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1. Introduction

The collective behaviors and self-organization of social insects

have inspired computer scientists to perform computer simula-

tions to replicate this behavior. There are twomain reasons: firstly,

these mechanisms responsible for the behaviors are yet unknown

and therefore we can better understand the nature. The second

reason is that the behavior of social insects has many attractive

features such as robustness and reliability. Computer models of

these behaviors, based on the clustering and sorting of insects can

lead to better performance in areas such as search, data mining,

and experimental data analysis.

In the last two decades, many advances in algorithmica have

been based on the observation of the natural world. Biomimicry—

applications of swarm intelligence have been developed especially

in the optimization field. The swarm intelligent systems are quite

easy to adapt, and knowledge of individual behaviors and

interactions is not very complicated. Rather, these behaviors and

interactions emerge from very simple rules. Bonabeau et al. [3]

define swarm intelligence as ‘‘the emergent collective intelligence

of groups of simple agents’’. We agree with the core of this

definition and we want to emphasize the emergent behavior (self-

organization), simple processes leading to complex results. In the

words of one mathematician, Stephen Wolfram: ‘‘It is possible to

make things of great complexity out of things that are very simple.

There is no conservation of simplicity’’ [25].

Self-organization in social insects is interpreted through four

main mechanisms:

(1) The existence of multiple interactions.

(2) Application through positive feedback.

(3) Negative feedback.

(4) Application of fluctuations.

Ants foraging process in some species has been analyzed by

Deneubourg et al. [9]. He notably showedhowants can find the best

(shortest)way to reach a resource. In a nutshell, the accumulation of

pheromones is faster on the shortest route, so positive feedback

therefore gives it priority. On this basis Dorigo and Stützle [10]

proposed the concept of Ant Colony Optimization. Dorigo andmany

other researchers applied this mechanism to many combinatorial

optimization problems such as TSP, JSP and then extended it to a

whole class of optimization problems. Such algorithms can now be

found in telecommunications routing, todesignof electronic circuits

or – for example – the organization of industrial processes.

Biomimicry of social insects focuses into observing how nature

solves situations that are similar to different optimization

problemswe face. The study of ant colonies has offered remarkable

insight in this field—not only in the combinatorial optimization but

also ant colonies can provide new ideas for clustering techniques.
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Among the social insects’ behaviors, the most widely recognized

is the ants’ ability to work as a group in order to finish a task that

cannot befinishedby a single agent. Also seen inhuman society, this

ability of ants is a result of cooperative effects. The cooperative effect

refers to the phenomenon that the effect of two ormore individuals

orparts coordinating ishigher than the total of the individual effects.

Some researchershaveachievedpromising results indataminingby

using the artificial ant colony. The high number of individuals in ant

colonies and the decentralized approach to task coordinationmeans

that ant colonies showhighdegrees of parallelism, self-organization

and fault tolerance. These features are desired characteristics in

modern optimization techniques.

In this paper, a novel ant-based clustering algorithm is proposed

to improve theperformanceofmanyk-medoids-basedalgorithms.A

new version of ant-based clustering algorithm ACA is inspired from

the behavior of real ants. The paper is organized as follows: Section2

gives a detailed description of thedifferent approaches to clustering.

Section 3 presents methodology of clustering by ants. Section 4

describes a biological inspirations in clustering algorithms. In the

next section anant-based clustering algorithmand itsmodifications

is presented. Section 6 presents the experiments that have been

conducted to see the influence of modifications and statistic

measures regardless on different datasets. Results of the experi-

mental part of this article; validations of those approaches are

shown in Section 7. The last section concludes and discusses future

evolutions of ant-based clustering algorithms.

2. Different approaches to clustering

Clustering problems have been discussed extensively in the

database literature as a tool for similarity search, customer

segmentation, pattern recognition, trend analysis and classifica-

tion. Various methods have been studied in considerable detail

by both the statistics and database communities [1,4,15,29].

Detailed survey on clustering methods can be found in Refs.

[11,22,24,26,34].

Clustering is a form of classification imposed over a finite set of

objects. The goal of clustering is to group sets of objects into classes

such that similar objects are placed in the same cluster while

dissimilar objects are in separate clusters. Clustering (or classifica-

tion) is a common form of data mining and has been applied in

many fields including data compression, texture segmentation,

vector quantization, computer vision and various business

applications. Some algorithms assume that the number of clusters

is prespecified as a user parameter. Various objective functions

may be used in order to make a quantitative determination as to

how well the points are clustered.

The essential part of clustering is to classify all objects into

several groups so as to achieve some optimal conditions. Most

conventional clustering methods would rapidly become compu-

tationally interactable as the problem scale gets larger due to the

combinatorial nature of the methods. Brucker [5] and Welch [33]

proved that, for specific objective functions clustering becomes an

NP-hard problem when the number of clusters exceeds three.

Hansen and Jaumard [21] pointed out that even though the best

algorithms developed for some specific objective functions, there

would exhibit complexities of O(N3 logN) or O(N3), so further

improvements can fulfill this gap.

