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Abstract—Dimensionality reduction and feature selection
in particular are known to be of a great help for making
supervised learning more effective and efficient. Many differ-
ent feature selection techniques have been proposed for the
traditional settings, where each instance is expected to have a
label. In multiple instance learning (MIL) each example or bag
consists of a variable set of instances, and the label is known
for the bag as a whole, but not for the individual instances it
consists of. Therefore, utilizing class labels for feature selection
in MIL is not that straightforward and traditional approaches
for feature selection are not directly applicable. This paper
proposes a filter feature selection approach based on the ReliefF
technique. It allows any previously designed MIL method to
benefit from our feature selection approach, which helps to
cope with the curse of dimensionality. Experimental results
show the effectiveness of the proposed approach in MIL –
different MIL algorithms tend to perform better when applied
after the dimensionality reduction.
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I. INTRODUCTION

Classification is a typical data mining task where the value
of a target attribute for a new instance is predicted based
on the given collection of training instances for which all
the attribute values including class labels are known. The
purpose of supervised learning is to learn to classify a new
instance. In many applications, data, which is the subject of
analysis and processing in data mining, is multidimensional,
and presented by a number of features1. The so-called “curse
of dimensionality” pertinent to many learning algorithms,
denotes the drastic increase in computational complexity
and classification error with data having a great number of
dimensions.

Many different feature selection techniques have been
developed and successfully applied for improving the gen-
eralization ability of classification algorithms (achieved due
to the dimensionality reduction).

Unfortunately, most of the existing feature selection ap-
proaches that utilize class labels are not directly applicable
for Multiple Instance Learning (MIL) settings. In classifica-
tion with multiple instance data, each example or pattern
(often called bag) consists of a variable set of instances
where you know the label of the example but there is no
information about the labels of particular instances. This
peculiarity introduces an additional challenge because the
values of class labels with respect to particular instances that

1We use the terms attributes and features as synonyms in this paper.

can guide the selection involves uncertainty. In this scenario,
traditional feature selection algorithms are not directly ap-
plicable because they are adapted to work in an environment
where class information for all instances is available. So far,
only wrapper-based and embedded approaches for feature
selection in MIL have been proposed.

We consider ReliefF-MI – a filter approach for feature
selection that is designed to work with multiple instances
and to utilize the labels of bags. The preliminary study of
this approach was presented in [1]. ReliefF-MI is based
on the ideas of Relief [2], one of the state-of-the-art ap-
proaches for filter-based feature selection, which has been
well studied and adopted as for classification (Relief-F [3])
as for regression (RRelief-F [4]) problem formulations.
Our approach inherits the following characteristics features
of ReliefF: it can be applied to continuous and discrete
problems in multiple instance classification, and it is aware
of contextual information and can correctly estimate the
quality of attributes in problems with strong dependencies
between attributes.

In this paper, we present an extensive experimental evalu-
ation of ReliefF-MI. We show the results of applying it as a
preprocessor before learning a classifier with one of seven-
teen popular MIL algorithms, including different paradigms
of machine learning. Three MIL benchmark datasets have
been used in our study.

The obtained results confirm the effectiveness of ReliefF-
MI. MIL algorithms perform consistently better when ap-
plied after the dimensionality reduction with the considered
feature selection approach.

The rest of the paper is organized as follows. Section 2
briefly introduces the MIL framework. Section 3 describes
our approach to reduce dimensionality in MIL by selecting
the most relevant features. Section 4 presents our experimen-
tal study aimed to evaluate and compare the performance of
the popular MIL methods with and without dimensionality
reduction. Section 5 concludes the study.

II. MULTIPLE INSTANCE LEARNING

MIL is a special learning framework which deals with
uncertainty of instance labels. In this setting training data is
organized into bags of instances with class labels assigned
for the bags. Thus, instead of receiving a set of instances
which are labeled positive or negative, the learner receives a
set of bags that are labeled positive or negative and each bag



can contain different number of individual instances that are
not labeled.

