
Extending Datatype Restrictions in Fuzzy Description Logics

Fernando Bobillo
Dept. of Computer Science and Systems

Engineering, University of Zaragoza, Spain
fbobillo@unizar.es

Umberto Straccia
ISTI-CNR, Pisa, Italy

straccia@isti.cnr.it

Abstract

Fuzzy Description Logics (DLs) are a family of log-
ics which allow the representation of (and the reasoning
within) structured knowledge affected by vagueness. Al-
though a relatively important amount of work has been car-
ried out in the last years, little attention has been given to
the role of datatypes in fuzzy DLs. This paper presents a
fuzzy DL with three kinds of extended datatype restrictions,
together with the necessary rules to reason with them.

1. Introduction

Description Logics (DLs) are a family of logics which
allow the representation of (and the reasoning with) struc-
tured knowledge [1]. A natural extension for dealing with
vague knowledge, very common in the real-world, are fuzzy
DLs, which have proved to be useful in several applications.

Although a relatively important amount of work has been
carried out [5], little attention has been given to the role
of datatypes in fuzzy DLs. Previous work allow simple
datatype restrictions, for instance (≥ hasAge 18) (denoting
people of age) [4]. This paper introduces extended datatype
restrictions that allow, for example, to specify:

• 〈john : (= hasAge x)〉 and 〈tom : (= hasAge x)〉,
stating that John and Tom have the same age.

• 〈john : (≥ hasAge tri(20, 40, 60))〉, stating that
John’s age is at least about 40 years, with about 40
being defined with a triangular function.

• 〈john : (= hasGrossSalary (0.8 ·hasNetSalary+
0.2 · paysTaxes)〉, meaning the 20% of John’s gross
salary is payed as taxes.

The remainder of the paper is organized as follows. Sec-
tion 2 presents a fuzzy extension of the DL ALCF(D) ,
and then Section 3 provides a reasoning algorithm for the
new datatype restrictions. Finally, Section 4 sets out some
conclusions and ideas for future work.

2. A fuzzy DL with datatype restrictions

In this section we define a fuzzy extension of the
DL ALCF(D) including what we have called extended
datatype restrictions. ALCF(D) extends the well known
DLALC with functional roles (also called attributes or fea-
tures) and concrete domains allowing to deal with datatypes
such as reals, integer and strings.

Let A, RA, Fc, I, and Ic be non-empty enumerable and
pair-wise disjoint sets of concept names (denoted A), ab-
stract role names (denoted R), concrete feature names (de-
noted t), abstract individual names (denoted a), and con-
crete individual names (denoted c).
ALC concepts can be inductively built as follows:

C → > | ⊥ | A | C1 u C2 | C1 t C2 | ¬C | ∀R.C | ∃R.C

Example: Man u ∃hasChild.(Man t Woman) represents
a father, a person which has a child (a son or a daughter).

In ALCF(D) the above syntax is increased with ex-
tended datatype restrictions:

C → DR
DR→ (≥ t x) | (≤ t x) | (= t x) | (≥ t FE) | (≤ t FE) |

(= t FE) | (≥ t NE) | (≤ t NE) | (= t NE)
NE → tri(a, b, c) | NE1 + · · ·+NEn | NE1 −NE2 |

NE1 · · · · ·NEn | NE1/NE2 | r
FE → FE1 + · · ·+ FEn | FE1 − FE2 | FE · t | r | t

where x is a variable, tri(a, b, c) is triangular membership
function with parameters a ≤ b ≤ c ∈ R, and r is a number.
DR is called a datatype restriction, NE is a fuzzy number
expression, and FE (or, more formally, FE(t1, . . . , tn)) is
an arithmetic expression over concrete features.

Addition, substraction and scalar product of features are
defined in the usual away. Let tri(ai, bi, ci) denote the fuzzy
number expression NEi and observe that r = tri(r, r, r).
Addition, substraction, product and division of fuzzy num-
ber expressions are defined as follows:

2009 Ninth International Conference on Intelligent Systems Design and Applications

978-0-7695-3872-3/09 $26.00 © 2009 IEEE

DOI 10.1109/ISDA.2009.27

785

NE1 + · · ·+NEn = (
∑n

i=1 ai,
∑n

i=1 bi,
∑n

i=1 ci)
NE1 −NE2 = (a1 − c2, b1 − b2, c1 − a2)

NE1 · · · · ·NEn = (
∏n

i=1 ai,
∏n

i=1 bi,
∏n

i=1 ci)
NE1/NE2 = (a1/c2, b1/b2, c1/a2)

An ALCF(D) fuzzy knowledge base (fuzzy KB) K =
〈T ,A〉 consists of a fuzzy TBox T , and a fuzzy ABox A,
with axioms about concepts and individuals, respectively.