Five categories of heuristic algorithms for clustering were

determined (according forms of heuristics used in these

approaches):

� statistics clustering;

� mathematical programming;

� network programming;

� neural network;

� metaheuristics.

The algorithms for conventional statistic clustering include

agglomerative hierarchical clustering method, divisive hierarchical

clustering method, k-means, etc. The algorithms for mathematical

programming range from dynamic programming, Lagrangian

relaxation, linear relaxation, column generation, branch-and-price

and Lipschitz continuous. The algorithms for neural networkmainly

include self-organizing map (SOM) and adaptive resonance theory.

The algorithms for metaheuristics are rapidly developed recently,

including evolutionary algorithms, Tabu Search, Simulated Anneal-

ing and Ant Colony Optimization. These algorithms have also been

validated by comparing with hybrid methods, fast self-organizing

map combining with k-means and genetic k-means approach and

many others. There exists a large number of clustering algorithms in

the literature including k-means [28], k-medoids [24], CACTUS [14],

CURE [16], CHAMELEON [23] and DBSCAN [12]. No single

algorithms is suitable for all types of objects, nor all algorithms

appropriate for all problems, however, the k-medoids algorithms

have been shown to be robust to outliers [24], compared with

centroid-based clustering. Partitioning AroundMedoids (PAM) [24],

Clustering LARge Applications (CLARA) [24] and Clustering Large

Applications based on RANdomized Search (CLARANS) [29] are

three popular k-medoids-based algorithms while the Clustering

Large Applications based on Simulated Annealing (CLASA) algo-

rithm applies simulated annealing to select better medoids [7]. The

drawback of the k-medoids algorithms is the time complexity of

determining the medoids.

3. Methodology of clustering by ants

The process of cluster analysis consists of three major stages:

feature extraction, similarity computation and grouping. In this

first phase we establish the main features of objects and the

method of comparison. The next stage shows the similarity

between the objects take into consideration in term of these

chosen features, attributes. The result of similarity or dissimilarity

computation is presented in the next step—grouping, the form of

partitioning these objects into groups. Ant clustering method

involves only two last steps of the process of clustering.

Themajor difference observed in ant clustering algorithms and

another clustering systems is that ants can analyze the data on

toroidal bi-dimensional grid, which cannot show directly

information about disparity between two different pieces of data

as it happens in n-dimensional space (where n determine the

dimensionality of the data). The swarm of ants reside in an

environment consisting of objects that may be picked up or

dropped in appropriate position. A grid in the environment may

contain one ant, one object or both one ant and one object. The

environment—workspace of ants consists of two elements. The

first is a collection of objects that in the beginning are randomly

dispersed throughout the workspace, and as time goes by are

moved by ants using special rules. The second component of this

workspace is a swarm of ants which canmove around and pick up

and drop the objects. All moves occur in discrete time steps. An

important characteristic of the environment is the relationship

between the size of the environment, the number of objects, and

the number of ants.

If an ant is not currently carrying an object itmay attempt to pick

it inamomentwhen it is located in the samegrid in theworkspaceas

the ant itself. The probability of picking or dropping an object

depends on the distance in feature space between that object and

other objects in its neighborhood. At each time step, after decision

making, the ant performs a random movement on the workspace.



Objects that are near each other in theworkspacewill be likely to be

dropped in neighboring positions. After the initial phase, a small

cluster of few similar objects will form. During the formation of

clusters we observe a stigmergetic process, so the probability of

dropping new, similar objects near it is greater than anywhere else

on the workspace. This leads to a process of a positive feedback

whichproduces a greater number of objects in the analyzed clusters.

4. Biological inspirations and algorithms

Clustering and sorting behavior of ants has stimulated

researches to design new algorithms for data analysis and

partitioning. Several species of ants cluster corpes to form a

‘‘cemetery’’, or sort their larvae into several piles. This behavior is

still not fully understood, but a simple model, in which ants move

randomly in space and pick up and deposit items on the basis of

local information, may account for some of the characteristic

features of clustering and sorting in ants [3].

In several species of ants, workers have been reported to form

piles of corpes – cemeteries – to clean the nests. Chretien [6] has

performed experiments with the ant Lasius niger to study the

organization of cemeteries. Other experiments on the ant Phaidole

pallidula are also reported inRef. [9]. Brood sorting is observed in the

ant Leptothorax unifasciatus [13]. Workers of this species gather the

larvae according to their size. Franks and Sendova-Franks [13] have

intensively analyzed the distribution of brood within the brood

cluster (Fig. 1).

Deneubourg et al. [9] has proposed two closely related models

to account for the two above-mentioned phenomena of corpse

clustering and larval sorting in ants. As we mentioned above,

general idea is that isolated items should be picked up and dropped

at some other location where more items of that type are present.

