals are then created by convolving the single-channel wave

samples with the RIRs. After data simulation, the simulated

multi-channel data are mixed with the real multi-channel data

to train the multi-channel speech recognition system. Differ-

ent from back-end pre-training and data scheduling, where the

single-channel data is used only for training the back-end, us-

ing simulated multi-channel data can augment the training data

for the front-end, but at the cost of much longer training time.

This increasing time cost is due to 1) the simulation time, 2) the

additional time costs for front-end computation, online feature

extraction and processing, as explained in 3.3. We compare the

time costs for the three methods in Table 1.

5. Experiment settings

5.1. Datasets

5.1.1. Multi-channel Datasets

• CHiME-4 [1] is a speech recognition task in public noisy en-

vironments, recorded using a tablet with a 6-channel micro-

phone array. The corpus is in English and the training data

length is 18 hours.

Table 1: Comparison of the time costs for back-end pre-training

(PT), data scheduling (DS), and data simulation (Simu). Single-

stage denotes single-stage training, and augment FE indicates

whether the method augments the training data to feed to

the front-end (FE). T1 is the time cost for multi-channel end-

to-end joint optimization per epoch, T2 is the time cost for

training back-end using single-channel data per epoch, and

N = #utts of single−channel data
#utts of multi−channel data

. T1 ≫ T2 as explained in

Section 4.3. For exapmle, in AISHELL-4 experiments with

AISHELL-1 as single-channle data, T1 ≈ 10T2, N ≈ 1.2.

Note that the time for pre-training back-end in PT and simulat-

ing data in Simu are not shown in the table.

methods single-stage aug FE time cost per epoch

PT No No T1

DS Yes No T1 + T2

Simu Yes Yes (1 +N)T1

Table 2: Effect of joint optimization (JO) of front-end and back-

end, measured by word error rates (WERs) on CHiME-4. Fur-

ther improvement can be obtained by data augmentation in the

JO framework. Baseline denotes the baseline system provided

by CHiME-4 challenge.

FE JO Dev real Dev simu Eval real Eval simu

Baseline [1] No 8.14 9.07 15.00 14.23

BeamformIt No 7.28 7.98 11.11 11.97

MVDR No 6.95 8.08 10.50 11.03

MVDR Yes 6.15 5.61 9.29 6.14

+ SpecAug 5.93 5.04 8.42 6.00

+ WavAug 5.60 4.94 8.06 5.70

• AISHELL-4 [3] is a multi-channel mandarin dataset for

conversation speech in conference scenarios, containing 118

hours of meeting recording, recorded using an 8-channel

microphone array. As the integration of the speaker di-

arization module is beyond the scope of this paper, we se-

lect the non-overlapped part of the training (∼ 50 hours)

and evaluation set of AISHELL-4 according to the ground-

truth segmentation information. For running the AISHELL-

4 experiments, we use the open-source lexicon provided by

AISHELL-1 dataset as there is no official lexicon in the

AISHELL-4 dataset, and word segmentation over transcripts

are performed using the Jieba segmentation toolkit 2.

5.1.2. Single-channel Datasets

• WSJ [25] contains about 80 hours of English training data

recorded under clean conditions.

• Librispeech [26] contains 1000 hours of English read

speech, derived from audiobooks.

• AISHELL-1 [27] is a 178-hour mandarin speech corpus.

5.2. Settings

We use the CTC-CRF based ASR Toolkit - CAT [14] to conduct

the experiments. In our experiment, the inputs to the front-end

are STFT features. The mask estimation network in the neu-

ral beamformer is a 3-layer BLSTM. After beamforming, the

enhanced single-channel STFT features are firstly converted to

40-dimensional log fbank features, and then mean-variance nor-

malized. The normalized log fbank features are appended with

delta and delta-delta features and subsampled by a factor of 3.

Similar to [14], the acoustic model is two blocks of VGG layers

2https://github.com/fxsjy/jieba



Table 3: Comparison of back-end pre-training (PT), data scheduling (DS) and data simulation (Simu) on CHiME-4, with joint opti-

mization (JO) applied or not. Average denotes the WERs averaged on the four test sets Dev/Eval-real/simu.