The goal of this learning consists of trying to induce a
concept from a collection of labeled bags that will label
new bags correctly. Although the actual learning process is
quite similar to the traditional supervised learning, the two
settings differ in the class labels provided from which they
learn.

In the traditional supervised learning setting, an object
mi is represented by a feature vector V (mi), which is
associated with a label f(mi). In the MIL setting, each
object mi may have j various individual instances denoted
mi,1,mi,2, . . . ,mi,j . Each of these variants will be repre-
sented by a (usually) distinct feature vector V (mi,k) (for
k from 1 to j). A complete training example is therefore
written as ({V (mi,1), V (mi,2), . . . , V (mi,j)}, f(mi)). In
this case, the label f(mi) represents the information about
the bags, not about each individual instance they consist
of. The goal of learning is to find f̂(mi) that is a good
approximation on function f(mi), analyzing a set of training
examples labeled by f(mi). One typical assumption in MIL,
is to consider the bag as positive if at least one of the
individual instances from this bag is positive. Consequently,
if the bag is labeled as negative then none of its individual
instances could have produced a positive result. This formu-
lation can be modelled by introducing the second labeling
function g(V (mi,j)) that takes a single individual instance
and outputs a label. The externally observed result, f(mi),
can then be defined as follows:

f(mi) =
{

1, if ∃ k | g(V (mi,k)) = 1
0, otherwise

What makes this problem complex is the fact that there
is no information on which or how many of the individual
instances in the bag are actually positive.

Research on MIL has grown enormously in the last years
due to the great number of applications, for which the
problem formulation and representation as MIL is more
appropriate than traditional supervised learning. Examples
include approaches for text categorization [5], content-based
image retrieval [6], [7] and image annotation [8], drug ac-
tivity prediction [9], [10], web index page recommendation
[11], semantic video retrieval [12], video concept detection
[13] and prediction of student performance [14]. In all cases
MIL provides a more natural form of representation that
achieves to improve the results obtained by the traditional
supervised learning.

MIL techniques can be divided roughly into two broad
categories. The first category includes approaches that
have been designed specifically for solving MIL prob-
lems: APR algorithms [9], Diverse Density (DD) [10], EM-
DD [15] and [7]. The second category includes approaches
that adapt the popular machine learning paradigms for
MIL setting: multi-instance lazy learning algorithms [16],

multi-instance tree learners [17], multi-instance rule induc-
ers [17], multi-instance logistic regression methods [18],
multi-instance neural networks [19], multi-instance kernel
methods [13], multi-instance ensembles [20] and evolution-
ary algorithms [21].

III. RELIEFF-MI ALGORITHM

This section specifies the filter feature selection algorithm
adapted for MIL. First, the main steps of its procedure are
detailed. Then, the new definition of distance between bags
and the calculation of the difference between attributes are
commented on.

A. Description of the Method

ReliefF-MI is based on the principles of the ReliefF
algorithm [3]. This method works by randomly sampling
instances from the training data. For each sampled instance
R, its k nearest neighbors from the same class (called nearest
hit) and the opposite class of each sampled instance (called
nearest miss) are found. Multi-class datasets are handled
by finding the nearest neighbors from each class that are
different from the class of the current sampled instance, and
weighting their contributions by the prior probability of each
class estimated from the training data. The weight updating
of attribute A (W [A]) is computed as the average of all
the examples of magnitude of the difference between the
distance to the k nearest hits and the distance to the k nearest
misses, projecting on the attribute A. Each weight reflects
its ability to distinguish among class labels, thus a high
weight indicates that there is differentiation to this attribute
among instances from different classes and it holds the same
value for instances in the same class. Features are ranked by
weight and those that exceed a user-specified threshold are
selected to form the final subset. In the next section, the
calculation of nearest neighbor and the definition of diffbag

function applied to bag will be studied.