In this way, the system proposed by Deneubourg was able to

realize clustering in a global scale. Let us assume that there is only

one type of item in the environment. The probability pp for a

randomly moving unladen agent to pick up an item is given by

pp ¼ k1
k1 þ f

� �2

where

� f is the perceived fraction of items in the neighborhood of the

agent,

� k1 is a threshold item.

The probability pd for a randomly moving loaded agent to

deposit an item is given by

pd ¼ f

k2 þ f

� �2

where k2 is another threshold constant.

Deneubourg et al. [8] have assumed that f is computed through

a short-term memory that each agent possesses, it is simply the

number N of items encountered during these last T time units,

divided by the largest possible number of items that can be

encountered during this time.

Gutowitz [17] has suggested the use of spatial entropy to track

the dynamics of clustering. The entropy level of work area was

determined by the presence or absence of objects, so that a place

completely full or empty would have the lowest entropy, and a

checkered pattern would have the highest. The level of entropy of

their surroundingswould provoke the ants to take an action. In this

way, in areas with low entropy the ants would not try to pick or

drop items. These complexity-seeking ants were thus able to avoid

actions that did not contribute to the clustering process,

performing their actions more efficiently. The spatial entropy Es
at scale s is defined by

Es ¼
X

I2 S

PI logPI

where PI is the fraction of all objects on the lattice that are found in

s-patch I.

Oprisan et al. [30] proposed a variant of Deneubourg basic

model (hereafter called BM), in which the influence of previously

encountered objects is distributed by a time factor.

Bonabeau [2] also explored the influence of various weighting

functions, especially those with short-term activation and long-

term inhibition.

LumerandFaieta [27]havegeneralizedDeneubourg et al.’s BMto

apply it to exploratory data analysis. The idea is to define a distance

or dissimilarity d between objects in the space of object attributes:

� if two objects are identical then dðoi; o jÞ ¼ 0,

� when two objects are not identical then dðoi; o jÞ ¼ 1.

The algorithm introduced by Lumer and Faieta (hereafter LF)

consists of projecting the space of attributes onto some lower

dimensional space, typically of dimension z ¼ 2. Let us assume that

an ant is located at side r at time t, and finds an object oi at that site.

The ‘‘local density’’ f ðoiÞ with respect to object oi is given by

f ðoiÞ ¼
1

s2

X

o j 2Neighðs�sÞðrÞ
1ÿ dðoi; o jÞ

a

� �

; when f >0

0; otherwise

8

>

<

>

:

where

� f ðoiÞ is a measure of the average similarity of object oi with the

other objects o j present in the neighborhood of oi,

� a is a factor that defines the scale for dissimilarity: it is important

for it determineswhen two items should or should not be located

next to each other.Fig. 1. Real ants cluster [3].



Lumer and Faieta [27] define picking up and dropping

probabilities as follows:

ppðoiÞ ¼
k1

k1 þ f ðoiÞ

� �2

pdðoiÞ ¼
2 f ðoiÞ; when f ðoiÞ< k2

1; when f ðoiÞ� k2

�

(1)

where k1, k2 are two constants that play a role similar to k1 and k2
in the BM.

High-level description of the Lumer–Faieta algorithm is

presented below:

5. Ant-based clustering algorithms—ACA and ACAM

The ant-based clustering algorithms are mainly based on

versions proposed by Deneubourg, Lumer and Faieta. A number of

slightmodifications have been introduced that improve the quality

of the clustering and, in particular, the spatial separation between

clusters on the grid. Recently Handl and Meyer [20] extended

Lumer and Faieta’s algorithm and proposed an application to the

classification of Web documents. The model proposed by Handl

and Meyer has inspired us to use this idea to classical cluster

analysis. The basic idea is to pick up or drop a data item on the

grid.

5.1. Classical approach—ACA

We also have employed a modified version of the ‘‘short-term

memory’’ introduced by Lumer and Faieta in Ref. [27]. Each ant

has a permition to exploit its memory according these rules: if an

ant situated at grid cell p, and carrying a data item i, it uses its

memory to proceed to all remembered positions, one after the

other. Each of them is evaluated using the neighborhood function

f
�ðiÞ for finding a dropping site for the currently carried data

item i.

For picking and dropping decisions the following threshold

formulae are used:

p�pickðiÞ ¼
1; if f

�ðiÞ>1
1

f
�ðiÞ2

; else

8

<

:

;

p�dropðiÞ ¼
1; if f

�ðiÞ�1
1

f
�ðiÞ4

; else

8

<

:

;



where f
�ðiÞ is a modified version of Lumer and Faieta’s

neighborhood function:

�

f �ðiÞ ¼
1

s2

X

j

1ÿ dði; jÞ
a

� �

; if f � >0; and 1ÿ dði; jÞ
a

� �

>0

0; otherwise;

8

>

<

>

:

� 1=s2 is a neighborhood scaling parameter,

� a is a parameter scaling the dissimilarities within the

neighborhood function f
�ðiÞ,

� dði; jÞ is a dissimilarity function.