In general, a fuzzy TBox T is a finite set of fuzzy con-
cept inclusion axioms 〈C v D,α〉, with α ∈ (0, 1]. In-
formally, 〈C v D,α〉 states that all instances of concept C
are instances of concept D to degree α, i.e. the subsump-
tion degree between C and D is at least α. However, for
computational reasons, we will restrict to acyclic TBoxes
containing axioms of the form 〈A v C, n〉 and 〈C v A, 1〉.
This allows to reason using the lazy expansion optimization
technique [4].

A fuzzy ABox A consists of a finite set of fuzzy con-
cept and fuzzy role assertions of the form 〈a :C,α〉 and
〈(a, b) :R,α〉, where a, b are abstract individuals,C is a con-
cept and R is an abstract role. Informally, 〈τ , α〉 constrains
the membership degree of τ to be at least α.

2.1. ALCF(D) semantics

In ALCF(D) a fuzzy interpretation I = (∆I , ·I) rela-
tive to a fuzzy data type theory D = 〈∆D, ·D〉 consists of
a nonempty set ∆I (the domain), disjoint from ∆D, and of
a fuzzy interpretation function ·I that assigns:

1. to each concept C a function CI : ∆I → [0, 1];

2. to each role R a function RI : ∆I ×∆I → [0, 1];

3. to each concrete feature t a partial function tI : ∆I ×
∆D → {0, 1} such that for all u ∈ ∆I there is an
unique o ∈ ∆D on which tI(u, o) is defined;

4. to each abstract individual a an element in ∆I ;

5. to each concrete individual c an element in ∆D.

Notice that we force features (and, consequently,
datatype restrictions) to be crisp. In our opinion, the notion
of functionality induces a crisp interpretation over a con-
crete feature and, hence saying that e.g., the degree of truth
of hasAge(x, 18) is 0.5 is rather unrealistic [4].

Due to space limitations, we will focus on real datatypes.
Hence, we assume that x ranges over R, r ∈ R, and every
feature t : [k1, k2] ⊆ R→ {0, 1}.

The fuzzy interpretation function is extended to the con-
structors of fuzzy ALC and to datatype restrictions as
shown in Tables 2.1 and 2.1, respectively.

Given a relation (z, c) : t, we say that c is a t-filler for z.

⊥I(z) = 0
>I(z) = 1

(C1 u C2)I(z) = C1
I(z)⊗ C2

I(z)
(C1 t C2)I(z) = C1

I(z)⊕ C2
I(z)

(¬C)I(z) = 	CI(z)
(∀R.C)I(z) = infy∈∆I RI(z, y)⇒ CI(y)
(∃R.C)I(z) = supy∈∆I RI(z, y)⊗ CI(y)

Table 1. Semantics of fuzzy concepts in fuzzy ALC

• The intuition behind (≥ t x)I(z) is that there exists a
t-filler c for z such that the value of c is greater or equal
than the value of the variable x.

• In (≥ t FE)I(z), there are a t-filler c and ti-fillers ci
(i ∈ {1, . . . , n}) for z such that the value of c is at least
the evaluation of expression FE.

• In (≥ t NE)I(z), there exist a t-filler c and a concrete
individual c′ such that c′ is a NE and the value of c is
greater or equal than the value of c. We say that c′ is
a representative of the values less or equal than c. The
semantics is the result of viewing “z is (≥ NE)” as
the open first-order formula ∃y.(z ≥ y) ∧NE(y).

Note that the following equivalences hold:

(= t x) = (≤ t x) u (≥ t x)
(= t FE) = (≤ t FE) u (≥ t FE)
(= t NE) = (≤ t NE) u (≥ t NE)
(= t NE) = ∃t.NE
¬(= t NE) = ∀t.(¬NE)

·I is also extended to the axioms as specified below:

(C v D)I = infz∈∆I CI(z)⇒ DI(z)
(a :C)I = CI(aI)

((a, b) :R)I = RI(aI , bI) .

I satisfies an axiom of the form 〈τ, α〉 iff τI ≥ α, and I
satisfies a fuzzy KB K iff I satisfies each axiom in K.

In fuzzy DLs, there are several reasoning tasks such as
KB satisfiability, subsumption, or greatest lower bound, but
they are mutually reducible [4, 7].

3. Reasoning with extended datatypes

Reasoning with classical DLs is usually achieved by
tableau algorithms [2]. Tableau algorithms check the sat-
isfiability of a fuzzy KB K by trying to build a completion
forest, a mathematical structure from which a model may
easily be built. From the algorithm it is immediate either to

786

(≥ t x)I(z) = supc∈∆D
[tI(z, c) ∧ (c ≥ x)]

¬(≥ t x)I(z) = infc∈∆D
[¬tI(z, c) ∨ (c < x)]

(≤ t x)I(z) = supc∈∆D
[tI(z, c) ∧ (c ≤ x)]

¬(≤ t x)I(z) = infc∈∆D
[¬tI(z, c) ∨ (c > x)]

(= t x)I(z) = supc∈∆D
[tI(z, c) ∧ (c = x)]

¬(= t x)I(z) = infc∈∆D
[¬tI(z, c) ∨ (c 6= x)]