B. Applying the algorithm with multi instance data

The ReliefF algorithm estimates the quality of attributes
according to how well their values distinguish between the
instances that are near to each other. In MIL the distance
between two patterns has to be calculated taking into account
that each pattern contains one or more instances. The gist
of this type of learning is to make a decision based on
similarity because each example is a set of instances, so
the similarity function needs to be revised since, e.g. the
Manhattan distance measure schema is not applicable. The
difference between the traditional and MIL cases can be
seen in Figure 1. Figure 1(a) shows the calculation in a
traditional supervised learning scenario. In this case, the
correspondence between a pattern and an instance is one
to one and a simple Manhattan distance computing the
distance between two corresponding feature vectors can
be used. Figure 1(b) shows the case in MIL where the
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Figure 1. Differences between Single and Multiple Instance

correspondence between a pattern and an instance is one to
many. Therefore, the distance between the two patterns has
to take into consideration the distance between two sets of
feature vectors with different number of features. Therefore,
the Manhattan distance is no longer applicable in this setting.
We should also do not forget that labels are known only for
bags of instances, but not for the individual instances. If
we know that a bag is positive, then we can deduce that at
least one of its instances is positive. However, there is no
information about how many of them are positive and what
instances exactly are positive. In the example in Figure 1(b),
the pattern A, the most commonly called bag, has seven
different instances and the B bag has six different instances.
For example, if A is positive, it might contain four negative
instances and three positive ones, but we do not know this
information, we know only that at least one of the instances
is positive.

In the literature, there are different distance-based ap-
proaches that have been proposed to solve MI problems [22].
The most extensively used metric is the Hausdorff Dis-
tance [23] that measures the distance between two sets.
Several adaptations of this measurement have been imple-
mented: maximal Hausdorff distance [23], minimal Haus-
dorff distance [17] and average Hausdorff distance [22].

We designed a new metric for ReliefF-MI that we called
Adapted Hausdorff distance. The reason that has led us
to design this new metric is to consider specifically for
each distance, the maximum information in this situation.
Thus, this metric represents different calculations depend-

ing on the class of the pattern, because the information
on the examples differs if we evaluate the distance be-
tween two positive or negative patterns or between one
positive and one negative pattern. Let Ri denote the bag
selected in the current iteration. Ri contains three instances
(R1

i , R
2
i , R

3
i ). Let Hj denote the jth bag of the k nearest hit

selected in the current iteration. Hj contains four instances,
(H1

j ,H2
j ,H3

j ,H4
j ). Let Mj be the jth bag of the k nearest

misses selected in the current iteration. It contains six
instances, (M1

j ,M2
j , M3

j ,M4
j ,M5

j ,M6
j ).

• If both patterns are negative, we can be sure that there
is no instance in the pattern that represents the concept
that we want to learn. Therefore, an average distance
will be used to measure the distance between these bags
because all instances are guaranteed to be negative,

Havg(Ri, Hj) =

∑

r∈Ri

minh∈Hj
||r − h||+

∑

h∈Hj

minr∈Ri
||h− r||

|Ri|+ |Hj |

• If both patterns are positive, the only real information
is that at least one instance in each of them represents
the concept that we want to learn, although there is no
information about which specific instance or set repre-
sents the concept. Therefore, we use minimal distance
to measure their distance, Hmin(A,B), because the
positive instances have higher probability of being near
to each other,

Hmin(Ri, Hj) = minr∈Ri
minh∈Hj

||r − h||

• Finally, if we evaluate the distance between patterns
where one of them is a positive bag and the other
is a negative one, we take the maximal distance,
Hmax(A, B), because the instances in the different
classes are probably outliers between the two patterns,

Hmax(Ri, Hj) = max{hmax(Ri, Hj), hmax(Hj , Ri)}
where

hmax(Ri, Hj) = maxr∈Ri
minh∈Hj

||r − h||

Besides the defined distance metric, it is also necessary
to have the function diffbag that computes the difference
between two bags for a given attribute. We define it in a
following way:
• If Ri is positive and Hj is positive then the two nearest

instances are considered for updating the weights,

diffbag(A, Ri, Hj) = diffinstance(A, R
3
i , H

4
j )

where R3
i and H4

j are instances satisfying this condi-
tion.