Ant-based clustering algorithm requires a number of different

parameters to be set, which have been experimentally observed.

Parameters of this algorithm we can divide into two groups:

(1) To be independent of the data.

(2) To be set as a function of the size of the dataset.

The first group includes:

� the number of agents, which is set to be 10,

� the size of the agents’ short-termmemory, which we equally set

to 10,

� the initial clustering phase (from tstart to tend): tstart ¼ 0:45N,

tend ¼ 0:55N, where N denote the number of iterations,

� we replace the scaling parameter 1=s2 by 1=Nocc after an initial

clustering phase, where Nocc is the actual observed number of

occupied grid cells within the local neighborhood.

The employed distance function is the Euclidean measure for

the initial testing and the Cosine and Gower measures for the next

step of the data analysis.

Several parameters should be selected in dependence of the size

of the dataset tackled. Given a set of Nmax items, the grid should

offer a sufficient amount of ‘‘free’’ space to permit the quick

dropping of data items. This can be achieved by

� using a square grid with resolution of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

10Nmax

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

10Nmax

p
,

� the step should permit sampling of each possible grid position

within one move, which is obtained by setting it to stepsize:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

20Nmax

p
,

� the number of iterations:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2000Nmax

p
, with a minimal number of

1,000,000.

During the sorting process, a determines the percentage of data

items on the grid that are classified as similar, such that: a too small

choice of a prevents the formation of clusters on the grid; on the

other hand, a too large choice ofa results in the fusion of individual

clusters, and in the limit, all data items would be gathered within

one cluster.

The scheme for a-adaptation used in this application is a part of

a self-adaptation of agents activity. A heterogenous population of

ants is used in the standard ant-based clustering algorithm

(ACLA)—with its own parameter a. An agent considers an

adaptation of its own parameter after it has performed Nactive

moves. During this time, it keeps track of the failed dropping

operations Nfail. The rate of failure is determined as rfail ¼
Nfail=Nactive where Nactive is fixed to 100. The agent’s parameter a

is then updating using the rule:

a ¼ aþ 0:01; if rfail >0:99
aÿ 0:01; if rfail � 0:99:

�

5.2. Modifications of ACA—ACAM

For increasing the robustness of ant-based clustering we also

examine some improvements. The modified version of ACAM has

incorporated two main modifications in relation to ACA:

� an adaptive perception scheme occurred in the density function,

� a cooling scheme of a-adaptation.

The neighborhood function or density function f
�ðiÞ depends

on the perception field s2, of each ant. The stable value of

parameter s may sometimes cause inadequate behaviors, because

it is not possible to distinguish the differences between clusters of

different sizes. On the other hand, a large perception field may be

useful at the beginning of our algorithm,when data are scattered at

random manner on the grid file.

In order to overcome this difficulty a new proposition of the

density function with a new scalable parameter s20=s
2 (of the

relative perception field coefficient) is proposed:

f
�ðiÞ ¼

s20
s2

X

j

1ÿ dði; jÞ
a

� �

; 8 o j 1ÿ dði; jÞ
a

� �

>0

0; otherwise

8

>

<

>

:

where

� s20=s
2 is a new neighborhood scaling parameter, a relationship

between the initial and current size of perception,

� a is a parameter scaling the dissimilarities within the

neighborhood function f
�ðiÞ,

� dði; jÞ is a dissimilarity function.

The nextmodification is strongly connectedwith the parameter

a and concerns the methods of its changes. In a nutshell, a cooling

scheme is adopted in our proposed algorithm. This scheme is really

simple: after hupdate iterations has passed, the value of the

parameter a starts being increased if a random value r is smaller

than pðD f avgÞ. This new a-adaptation scheme that we propose in

our approach is computed as follows:

a ¼ aÿ 0:01; if D f avg � 0

aþ 0:01; if r< pðD f avgÞ;

(

where

� r is the random number r 2 ½0;1�,
� f ðoiÞ ¼ ð1=nÞ

P

o j 2Neighð3�3ÞðrÞdðoi; o jÞ,
� n is the number of objects in the nearest neighborhood of object oi.

Value of pðD f avgÞ is determined as follows:

pðD f avgÞ ¼ eÿD f avg=T ;

similarly to the acceptance criterion in Simulated Annealing,

where

� D f avg ¼ f avg ÿ f 0avg, the difference between previous and

current (after hupdate number of iterations) values of f,

� f avg ¼ ð1=NÞPN
i f

�ðoiÞ,
� N is the number of classified objects,

� T � 0:03 is a parameter of the cooling procedure.

High-level description of the ant clustering algorithm (ACA) is

presented below:



By doing so, more suitable and strongly correlated objects can

be clustered, in these way the ACAM will also tend to converge to

better solutions.