(≥ t FE)I(z) = supc,c1,...,cn∈∆D
[tI(z, c) ∧ t1I(z, c1) ∧ · · · ∧ tnI(z, cn) ∧ (c ≥ FE(t1, . . . , tn))]

¬(≥ t FE)I(z) = infc,c1,...,cn∈∆D
[¬tI(z, c) ∨ ¬t1I(z, c1) ∨ · · · ∨ ¬tnI(z, cn) ∨ (c < FE(t1, . . . , tn))]

(≤ t FE)I(z) = supc,c1,...,cn∈∆D
[tI(z, c) ∧ t1I(z, c1) ∧ · · · ∧ tnI(z, cn) ∧ (c ≤ FE(t1, . . . , tn))]

¬(≤ t FE)I(z) = infc,c1,...,cn∈∆D
[¬tI(z, c) ∨ ¬t1I(z, c1) ∨ · · · ∨ ¬tnI(z, cn) ∨ (c > FE(t1, . . . , tn))]

(= t FE)I(z) = supc,c1,...,cn∈∆D
[tI(z, c) ∧ t1I(z, c1) ∧ · · · ∧ tnI(z, cn) ∧ (c = FE(t1, . . . , tn))]

¬(= t FE)I(z) = infc,c1,...,cn∈∆D
[¬tI(z, c) ∨ ¬t1I(z, c1) ∨ · · · ∨ ¬tnI(z, cn) ∨ (c 6= FE(t1, . . . , tn))]

(≥ t NE)I(z) = supc,c′∈∆D
[tI(z, c) ∧ (c ≥ c′) ∧NEI(c′)]

¬(≥ t NE)I(z) = infc,c′∈∆D
[¬tI(z, c) ∨ (c < c′) ∨ ¬NEI(c′)]

(≤ t NE)I(z) = supc,c′∈∆D
[tI(z, c) ∧ (c ≤ c′) ∧NEI(c′)]

¬(≤ t NE)I(z) = infc,c′∈∆D
[¬tI(z, c) ∨ (c > c′) ∨ ¬NEI(c′)]

(= t NE)I(z) = supc∈∆D
[tI(z, c) ∧NEI(c)]

¬(= t NE)I(z) = infc∈∆D
[¬tI(z, c) ∨ ¬NEI(c)]

Table 2. Semantics of datatype restrictions and their negations.

build a model in case K is satisfiable, or to detect that K is
unsatisfiable.

Our algorithm is similar, but combines a tableau algo-
rithm with an optimization problem, since the application
of the tableau rules may generate some constraints which
have to be minimized for finding a solution [4].

A completion-forest F is a collection of trees whose dis-
tinguished roots are arbitrarily connected by edges.

Each node v is labelled with a set L(v) of expressions of
the form 〈C, l〉, where C is a concept expression, and l is
either a rational, a variable x, or a negated variable, i.e., of
the form 1− x. The intuition here is that v is an instance of
C to degree greater or equal than of the evaluation of l.

Each edge 〈v, w〉 is labelled with a set L(〈v, w〉) of ex-
pressions of the form 〈R, l〉, whereR is a role. The intuition
here is that 〈v, w〉 is an instance of R to degree greater or
equal than of the evaluation of l.

The forest has associated a set CF of constraints of the
form l ≤ l′, l = l′, xi ∈ [0, 1], yi ∈ {0, 1}, where xi, yi are
variables, and l, l′ are arithmetic expressions on the vari-
ables occurring in the labels.

The algorithm initializes a forest F to contain:

• A root node vi, for each individual ai occurring in A,
labelled with L(vi) such that L(vi) contains 〈Ci, n〉
for each fuzzy assertion 〈ai :Ci, n〉 ∈ A.

• An edge 〈vi, vj〉, for each fuzzy assertion
〈(ai, aj) :Ri, n〉 ∈ A, labelled with L(〈vi, vj〉)
such that L(〈vi, vj〉) contains 〈Ri, n〉.

xτ denotes the variable associated to the assertion τ of
the form a :C or (a, b) :R. xτ will take the truth value asso-
ciated to τ . Similarly, given a concrete individual c, xc will
take the value of c.
F is then expanded by repeatedly applying some rea-

soning rules, which may add some constraints to CF . For
example, consider the rules for conjunction and disjunction
in Gödel fuzzy logic (recall that the t-norm is the minimum
and the t-conorm is the maximum) [8]1:

uG. If 〈C uD,α〉 ∈ L(v) then append 〈C,α〉, and 〈D,α〉
to L(v).

tG. If 〈C t D,α〉 ∈ L(v) then (i) append 〈C, x1〉 and
〈D,x2〉 to L(v), and (ii) CF = CF ∪ {x1 + x2 =
α}∪{x1 ≤ y}∪{x2 ≤ 1−y}∪{x1 ∈ [0, 1]}∪{x2 ∈
[0, 1]} ∪ {y ∈ {0, 1}}.