ID FE pre-training data Single-channel data method Dev real Dev simu Eval real Eval simu Average

0 No pre-training None JO 5.60 4.94 8.06 5.70 6.08

1 No pre-training WSJ PT + JO 6.00 5.41 8.37 6.12 6.48

2 No pre-training WSJ DS + JO 4.95 4.60 7.38 5.55 5.62

3 No pre-training WSJ Simu + JO 5.21 4.41 7.10 4.82 5.39

4 CHiME-4 WSJ PT 15.93 23.24 31.80 29.79 25.19

5 CHiME-4 WSJ PT + JO 5.83 5.51 8.44 5.91 6.42

6 CHiME-4 WSJ DS + JO 4.83 4.68 7.38 5.79 5.67

7 No pre-training Librispeech PT + JO 4.81 4.83 7.66 5.48 5.70

8 No pre-training Librispeech DS + JO 4.35 4.43 6.10 4.80 4.92

9 No pre-training Librispeech Simu + JO 4.11 4.23 6.16 4.59 4.77

10 CHiME-4 Librispeech PT 4.28 4.57 5.13 6.71 5.17

11 CHiME-4 Librispeech PT + JO 4.17 4.36 6.60 4.73 4.97

12 CHiME-4 Librispeech DS + JO 4.24 4.34 6.22 4.71 4.88

Table 4: The character error rate (CER) results on AISHELL-4.

The single-channel data is AISHELL-1. For all experiments, the

front-end is not pre-trained.

method eval CER

JO W/O single-channel data 60.7

PT + JO 37.3

DS + JO 37.0

Simu + JO 36.5

followed by a 6-layer BLSTM, and the BLSTM has 320 hid-

den units per direction. Speed perturbation is adopted for data

augmentation.

In data simulation experiments, we adopt pyroomacous-

tics [24] to simulate multi-channel waves using single-channel

speech as the source signal. We define a 10m × 7.5m × 3.5m

room, and the source is located at [2.5, 3.73, 1.76]. The micro-

phone configurations are the same as the ones used in CHiME-4

challenge and AISHELL-4 challenge, respectively.

Note that we did not use the transcripts of single-channel

data in language model building. In CHiME-4 experiments,

we use the 3-gram language model provided by the challenge.

In AISHELL-4 experiments, we use a 3-gram language model

trained on the AISHELL-4 training set transcripts.

6. Experiments

6.1. Joint optimization of front-end and back-end

The effect of joint optimization (JO) of front-end and back-end

over CHiME-4 is shown in Table 2. Two different front-ends

are tested in separate optimization, namely the delay-and-sum

beamformer (BeamformIt [28]) and the MVDR based neural

beamformer (Sec. 3.1). It can be seen that the jointly optimized

model significantly outperforms the separately optimized mod-

els, which confirms the superiority of joint optimization.

In the JO framework, further improvement can be obtained

by data augmentation. We apply WavAugment [16] on the input

audio to the front-end, and SpecAugment [15] on the input log

fbank features to the back-end. It can be seen from Table 2 that

introducing WavAugment and SpecAugment in JO yields the

best performance. In the following experiments, WavAugment

and SpecAugment are adopted by default.

6.2. Comparison of back-end pre-training, data scheduling

and data simulation

We compare back-end pre-training (PT), data scheduling (DS),

and data simulation (Simu) on CHiME-4, using different single-

channel data (WSJ or Librispeech) and different front-ends

(pre-trained or random initialized3), as shown in Table 3. It can

be seen that DS outperforms PT nearly consistently. Notably,

PT on WSJ (Exp 1 and Exp 5) even degrades the performance,

compared with the model jointly trained from scratch (Exp 0).

This is probably because in the pre-training stage, the back-end

tends to overfit on the single-channel WSJ data. Also note that

pre-training on WSJ without joint optimization on CHiME4 can

lead to quite poor performance (Exp 4). When we increase the

size of the single-channel data by using Librispeech, PT pro-

duces substantial improvement (Exp 7 and Exp 11). However,

the results by PT are still inferior to DS in terms of average

WERs. Data simulation produces superior results than DS and

PT (Exp 3 and Exp 9), but at the cost of increased training time.

Specifically, it takes about 114 hours for 1 epoch when train-

ing with multi-channel data simulated from Librispeech, while

only 1.5 hours for PT + JO, and 3 hours for DS + JO, in our

experiment. Similar conclusions can be drawn from the results

on AISHELL-4 (Table 4).

7. Conclusion

In this paper, three methods to exploit single-channel data for

multi-channel end-to-end ASR are systematically compared.

It is found that data scheduling, which performs joint opti-

mization using multi-channel data and back-end training using

single-channel data in one stage, outperforms the two-stage pre-

training plus joint optimization method, presumably because

that in the back-end pre-training stage, the back-end tends to

overfit on the single-channel (clean) data, especially when the

single-channel data is limited in size. Data simulation outper-

forms the other two, but at the cost of longer training time. We

hope these findings would be helpful for future work to further

explore better methods to efficiently leverage single-channel

data for multi-channel speech recognition.

3Pretrained FE means that training the mask estimation network us-
ing multi-channel speech and the corresponding clean speech. As can
be seen from Table 3, the performances between pretrained and random
initialized for FE are close to each other.
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