6. Experimental results

In order to evaluate the resulting partition obtained by ACLAwe

have set up the following method. The first datasets used to

illustrate the performance of the algorithms was a modified

version of thewell-known datasets proposed to study the standard

ant-based clustering algorithm [19]. The square datasets are the

most popularly used type of datasets. They are two-dimensional

and consists of four clusters arranged as a square. To conform to

distributed datasets the data are spread uniformly among the

various sites.

Secondly, we have applied ant-based clustering algorithms to

real world databases from the Machine Learning repository which

are often used as a benchmark. The dataset is useful to show

experimentally the efficiency of ACA on data with known

properties end difficulty. The real data collections used were the

Iris data, the Wine recognition, Ionosphere, ZOO and Pima data.

Each dataset is permuted and randomly distributed in the sites.

Different evaluation functions proposed by Ref. [19] are adapted

for comparing the clustering results obtained from applying the

two clustering algorithms on the test sets. The F-measure [31],

Dunn Index [18] and Rand Index [31] are the three measures and

their respective definitions also mentioned in Ref. [19] and each

should be maximized. We have also analyzed the Inner Cluster

variance—the sum of squared deviations between all data items of

their associated cluster centre [19]. It should be minimized.

As mentioned in different publications about ant-based

clustering methods, we must absolutely avoid complex parameter

setting in order to simplify the use of this algorithm. The

parameters that control the ants only are already numerous,

without mentioning the coefficients dealing with the dissimilarity

between different objects. Initially, the ants parameters were

generated randomly within the bounds presented in the first

applications (separately tested for tuning). These values will then

be used in this paper for the tested datasets.

All runs have been performed for three different dissimilarity

measures: Euclidean, Cosine, and Gower measures. All presented

results have been averaged over 10 runs. Ants (10 agents) were

simulated during 1,000,000 iterationswhen clustering objects. The

number of agents should be kept small (for performance reasons),

too many agents do not have any effect since agents walk in a

randomly fashion, i.e., two agents coincide many times, over and

over again, but they follow different walks.

The performance of a clustering algorithm can be judged with

respect to its relative performance when compared to other

algorithms. We therefore at the beginning choose the k-means

algorithm. In our experiments, we run k-means algorithm using

the correct cluster number k.

The following section presents in detail the conclusions draw

from the experimental results with each of the tested datasets. In

this paper we will only show some selected graphs to support our

conclusions.

The results are mentioned in Tables 3–7. The tables showmean

and standard deviations (in parentheses) for 1,000,000 runs,

averaged over 10 runs. In experimental study we utilize the results

reported in details in Ref. [32]. This big number of iterations is a

common characteristic for different ant-based clustering algo-

rithms.

The obtained partitions of ant clustering algorithms and

statistics are very close to those of k-means on the analyzed

datasets. The reader should keep in mind that, different from its

competitor, ant-based clustering algorithms have not been

provided with the correct number of clusters. We also observed

the sensitivity to unequally sized clusters in analyzed datasets. We

show the algorithms’ performance on these datasets as reflected by

F-measure.



While the robust performance of the algorithms across a wide

range of datasets has been demonstrated in these tables, our

analysis in this report has focused in studying the scheme of

adapting the a values that pose problems to ant clustering

algorithms. Importantly, it must be noted that the cluster method

is very sensitive to the choice of a and correlations over a specific

thresholds are only achieve with the proper choice of a (see the

performance of ACAM presented in Tables 1 and 2).

From some of results (see Table 1), the first ant-based algorithm

ACA demonstrated to be incapable of correctly clustering the data

in most simulations. The proposed algorithm, however, was

capable of appropriately clustering the data in all runs (with

strong correlations), but with varying numbers of clusters being

found each time the algorithm was run. In almost all cases ACAM

approach outperforms the results obtained by its competitor.

Despite the sufficient results presented here in first synthetic

datasets, therearestill severalavenues for investigation thatdeserve

tobepursued. For instance,becauseof toomanyclustersobtainedby

ACA, a hierarchical analysis of the datasets can be proposed by

systematically varyingsomeof theuser-definedparameters: theuse

of set of objects (clusters) instead of a one object on a grid position

scheme used here can be performed for an improvement.

The second type of analyzed data are as follows: Iris, Wine,

Glass, ZOO and Pima datasets. The Iris datasets results are

presented in Table 3. The ACAM approach outperforms the results

obtained by ACA. Similarly to the results presented in the previous

experiment, ant-based clustering algorithms consistently found

almost always correct number of clusters with satisfying values of

presented statistic measures.

Table 4 summarize the performance of ant-based clustering

algorithms when applied to the Wine data. The best result

presented in the context of Wine recognition belongs to the k-

means algorithm. Dunn Index reached maximum value for the

ACAM approach.

Table 5 shows the results for applying the ant-based algorithms

in comparison to k-means to Ionosphere dataset as well as the best

results according to Rand Index. It can be seen that these

algorithms have very similar behaviors in most of the analyzed

measures. Both ant-based clustering algorithms identify good

number of clusters and ACAM obtain the smaller classification

error than the k-means algorithm.