The completion-forest is complete when none of the
completion rules are applicable. Then, the optimization
problem on the set of constraints CF is solved.

In general, in fuzzy DLs we may end up with a bMINLP
(bounded Mixed Integer Non Linear Programming) prob-
lem [4]. However, in Zadeh, Łukasiewicz and Gödel fuzzy
logics we end up with a bMILP (bounded Mixed Inte-
ger Linear Programming) problem [6], whereas in Prod-
uct fuzzy logic we end up with a MIQCP (Mixed Integer
Quadratically Constrained Programming) problem.

1For the sake of clarity, we include here the most comprehensive for-
mulation of the rules. We note that they can be optimized as shown in [4],
although it is out of the scope if this paper.

787

A reasoning algorithm for ALCF(D) has already been
presented in [4], restricting to datatype restrictions involv-
ing real numbers. In this section, we will show the addi-
tional rules for managing our extended datatype restrictions.

3.1. Datatype restrictions with variables

We start by presenting the rules to reason with datatype
restrictions with a variable as argument, and then we will
provide an example. There are six rules, corresponding to
(≥ t x), ¬(≥ t x), (≤ t x), ¬(≤ t x), (= t x), and
¬(= t x), respectively.

(≥ t x). If 〈(≥ t x), α〉 ∈ L(v) then: (i) if 〈t(v, c), β〉 6∈ L(v, c)
then add 〈t(v, c), 1 − y〉 to L(v, c) and CF = CF ∪ {xc ≥
k1, xc ≤ k2}, (ii) for some c such that 〈t(v, c), β〉 ∈
L(v, c), CF = CF ∪ {α + y ≥ ε} ∪ {α + y ≤ 1} ∪
{xt(v,c) ≥ 1−y} ∪ {xc ≥ x−(k2−k1)y} ∪ {y ∈ {0, 1}},
where y is a new variable.

(¬ ≥ t x). If (i) 〈¬(≥ t x), α1〉 ∈ L(v) and (ii) 〈t(v, c), α2〉 ∈
L(v, c), then CF = CF ∪ {y1 ≤ y2} ∪ {xt(v,c) = 1 −
y1} ∪ {α1+y1+y2 ≥ ε} ∪ {α1−y1+y2 ≤ 1} ∪ {α2 ≤
1−y1} ∪ {xc ≤ (x−ε)−(k1−k2−ε)y2} ∪ {yi ∈ {0, 1}},
where yi are new variables.

(≤ t x). If 〈(≤ t x), α〉 ∈ L(v) then: (i) if 〈t(v, c), β〉 6∈ L(v, c)
then add 〈t(v, c), 1 − y〉 to L(v, c) and CF = CF ∪ {xc ≥
k1, xc ≤ k2}, (ii) for some c such that 〈t(v, c), β〉 ∈
L(v, c), CF = CF ∪ {α + y ≥ ε} ∪ {α + y ≤ 1} ∪
{xt(v,c) ≥ 1−y} ∪ {xc ≤ x−(k2−k1)y} ∪ {y ∈ {0, 1}},
where y is a new variable.

(¬ ≤ t x). If (i) 〈¬(≥ t x), α1〉 ∈ L(v) and (ii) 〈t(v, c), α2〉 ∈
L(v, c), then CF = CF ∪ {y1 ≤ y2} ∪ {xt(v,c) = 1 −
y1} ∪ {α1+y1+y2 ≥ ε} ∪ {α1−y1+y2 ≤ 1} ∪ {α2 ≤
1−y1} ∪ {xc ≥ (x+ε)−(k2+ε−k1)y2} ∪ {yi ∈ {0, 1}},
where yi are new variables.

(= t x). If 〈(= t x), α〉 ∈ L(v) then: (i) if 〈t(v, c), β〉 6∈ L(v, c)
then add 〈t(v, c), 1 − y〉 to L(v, c) and CF = CF ∪ {xc ≥
k1, xc ≤ k2}, (ii) for some c such that 〈t(v, c), β〉 ∈
L(v, c), CF = CF ∪ {α + y ≥ ε} ∪ {α + y ≤
1} ∪ {xt(v,c) ≥ 1−y} ∪ {xc ≥ x−(k2−k1)y} ∪ {xc ≤
x− (k2−k1)y} ∪ {y ∈ {0, 1}}, where y is a new variable.

(¬ = t x). If (i) 〈¬(= t x), α1〉 ∈ L(v) and (ii) 〈t(v, c), α2〉 ∈
L(v, c), then: CF = CF ∪ {y2 ≥ y1} ∪ {y3 ≥ y2} ∪
{xt(v,c) = 1−y1} ∪ {α1+y1+y2 ≥ ε} ∪ {α1−y1+y2 ≤
1} ∪ {α2 ≤ 1−y1} ∪ {xc ≤ (x− ε)− (k1− ε−k2)y2−
(k1 − ε − k2)(1 − y3)} ∪ {xc ≥ (x + ε) − (k2 + ε −
k1)y3} ∪ {yi ∈ {0, 1}}, where yi are new variables.