• If Ri is negative and Hj is negative then several in-
stances are taken into account for updating the weights
of the features. If we suppose



– d(R1
i ,H

2
j ), d(R2

i ,H
1
j ) and d(R3

i ,H
4
j ) are the min-

imal distances between each instance r ∈ Ri with
respect to instances h ∈ Hj ; and

– d(H1
j , R1

i ), d(H2
j , R1

i ), d(H3
j , R2

i ) and d(H4
j , R3

i ),
are the minimal distances between each instance
h ∈ Hj with respect to the instances r ∈ Ri;

then the function diff would be specified as following,
diffbag(A, Ri, Hj) = 1

r+h ∗ [diffinstance(A, R1
i , H2

j )+

diffinstance(A, R2
i , h1

j ) + diffinstance(A, R3
i , h4

j )+

diffinstance(A, H1
j , R1

i ) + diffinstance(A, H2
j , R1

i )+

diffinstance(A, H3
j , R2

i ) + diffinstance(A, H4
j , R3

i )]

• Finally, if Ri is positive and Mj is negative or vicev-
ersa, one instance from each bag is selected to update
the feature weight such that these instances are the
farthest between all minimal instances,

diffbag(A, Ri, Mj) = diffinstance(A, R
1
i , M

2
j )

where R3
i and H4

j are instances satisfying this condi-
tion.

Note that the function diffinstance computes the difference
between two particular instances for a given attribute. The
total distance is simply the sum of distances throughout all
attributes.

When dealing with nominal attributes, function
diff(A, Ix, Iy) is defined as:

diffinstance(A, Ix, Iy) =

{
0; value(A, Ix) = value(A, Iy)
1; otherwise

and for numerical attributes as:

diffinstance(A, Ix, Iy) =
|value(A, Ix)− value(A, Iy)|

max(A)−min(A)

where Ix and Iy two different instance in the data set. It is
also used to calculate the distance between instances to find
the nearest neighbors.

IV. EMPIRICAL STUDY

We compare the performance of seventeen popular MIL
algorithms on three benchmark datasets which represent the
problem of image categorization.

We apply these algorithms on the original datasets with
all the features present and on the datasets after the dimen-
sionality reduction.

In the following we first consider the application domains
and experimental settings and then discuss the obtained
results.

A. Problem Domains and Experimental Setting

All three datasets that we use in our experiment are
related to the problem of content-based image categorization
where the main task consists of identifying the intended
target object(s) in images. From the MIL perspective, this
problem can be represented by treating each image as a
bag of segments which are modeled as instances. An image

is positive if at least one of the segments contains the
object in question, and it is negative otherwise. The detailed
information about three data sets is summarized in Table I.

To evaluate the performance of the proposed ReliefF-
MI feature selection method we experiment with different
representative paradigms used in MIL to date: methods
based on diverse density: MIDD, MIEMDD and MDD;
methods based on logistic regression: MILR; methods based
on Support Vector Machines: SMO and MISMO which uses
the SMO algorithm for SVM learning in conjunction with
an MI kernel; distance-based approaches: CitationKNN and
MIOptimalBall; methods based on rules: such as PART, Bag-
ging with PART and AdaBoost with PART using MIWrapper
and MISimple approach (they are different adaptations for
working with MIL); method based on decision tree learning:
MIBoost, and methods based on Naive Bayes. More infor-
mation about these algorithms and their implementation can
be found in WEKA [24].