Table 6 depicts simulation results for ant clustering algorithm

for ZOO dataset. It can be noted that it is difficult to choose

appropriate similarity measures for all types of attributes. In this

case ants found difficulties during Boolean-valued attributes

comparison and the appropriate number of clusters is really

difficult to obtain. For the ZOO dataset, the ant-based clustering

Table 1

Results of evaluation functions on k-means, ACA and ACAM for square datasets

ACA (Euc. m.) ACA (cos. m.) ACAM

square_1

Clusters 4.720 (0.895) 4.560 (0.852) 4.000(0.200)

Rand Index 0.959 (0.020) 0.966 (0.187) 0.985 (0.017)

F-measure 0.944 (0.038) 0.951 (0.421) 0.984 (0.023)

Dunn Index 0.054 (0.023) 4.634 (2.772) 0.9583 (1.997)

Variance 5523.680 (375.048) 4.098 (1.034) 1.290 (1.442)

Class. err. 0.026 (0.005) 0.023 (0.036) 0.018 (0.034)

square_2

Clusters 4.620 (1.112) 5.540 (0.921) 4.00 (0.283)

Rand Index 0.913 (0.061) 0.929 (0.197) 0.969 (0.023)

F-measure 0.886 (0.070) 0.885 (0.484) 0.967 (0.031)

Dunn Index 0.044 (0.015) 1.976 (1.707) 6.901 (1.551)

Variance 6580.113 (2920.295) 4.607 (1.408) 1.853 (2.346)

Class. err. 0.089 (0.097) 0.039 (0.1) 0.036 (0.047)

square_3

Clusters 4.260 (0.795) 7.080 (1.181) 3.960 (0.280)

Rand Index 0.902 (0.039) 0.903 (0.197) 0.948 (0.028)

F-measure 0.878 (0.058) 0.846 (0.473) 0.944 (0.038)

Dunn Index 0.051 (0.017) 0.954 (0.469) 6.314 (1.491)

Variance 6446.134 (1686.293) 4.356 (0.948) 2.232 (2.383)

Class. err. 0.115 (0.081) 0.056 (0.06) 0.061 (0.055)

square_4

Clusters 3.700 (0.700) 7.440 (1.169) 3.900 (0.361)

Rand Index 0.837 (0.081) 0.870 (0.174) 0.912 (0.036)

F-measure 0.814 (0.084) 0.791 (0.502) 0.904 (0.046)

Dunn Index 0.051 (0.015) 0.995 (0.334) 5.581 (1.705)

Variance 7091.038 (2546.104) 4.149 (1.261) 3.394 (4.230)

Class. err. 0.213 (0.122) 0.094 (0.065) 0.105 (0.071)

Table 2

Results of evaluation functions on k-means, ACA and ACAM for square_5 and

halfrings datasets

ACA (Euc. m.) ACA (cos. m.) ACAM

square_5

Clusters 4.060 (0.310) 4.720 (0.775) 4.140 (0.448)

Rand Index 0.962 (0.018) 0.929 (0.341) 0.969 (0.012)

F-measure 0.961 (0.026) 0.919 (0.477) 0.970 (0.017)

Dunn Index 0.065 (0.011) 2.328 (1.134) 3.837 (0.657)

Variance 5010.055 (603.425) 4.586 (1.158) 1.301 (0.394)

Class. err. 0.033 (0.013) 0.035 (0.043) 0.028 (0.005)

Halfrings

Clusters 9.040 (1.509) 8.500 (0.900) 3.800 (0.980)

Rand Index 0.634 (0.043) 0.598 (0.176) 0.701 (0.060)

F-measure 0.522 (0.096) 0.469 (0.614) 0.737 (0.082)

Dunn Index 0.131 (0.033) 1.062 (0.454) 1.858 (0.874)

Variance 204.645 (81.438) 3.951 (1.233) 13.071 (29.328)

Class. err. 0.010(0.003) 0.087 (0.077) 0.119 (0.073)

Table 3

Results of evaluation functions on k-means, ACA and ACAM for Iris dataset

k-means ACA ACAM

Iris 150

Clusters 3.000 2.960 3.060 (0.420)

Rand Index 0.824 (0.002) 0.785 (0.022) 0.819 (0.015)

F-measure 0.821 (0.003) 0.773 (0.022) 0.810 (0.016)

Dunn Index 2.866 (0.188) 2.120 (0.628) 2.959 (0.371)

Variance 0.861 (0.049) 4.213 (1.609) 1.262 (0.961)

Class. err. 0.176 (0.004) 0.230 (0.053) 0.187 (0.040)

The best results (according to Rand Index)

Clusters 3.000 3.000 3.000

Rand Index 0.829 0.814 0.842

F-measure 0.830 0.811 0.842

Dunn Index 2.939 2.306 2.995

Variance 0.899 1.486 0.914

Class. err. 0.167 0.187 0.153

Table 4

Results of evaluation functions on k-means, ACA and ACAM for Wine dataset

k-means ACA ACAM

Wine

Clusters 3.000(0.000) 2.980 (1.140) 2.860 (0.347)