For the sake of concrete illustration, let us explain a cou-
ple of rules. Initially, let us consider the (≥ t x) rule. If
〈(≥ t x), α〉 ∈ L(v), there must exist a t-filler c satisfying
tI(x, c) ∧ (c ≥ x) ≥ α. There are two possibilities for
satisfying the semantics:

• α = 0, because τI ≥ 0 is always true.

• α > 0, but xt(v,c) = 1 and xc > x, since this im-
plies tI(z, c) ∧ (c ≥ n) = 1 and hence 〈≥ t x, α〉 is
satisfied.

So, the first step is to create a t-filler c if it does not exist,
adding 〈t(v, c), 1 − y〉 to L(v, c). Then, we use a binary
variable y simulating the two branches:

• If y = 1, then α = 0 and the other variables are not
constrained (xt(v,c) ≥ 0, xc ∈ [k1, k2]).

• If y = 0, then α ≥ ε ⇔ α > 0, xt(v,c) = 1 and
xc > x.

Notice that strict inequalities are not allowed, and
hence the inequality x > 0 is expressed as x ≥ ε,
for a sufficiently small ε > 0.

Let us consider now the ¬(≥ t x) rule. If 〈¬(≥
t x), α1〉 ∈ L(v) and, for some c, 〈t(v, c), α2〉 ∈ L(v, c),
there are three possibilities to satisfy these formulae:

• α1 = 0, because τI ≥ 0 is always true.

• xt(v,c) = 0, since it implies [¬tI(z, c) ∨ (c < n)] = 1
and hence 〈¬(≥ t x), α1〉 is satisfied. Now, in order to
satisfy t(v, c) ≥ α2, α2 must be 0.

• xt(v,c) = 1 and xc < n, because this implies (c <
n) ⇔ [¬tI(x, c) ∨ (c < n)] = 1 and hence 〈¬(≥
t x), α1〉 is satisfied.

In order to cover all these possibilities, the binary vari-
ables y1 and y2 simulate three branches:

• y1 = 0, y2 = 1. In this case, α1 = 0 and hence the
other variables are not constrained (xt(v,c) = 1, α2 ≤
1, xc ∈ [k1, k2]).

• y1 = 1, y2 = 1. Now, xt(v,c) = 0 and α2 = 0. xc is
not constrained (xc ∈ [k1, k2]).

• y1 = 0, y2 = 0. Then, xt(v,c) = 1 and xc < x.

• Since y1 ≤ y2, the case y1 = 1 and y2 = 0 is not
possible.

(≥ t x) and (≤ t x) rules are similar, and (= t x)
uses a combination of them. This is also true for the other
rules. The main difficulty is that, while in ¬(≥ t x) we add
xc < x to simulate that c ≥ x is not true, in (¬ = t x)
a binary variable simulates the two possibilities satisfying
that c = x is not true: c ≥ x or c ≤ x.

Let us also remark that these rules are an extension of the
rules for real numbers in [4]. These rules also work properly
if we replace the variable x with a real number.

788

3.2. Datatype restrictions with arithmetic
of features

We will present the rules to reason with datatype restric-
tions with a arithmetic expression on features (of the form
FE(t1, . . . , tn)) and then show an example. There are six
rules, corresponding to (≥ t FE), ¬(≥ t FE), (≤ t FE),
¬(≤ t FE), (= t FE), and ¬(= t FE), respectively.

(≥ t FE). If 〈(≥ t FE(t1, . . . , tn)), α〉 ∈ L(v) then: (i)
if 〈t(v, c), β〉 6∈ L(v, c) then add 〈t(v, c), 1 − y〉 to
L(v, c) and CF = CF ∪ {xc ≥ k1, xc ≤ k2}, (ii) if
〈ti(v, ci), βi〉 6∈ L(v, ci) then add 〈ti(v, ci), 1 − y〉 to
L(v, ci) and CF = CF ∪ {xci ≥ k1, xci ≤ k2}, (iii) for
some c such that 〈t(v, c), β〉 ∈ L(v, c), and some ci such
that 〈ti(v, ci), βi〉 ∈ L(v, ci), CF = CF ∪ {α + y ≥
ε} ∪ {α + y ≤ 1} ∪ {xt(v,c) ≥ 1 − y} ∪ {xt(v,ci) ≥
1− y} ∪ {xc ≥ FE(c1, . . . , cn)− (k2 − k1)y} ∪ {y ∈
{0, 1}}, where y is a new variable.

(¬ ≥ t FE). If (i) 〈¬(≥ t FE(t1, . . . , tn)), α1〉 ∈ L(v) and (ii)
〈t(v, c), α2〉 ∈ L(v, c) and (iii) 〈ti(v, ci), βi〉 ∈ L(v, ci),
then CF = CF ∪ {y1 ≤ y2} ∪ {xt(v,c) = 1 − y1} ∪
{xt(v,ci) = 1−y1} ∪ {α1+y1+y2 ≥ ε} ∪ {α1−y1+y2 ≤
1} ∪ {α2 ≤ 1 − y1} ∪ {βi ≤ 1 − y1} ∪ {xc ≤
FE(c1, . . . , cn)− ε− (k2 − k1 − ε)y2} ∪ {yi ∈ {0, 1}},
where yi are new variables.