We used 10-fold cross validation procedure to evaluate
the generalization performance of the classifiers trained
on the original dataset and on different feature subsets.
Stratification procedure is used to ensure that each fold
contains roughly the same proportions of different classes
and the validation method is adapted to MIL to preserve the
bag structure composed by different instances. The datasets
(including the ranking of features) used in this work will be
made available for other researchers at http://www.uco.es/
grupos/kdis/mil/fs.

Our feature selection method assigns a real-value weight
to each feature to indicate its relevance to the problem. First,
the features are ranked according to these weighing, and then
a threshold is set to select a subset of important features. To
show the influence of the dimensionality reduction on the
different MIL classification algorithm, we consider different
feature subsets, including the original feature set (i.e. with all
the features), and seven other different sets that correspond
to the thresholds leaving 10% - 70% of the original features.

B. Experimental Results

Table II reports on results of accuracy, sensitivity and
specificity for the Tiger, Fox and Elephant datasets with
different numbers of features. We present the averages from
the 10-fold cross validation.

Table I
GENERAL INFORMATION ABOUT THE DATASETS

FEATURE DATASET
Elephant Tiger Fox

POSITIVE BAGS 100 100 100
NEGATIVE BAGS 100 100 100
TOTAL BAGS 200 200 200
ATTRIBUTE NUMBER 230 230 230
INSTANCE NUMBER 1391 1220 1320
AVERAGE BAG SIZE 6.96 6.10 6.60



Table II
RESULTS OF ACCURACY USING RELIEFMI WIHT DIFFERENT NUMBER OF FEATURES

ALGORITHMS 10% 20% 30% 40% 50% 60% 70% 100%
citationKNN 0.815 0.830 0.805 0.775 0.775 0.500 0.500 0.500
MDD 0.805 0.745 0.745 0.735 0.750 0.735 0.745 0.755
MIBoost (RepTree) 0.855 0.845 0.820 0.840 0.825 0.825 0.825 0.825
MIBoost (DecisionStump) 0.805 0.805 0.780 0.780 0.780 0.780 0.780 0.780
MIDD 0.770 0.740 0.740 0.700 0.755 0.750 0.735 0.740
MIEMDD 0.770 0.700 0.730 0.740 0.750 0.740 0.745 0.745
MIRL 0.875 0.780 0.830 0.850 0.850 0.840 0.840 0.840
MIOptimalBall 0.740 0.720 0.665 0.620 0.625 0.625 0.625 0.625
MISMO (RBF Kernel) 0.855 0.795 0.795 0.800 0.800 0.795 0.795 0.795
MISMO (Polynomial Kernel) 0.820 0.815 0.815 0.800 0.785 0.780 0.780 0.785
MIWrapper (AdaBoost&PART) 0.860 0.825 0.840 0.845 0.820 0.790 0.790 0.790
MIWrapper (Bagging&PART) 0.865 0.850 0.860 0.830 0.815 0.810 0.810 0.810
MIWrapper (PART) 0.840 0.820 0.795 0.775 0.790 0.780 0.780 0.780
MIWrapper (SMO) 0.820 0.805 0.805 0.795 0.800 0.800 0.800 0.800
MIWrapper (Naive Bayes) 0.820 0.770 0.710 0.730 0.760 0.760 0.760 0.760
MISimple (AdaBoost&PART) 0.845 0.835 0.840 0.835 0.805 0.795 0.795 0.795
MISimple (PART) 0.780 0.740 0.780 0.780 0.760 0.765 0.765 0.765