Rand Index 0.909 (0.008) 0.832 (0.021) 0.849 (0.051)

F-measure 0.928 (0.007) 0.855 (0.023) 0.868 (0.056)

Dunn Index 1.395 (0.022) 1.384 (0.101) 1.407 (0.149)

Variance 6.290 (0.020) 8.521 (0.991) 7.637 (2.859)

Class. err. 0.071 (0.007) 0.142 (0.030) 0.139 (0.082)

The best results (according to Rand Index)

Clusters 3.000 3.000 3.000

Rand Index 0.926 0.872 0.914

F-measure 0.943 0.896 0.932

Dunn Index 1.327 1.436 1.399

Variance 6.336 8.157 6.435

Class. err. 0.056 0.101 0.067



algorithms demonstrated to be incapable of correctly grouping the

data in most simulations. The results shown here depict that

solutions obtained by ACA and ACAM have the same quality,

maximizing the Rand Index, F-measure and Dunn Index in case of

modified version ACAM.

The results presented in Table 7 suggests that these investiga-

tions are not very satisfying and the difficulties lies in the fact that

the relationship between the attributes may not be directly

detectable from their encoding, thus not presuming any metric

relations even when the symbols represent similar items. Finally

the best performance of the ACAM presents the correct number of

clusters obtained during this investigation.

The results obtained when different measures were used for

decisionmaking, show that themore suitable measure available to

the agents, the better the performance. The results confirm the

Table 5

Results of evaluation functions on k-means, ACA and ACAM for Ionosphere dataset

k-means ACA ACAM

Ionosphere

Clusters 2.000 (0.000) 2.560 (0.535) 1.920 (0.271)

Rand Index 0.578 (0.002) 0.563 (0.017) 0.576 (0.012)

F-measure 0.705 (0.002) 0.676 (0.037) 0.706 (0.007)

Dunn Index 1.211 (0.003) 1.031 (0.198) 1.116 (0.329)

Variance 23.167 (0.001) 23.224 (2.224) 29.794 (21.627)

Class. err. 0.301 (0.002) 0.300 (0.017) 0.304 (0.017)

The best results (according to Rand Index)

Clusters 2.000 2.000 2.000

Rand Index 0.582 0.586 0.587

F-measure 0.710 0.700 0.715

Dunn Index 1.212 0.841 1.224

Variance 23.109 23.743 23.221

Class. err. 0.296 0.291 0.291

Table 6

Results of evaluation functions on k-means, ACA and ACAM for ZOO dataset

k-means ACA ACAM

ZOO

Clusters 7.000 (0.000) 3.980 (0.616) 3.600 (0.632)

Rand Index 0.875 (0.036) 0.886 (0.036) 0.889 (0.077)

F-measure 0.747 (0.070) 0.764 (0.041) 0.774 (0.072)

Dunn Index 0.770 (0.222) 1.227 (0.273) 1.391 (0.260)

Variance 1.645 (0.222) 4.765 (1.089) 3.474 (1.897)

Class. err. 0.160 (0.025) 0.232 (0.040) 0.233 (0.068)

The best results (according to Rand Index)

Clusters 7.000 4.000 4.000

Rand Index 0.945 0.930 0.943

F-measure 0.893 0.814 0.832

Dunn Index 0.810 1.491 1.632

Variance 1.559 3.792 2.415

Class. err. 0.099 0.178 0.178

Table 7

Results of evaluation functions on k-means, ACA and ACAM for Pima dataset

k-means ACA ACAM

Pima

Clusters 2.000 (0.000) 6.460 (1.590) 3.280 (1.510)

Rand Index 0.560 (0.020) 0.504 (0.013) 0.522 (0.022)

F-measure 0.678 (0.029) 0.473 (0.070) 0.574 (0.081)

Dunn Index 0.983 (0.029) 0.752 (0.140) 0.708 (0.290)

Variance 74.974 (1.835) 45.226 (18.880) 95.364 (60.665)

Class. err. 0.324 (0.023) 0.321 (0.016) 0.337 (0.013)

The best results (according to Rand Index)

Clusters 2.000 5.000 2.000

Rand Index 0.581 0.536 0.581

F-measure 0.709 0.623 0.702

Dunn Index 0.975 0.776 0.842

Variance 73.808 62.371 97.946

Class. err. 0.298 0.331 0.298

Fig. 2. Result of clustering (using Gower coefficient) for Iris 150 dataset.

Fig. 3. Result of clustering for Iris 200 dataset (Euclidean measure).



intuition which says that binary representation of objects (in ZOO

datasets) is really difficult for ant-based clustering algorithm, so it

has to acquire more experiments with for example different

methods of changing the parameter a.