(≤ t FE). If 〈(≤ t FE(t1, . . . , tn)), α〉 ∈ L(v) then: (i)
if 〈t(v, c), β〉 6∈ L(v, c) then add 〈t(v, c), 1 − y〉 to
L(v, c) and CF = CF ∪ {xc ≥ k1, xc ≤ k2}, (ii) if
〈ti(v, ci), βi〉 6∈ L(v, ci) then add 〈ti(v, ci), 1 − y〉 to
L(v, ci) and CF = CF ∪ {xci ≥ k1, xci ≤ k2}, (iii) for
some c such that 〈t(v, c), β〉 ∈ L(v, c), and some ci such
that 〈ti(v, ci), βi〉 ∈ L(v, ci), CF = CF ∪ {α + y ≥
ε} ∪ {α + y ≤ 1} ∪ {xt(v,c) ≥ 1 − y} ∪ {xt(v,ci) ≥
1− y} ∪ {xc ≤ FE(c1, . . . , cn)− (k2 − k1)y} ∪ {y ∈
{0, 1}}, where y is a new variable.

(¬ ≤ t FE). If (i) 〈¬(≥ t FE(t1, . . . , tn)), α1〉 ∈ L(v) and (ii)
〈t(v, c), α2〉 ∈ L(v, c) and (iii) 〈ti(v, ci), βi〉 ∈ L(v, ci),
then CF = CF ∪ {y1 ≤ y2} ∪ {xt(v,c) = 1 − y1} ∪
{xt(v,ci) = 1−y1} ∪ {α1+y1+y2 ≥ ε} ∪ {α1−y1+y2 ≤
1} ∪ {α2 ≤ 1 − y1} ∪ {βi ≤ 1 − y1} ∪ {xc ≥
FE(c1, . . . , cn) + ε− (k2 − k1 + ε)y2} ∪ {yi ∈ {0, 1}},
where yi are new variables.

(= t FE). If 〈(= t FE(t1, . . . , tn)), α〉 ∈ L(v) then: (i)
if 〈t(v, c), β〉 6∈ L(v, c) then add 〈t(v, c), 1 − y〉 to
L(v, c) and CF = CF ∪ {xc ≥ k1, xc ≤ k2}, (ii) if
〈ti(v, ci), βi〉 6∈ L(v, ci) then add 〈ti(v, ci), 1 − y〉 to
L(v, ci) and CF = CF ∪ {xci ≥ k1, xci ≤ k2}, (iii) for
some c such that 〈t(v, c), β〉 ∈ L(v, c), and some ci such
that 〈ti(v, ci), βi〉 ∈ L(v, ci), CF = CF ∪ {α + y ≥
ε} ∪ {α + y ≤ 1} ∪ {xt(v,c) ≥ 1 − y} ∪ {xt(v,ci) ≥
1− y} ∪ {xc ≥ FE(c1, . . . , cn)− (k2− k1)y} ∪ {xc ≤
FE(c1, . . . , cn) − (k2 − k1)y} ∪ {y ∈ {0, 1}}, where y
is a new variable.

(¬ = t FE). If (i) 〈¬(= t FE(t1, . . . , tn)), α1〉 ∈ L(v) and (ii)
〈t(v, c), α2〉 ∈ L(v, c) and (iii) 〈ti(v, ci), βi〉 ∈ L(v, ci),

then CF = CF ∪ {y2 ≥ y1} ∪ {y3 ≥ y2} ∪ {xt(v,c) =
1 − y1} ∪ {xt(v,ci) = 1 − y1} ∪ {α1 + y1 + y2 ≥
ε} ∪ {α1 − y1 + y2 ≤ 1} ∪ {α2 ≤ 1 − y1} ∪ {βi ≤
1−y1} ∪ {xc ≤ FE(c1, . . . , cn)− ε− (k1− ε−k2)y2−
(k1−ε−k2)(1−y3)} ∪ {xc ≥ FE(c1, . . . , cn)+ε−(k2+
ε− k1)y3} ∪ {yi ∈ {0, 1}}, where yi are new variables.

The rules are similar to those on Section 3.1. For in-
stance, let us compare rules (≥ t x) and (≥ t FE). The
differences are the following:

• (≥ t x) creates a t-filler, whereas (≥ t FE) cre-
ates n + 1 fillers c, c1, c2, . . . , cn for the features
t, t1, t2, . . . , tn.

• (≥ t x) adds a constraint on the value of the relation
via t (xt(v,c) ≥ 1− y), whereas (≥ t FE) adds such a
constraint for each of the n+ 1 features involved.