ALGORITHMS 10% 20% 30% 40% 50% 60% 70% 100%
citationKNN 0.615 0.630 0.570 0.605 0.535 0.500 0.500 0.500
MDD 0.660 0.680 0.655 0.710 0.685 0.705 0.710 0.700
MIBoost (RepTree) 0.710 0.655 0.685 0.660 0.670 0.670 0.670 0.670
MIBoost (DecisionStump) 0.700 0.660 0.670 0.655 0.650 0.650 0.650 0.650
MIDD 0.695 0.660 0.670 0.665 0.665 0.675 0.660 0.655
MIEMDD 0.615 0.635 0.660 0.650 0.585 0.640 0.645 0.600
MILR 0.635 0.605 0.575 0.545 0.510 0.515 0.515 0.510
MIOptimalBall 0.535 0.540 0.520 0.515 0.530 0.530 0.530 0.530
MISMO (RBF Kernel) 0.650 0.620 0.600 0.600 0.595 0.595 0.595 0.590
MISMO (Polynomial Kernel) 0.655 0.645 0.635 0.605 0.595 0.580 0.585 0.580
MIWrapper (AdaBoost&PART) 0.665 0.675 0.645 0.655 0.685 0.685 0.685 0.685
MIWrapper (Bagging&PART) 0.605 0.615 0.605 0.600 0.605 0.605 0.605 0.600
MIWrapper (PART) 0.620 0.610 0.585 0.540 0.540 0.550 0.550 0.550
MIWrapper (SMO) 0.690 0.685 0.655 0.630 0.635 0.635 0.635 0.635
MIWrapper (Naive Bayes) 0.680 0.625 0.600 0.585 0.590 0.590 0.590 0.590
MISimple (AdaBoost&PART) 0.650 0.680 0.650 0.615 0.635 0.635 0.635 0.625
MISimple (PART) 0.665 0.660 0.670 0.630 0.635 0.635 0.635 0.635

ALGORITHMS 10% 20% 30% 40% 50% 60% 70% 100%
citationKNN 0.745 0.745 0.755 0.775 0.500 0.500 0.500 0.500
MDD 0.705 0.765 0.800 0.770 0.780 0.795 0.785 0.800
MIBoost (RepTree) 0.840 0.855 0.825 0.815 0.815 0.815 0.815 0.815
MIBoost (DecisionStump) 0.830 0.805 0.815 0.815 0.815 0.815 0.815 0.815
MIDD 0.755 0.790 0.805 0.820 0.785 0.790 0.805 0.825
MIEMDD 0.715 0.735 0.760 0.760 0.765 0.755 0.750 0.730
MILR 0.835 0.810 0.815 0.825 0.790 0.790 0.790 0.780
MIOptimalBall 0.775 0.720 0.745 0.740 0.730 0.730 0.730 0.730
MISMO (RBF Kernel) 0.785 0.785 0.830 0.830 0.800 0.800 0.800 0.800
MISMO (Polynomial Kernel) 0.770 0.790 0.785 0.790 0.790 0.790 0.790 0.790
MIWrapper (AdaBoost&PART) 0.840 0.850 0.845 0.860 0.840 0.840 0.840 0.840
MIWrapper (Bagging&PART) 0.830 0.835 0.840 0.845 0.845 0.845 0.845 0.845
MIWrapper (PART) 0.835 0.795 0.780 0.820 0.790 0.790 0.790 0.790
MIWrapper (SMO) 0.705 0.685 0.720 0.710 0.715 0.715 0.715 0.715
MIWrapper (Naive Bayes) 0.660 0.745 0.725 0.700 0.680 0.680 0.680 0.680
MISimple (AdaBoost&PART) 0.830 0.815 0.805 0.835 0.840 0.840 0.840 0.840
MISimple (PART) 0.775 0.760 0.780 0.780 0.765 0.765 0.765 0.765

It should be noticed that feature selection may help not
only to improve the generalization accuracy but also to learn
more compact, easily interpreted representation of the target
concept.