The projection of data into a bi-dimensional output grid and

position the items in neighbor regions is an advantage of these

visual data exploration. The user can directly analyze the

appropriate data clustering. Most importantly, ACA demonstrated

a good robustness in terms of finding the correct number of

clusters in some synthetic datasets, low variations of the results in

terms of number of clusters found as well as number of objects

within clusters (see also Iris datasets: Figs. 2 and 3).

To sum up, the proposed ant-based clustering algorithms have

comparable accuracy in solutions almost for all cases and is

significantly better in datasets with numerical attributes in

solution accuracy than in datasets concerning ZOO, where the

attributes are binary. It clearly shows that the objects in clusters

are close to each other, but a small number of objects are grouped

into a wrong cluster, suggesting the clustering results by ACA are

less than satisfactory. To bring amatter to a satisfactory conclusion

we must take into account different measures of dissimilarity or a

standardization these values (especially for Cosine measure).

There is however, an important drawback. The parameters of ants

behavior needed to fine adapt during the performance of

clustering. This is a consequence of the lack of understanding of

the impact in the global behavior of a colony of simulated insect-

like agents.

7. Conclusions

We have presented in this paper a new ant-based clustering

algorithm called ACA and its modification for data clustering in a

knowledge discovery context. ACA introduces new ideas and

modifications in Lumer and Faieta’s algorithm in order to improve

the convergence. The main features of this algorithm are the

following ones. ACA deals with numerical databases. It does not

require to establish the number of clusters or any information

about the feature of the clusters.

It can be noted that the appropriate chosen dissimilarity

measure generates a much correct number of clusters, in most

synthetic datasets, the correct number of groups of data are

generated. It can also be spotted from presented results that the

adaptation scheme of parameter a tend to be better adapted in

modified version of ACAM. This is a first step towards that goal.

With this knowledge and considering the characteristics of a

particular problem, we could obtain good results of clustering but

in the future we try to improve the performance of the algorithm.

Two future research directions can be identity. Firstly, the

proposed ant-based clustering algorithm can only be applied to

the clustering problems with numerical (or binary) attributes so

the next step concerns the nominal attributes mixed with

numerical attributes. Furthermore, a hybrid method by combining

the ant-based clustering algorithm ACA with other metaheuristics

algorithm is also deserved to develop. We have employed

simulated annealing to determine the scheme of a-adaptation

and we investigated the better robustness of this approach.

Subsequently we can use this values to conduct the adaptive

clustering more precisely. Future work should be focused on

studying the effects of using different communication strategies

via pheromone in these approaches. We also need to eliminate the

bias on dissimilarity measures provoked by different scales within

data attributes, we should standardize the database and try to find

the bestmetric. Futurework consists also in testing how thismodel

with new ideas of learning process via pheromone updating rules

scales with large databases. We are also considering other

biological inspirations from real ants for analysis a clustering

problem, for example learning the template and other principles of

recognition system.

References

[1] M. Berger, I. Rigoutsos, An algorithm for point clustering and grid generation, IEEE
Trans. Syst. Man Cybern. 21 (5) (1991) 1278–1286.

[2] E. Bonabeau, From classical models of morphogenesis to agent-based models of
patern formation, Artif. Life 3 (1997) 191–209.

[3] E. Bonabeau, M. Dorigo, G. Theraulaz, Swarm Intelligence. From Natural to

Artificial Systems, Oxford University Press, New York, 1999.
[4] M.R. Brito, E. Chavez, A. Quiroz, J. Yukich, Connectivity of the mutual k-nearest-

neighbor graph for clustering and outlier detection, Stat. Prob. Lett. 35 (1997) 33–
42.

[5] P. Brucker, On the complexity of clustering problems, in: R. Henu, B. Korte, W.

Oetti (Eds.), Optimization and Operations Research, Springer–Verlag, 1978, pp.
45–54.

[6] L. Chretien, Organisation Spatiale du Materiel Provenant de L’excavation du nid
chez Messor Barbarus et des Cadavres d’ouvrieres chez Lasius niger (Hymenop-

terae: Formicidae), PhD thesis, Universite Libre dr Bruxelles, 1996.
[7] S.C. Chu, J.F. Roddick, J.S. Pan, A comparative study and extensions to k-medoids

algorithms, in: Proceedings of the Fifth International Conference on Optimization:

Techniques and Applications, Hong Kong, China, 2001.
[8] J.-L. Deneubourg, S. Goss, N. Franks, A. Sendova-Franks, C. Detrain, The dynamics

of collective sorting: robot-like ant and ant-like robot, in: Proceedings of the First
Conference on Simulation of Adaptive Behavior: From Animals to Animats, MIT

Press, 1991, pp. 356–365.

[9] J.-L. Deneubourg, S. Goss, N. Franks, A. Sendova-Franks, C. Detrain, L. Chretien, The
dynamics of collective sorting: robot-like ant and ant-like robot, in: J.A. Meyer,

S.W. Wilson (Eds.), Proceedings of the First Conference on Simulation of Adaptive
Behavior. From Animals to Animats, 1991, pp. 356–365.
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