• (≥ t x) adds a constraint stating that if y = 0
then xc ≥ x, whereas in (≥ t FE) the con-
straint is obviously extended: if y = 0 then xc ≥
FE(xc1 , xc2 , . . . , xcn). For example, given the con-
cept (≥ hasGrossSalary (0.8·hasNetSalary)), the
constraint imposes xc = 0.8 · xc1 when y = 0.

3.3. Datatype restrictions with arithmetic
of fuzzy numbers

It only remains to present the rules dealing with datatype
restrictions with a fuzzy number expression NE as argu-
ment. There are six rules, corresponding to (≥ t NE),
¬(≥ t NE), (≤ t NE), ¬(≤ t NE), (= t x), and
¬(= t NE), respectively.

(≥ t NE). If 〈(≥ t NE), α〉 ∈ L(v) then: (i) if 〈t(v, c), β〉 6∈
L(v, c) then add 〈t(v, c), 1 − y〉 to L(v, c) and CF =
CF ∪ {xc ≥ k1, xc ≤ k2}, (ii) for some c such that
〈t(v, c), β〉 ∈ L(v, c), then: (a) if there does not exist a
representative c′ of the values 〈x, (≥ t NE)〉, then mark
c′ as a representative of the values 〈x, (≥ t NE)〉 and add
CF = CF ∪ {xc′ ≥ k1, xc′ ≤ k2}, (b) append 〈NE,α〉 to
L(c′), (c) CF = CF ∪ {α ≥ y·ε} ∪ {α ≤ y} ∪ {xt(v,c) =
y} ∪ {xc − xc′ ≥ (1− y) · (k1 − k2)} ∪ {y ∈ {0, 1}}.

(¬ ≥ t NE). If (i) 〈¬(≥ t NE), α1〉 ∈ L(v), (ii)
〈t(v, c), α2〉 ∈ L(v, c), and (iii) there exists a representa-
tive c′ of the values 〈x, (≤ t NE)〉, then (i) add CF =
CF ∪ {xc′ ≥ k1, xc′ ≤ k2}, (ii) append 〈NE,α1 − y2〉
to L(c′), and (iii) CF = CF ∪ {y1 + y2 + y3 + y4 =
3} ∪ {α1 ≤ y3} ∪ {α2 ≤ y4} ∪ {xt(v,c) = y4} ∪ {xc ≤
(xc′ − ε)− (k1 − k2 − ε)y1} ∪ {yi ∈ {0, 1}}.

(≤ t NE). If 〈(≥ t NE), α〉 ∈ L(v) then: (i) if 〈t(v, c), β〉 6∈
L(v, c) then add 〈t(v, c), 1 − y〉 to L(v, c) and CF =
CF ∪ {xc ≥ k1, xc ≤ k2}, (ii) for some c such that
〈t(v, c), β〉 ∈ L(v, c), then: (a) if there does not exist a
representative c′ of the values 〈x, (≤ t NE)〉, then mark
c′ as a representative of the values 〈x, (≤ t NE)〉 and add

789

CF = CF ∪ {xc′ ≥ k1, xc′ ≤ k2}, (b) append 〈NE,α〉 to
L(c′), (c) CF = CF ∪ {α ≥ y·ε} ∪ {α ≤ y} ∪ {xt(v,c) =
y} ∪ {xc′ − xc ≥ (1− y) · (k1 − k2)} ∪ {y ∈ {0, 1}}.

(¬ ≤ t NE). If (i) 〈¬(≤ t NE), α1〉 ∈ L(v), (ii)
〈t(v, c), α2〉 ∈ L(v, c), and (iii) there exists a representa-
tive c′ of the values 〈x, (≤ t NE)〉, then (i) add CF =
CF ∪ {xc′ ≥ k1, xc′ ≤ k2}, (ii) append 〈NE,α1 − y2〉
to L(c′), and (iii) CF = CF ∪ {y1 + y2 + y3 + y4 =
3} ∪ {α1 ≤ y3} ∪ {α2 ≤ y4} ∪ {xt(v,c) = y4} ∪ {xc′ ≤
(xc − ε)− (k1 − k2 − ε)y1} ∪ {yi ∈ {0, 1}}.

(= t NE). If 〈(≥ t NE), α〉 ∈ L(v) then: (i) if 〈t(v, c), β〉 6∈
L(v, c) then add 〈t(v, c), 1− y〉 to L(v, c) and CF = CF ∪
{xc ≥ k1, xc ≤ k2}, (ii) for some c such that 〈t(v, c), β〉 ∈
L(v, c), then append 〈NE,α〉 to L(c), and CF = CF ∪
{xt(v,c) ≥ α}.

(¬ = t NE). If (i) 〈¬(= t NE), α1〉 ∈ L(v) and (ii)
〈t(v, c), α2〉 ∈ L(v, c), then append 〈NE,α1− y2〉 to L(c)
and CF = CF ∪ {y2+y3+y4 = 2} ∪ {α1 ≤ y3} ∪ {α2 ≤
y4} ∪ {xt(v,c) = y4} ∪ {yi ∈ {0, 1}}.

where y, yi are new variables. These rules are similar to
those on Section 3.1. For example, consider (≥ t NE)
rule. There are two possibilities to satisfy the semantics:

• α = 0, because τI ≥ 0 is always true.

• xt(v,c) = 1, NE(c′)I ≥ α, and xc > x, since this
implies tI(z, c) ∧ (c ≥ c′) ∧NEI(c′) ≥ α.

The first step is to create a t-filler c, but now we also
create (if necessary) an individual c′ representative of the
values greater or equal than NE. We also add NE(c′)I ≥
α2. Finally, a binary variable y simulates two branches:

• If y = 0, then α = 0, xt(v,c) ≥ 0, and xc is not
constrained (xc ∈ [k1, k2]).

• If y = 1, then α > 0, xt(v,c) = 1, and xc > xc′ .

Example. We have to choose among different products
ai that have been evaluated according to some criteria tj .
For instance, t1 = Cost, t2 = DeliveryTime, t3 = Quality.
Each criteria is represented as a concrete feature and has
a relative importance wj ∈ [0, 1] assigned by an expert
(
∑

j wj = 1). E.g., w1 = 0.258, w2 = 0.105, w3 = 0.637.
Let aij denote the value (a real or a fuzzy number) of

the attribute tj for the alternative ai. For instance, a11 =
VeryPoor, a12 = Fair, a13 = Good, a21 = Good, a22 =
VeryGood, a23 = Poor, and a31 = Fair, a32 = Fair, a33 =
Poor. The fuzzy numbers are defined as VeryPoor =
tri(0, 0, 2), Poor = tri(1, 2.5, 4), Fair = tri(3, 5, 7), Good =
tri(6, 7.5, 9), and VeryGood = tri(8, 10, 10).

Let Alternative be a shorthand for the concept (=
tsum(w1 · t1 + w2 · t2 + w3 · t3)). For every alternative
ai with 1 ≤ i ≤ 3, a decision matrix can be encoded as:

2The rule to reason with triangular functions has been presented in [8].

ai : Alternative u (= t1 ai1) u (= t2 ai2) u (= t3 ai3)

The rank value of ai w.r.t. a fuzzy KB K is computed
using the middle of maxima (MOM) defuzzification [3]:

rv(K, ai) = mom(K, Alternative, ai, tsum)

Finally, the optimal alternative is:

arg maxai rv(K, ai).

In particular, rv(K, a1) = 5.301, rv(K, a2) = 4.577,
rv(K, a3) = 3.408, so the ranking of the alternatives is
a1 � a2 � a3, and the optimal alternative is a1.

4. Conclusions

In this paper we have presented a fuzzy DL which ex-
tends the expressivity of the supported datatype restrictions
with respect to the related work. We have also provided the
rules for extending current reasoning algorithms in order to
deal with the new constructors of the logic. The rules have
been implemented in the FUZZYDL reasoner [3], publicly
available from http://www.straccia.info.

Our approach is independent of the family of fuzzy op-
erators used, and thus the results apply to Zadeh fuzzy
logic [7], and to the logic of any continuous t-norm (such
as Łukasiewicz, Gödel, or Product) [4].

Due to space limitations we have restricted ourselves to
features ranging over reals, which obviously includes the
case of integers. Furthermore, it is possible to reduce strings
to the case of reals using the algorithm in [4].

As future work we plan to use the additional expressivity
to model some real-world application domains.

References

[1] F. Baader, I. Horrocks, and U. Sattler. Description Logics. In
F. van Harmelen, V. Lifschitz, and B. Porter, editors, Hand-
book of Knowledge Representation. Elsevier, 2007.

[2] F. Baader and U. Sattler. An overview of tableau algorithms
for Description Logics. Studia Logica, 69:5–40, 2001.

[3] F. Bobillo and U. Straccia. fuzzyDL: An expressive fuzzy
Description Logic reasoner. In Proceedings of the 17th
IEEE International Conference on Fuzzy Systems (FUZZ-
IEEE 2008), pages 923–930. IEEE Computer Society, 2008.

[4] F. Bobillo and U. Straccia. Fuzzy Description Logics with
general t-norms and datatypes. Fuzzy Sets and Systems, 2009.

[5] T. Lukasiewicz and U. Straccia. Managing uncertainty and
vagueness in Description Logics for the semantic web. Jour-
nal of Web Semantics, 6(4):291–308, 2008.

[6] H. M. Salkin and K. Mathur. Foundations of Integer Program-
ming. North-Holland, 1989.

[7] U. Straccia. Reasoning within fuzzy Description Logics.
Journal of Artificial Intelligence Research, 14:137–166, 2001.

[8] U. Straccia. Description Logics with fuzzy concrete domains.
In Proceedings of the 21st Conference on Uncertainty in Ar-
tificial Intelligence (UAI 2005). AUAI Press, 2005.

790