The algorithms differ in the amount of emphasis they
place on feature selection. At one extreme there are al-
gorithms such as the simple nearest neighbor learner that
classifies novel examples by retrieving the nearest stored
training example, using all available features in its distance
computations (such as, CitationKNN and MIOptimaBall).
Towards the other extreme there are algorithms that explic-

itly try to focus on relevant features and ignore irrelevant
ones. Decision tree inducers are examples of this approach
(such as, the MIBoost algorithms with Repetition Tree and
Decision Stump). In both cases feature selection prior to
learning can be beneficial. Reducing the dimensionality of
the data reduces the size of the hypothesis space and allows
algorithms to operate faster and more effectively. Also, it
has been seen that the methods that are less sensitive to the
use of dimensionality reduction are those based on diverse
density (such as, MDD, MIDD, MIEMDD).

To determine the advantages of applying this features



Table III
ALGORITHM RANKING USING DIFFERENT PERCENTAGE OF FEATURES

Percentage of Features Accuracy Ranking
10% Features 2.863
20% Features 4.069
30% Features 3.814
40% Features 4.588
50% Features 4.843
60% Features 5.167
70% Features 5.167
100% Features 5.490

Table IV
FRIEDMAN TEST

χ2 (α = 0.95) Value Test Conclusion
12.020 45.327 Reject null hypothesis

selection method, we performed a statistical test determining
whether there are statistically significant differences in the
performance results when algorithms use data sets with
different number of features. We chose Friedman test – a
non parametric test that compares the average ranks of the
considered algorithms. These ranks show which algorithm
obtains the best results. Note that the percentage of features
with a value closest to 1 indicates that the algorithms con-
sidered in this study generally obtain better results using that
percentage of features than other percentages of features.

The ranks obtained by each feature set can be seen in
Table III where the lowest rank values are obtained when al-
gorithms use a set with a reduced number of features. Thus,
the best accuracy values are obtained by algorithms when
they use the data set with lower number of features (that is,
10% of features). If the number of features is increased the
accuracy values obtained by algorithms become worse and
therefore the rank of these dataset has a higher value.

In Table IV, the Friedman test results indicate that there
are statistically significant differences in the results when
using different number of features. We perform a post-
hoc test, namely the Bonferroni-Dunn test [25], to find the
significant differences that occur when different percentages
of features were used. Figure 2 shows the application of
this test which determines a threshold and any algorithm
with a higher rank value than that threshold is considered to
be worse than the control algorithm (in this case, the best
option is to use of 10% of the most relevant features with a
value rank of 2.863 and the threshold set to 4.186). Thus, the
use of a higher percentage of 30% produces that algorithms
results in worse performance.

In general, we can conclude that the use of Relief-MI
improves the performance of the considered MIL algorithms.
Using 100% of features results in the worst performance for

all algorithms and on all datasets (this threshold corresponds
to the highest rank value). Using 10%, 20% and 30% of the
most relevant features always result in better performance.

V. RELATED WORK

The problem of feature selection in MIL setting has not
been studied extensively yet. To the best of our knowledge,
no filter approach for feature selection that utilizes the labels
of bags has been proposed so far. Existing approaches fall
either in the wrapper category, i.e. different feature subsets
are evaluated based on the performance of a MIL classifier
learnt from the data presented by these subsets, or the
embedded category, i.e. feature selection is designed as part
of a MIL algorithm.

The most well-known feature selection approaches for
MIL include: feature scaling with Diverse Density and
principal component analysis for BP-MIP MIL algorithm
presented in [26], MI-AdaBoost [27] and hyperclique
pattern mining [6] where region-based image retrieval is
formulated as a MIL problem, and Bayesian MIL algorithm
that uses feature selection [28].

Although these approaches have shown promising results
in terms of accuracy improvement, they still have two main
limitations. Namely, they are biased for particular MIL
classifiers, and what is more important, they are not efficient
for truly high-dimensional problems, because the learning
algorithm has to be called on repeatedly for the evaluation
of every considered feature subset (and the search space can
be quite large even if a heuristic search is employed).

In contrast, the filter approach that we propose in this
paper is applicable for high dimensional dataset and has
a more generic nature that is it operates independently of
MIL algorithm to be applied on the datset with the reduced
dimensionality.

VI. CONCLUSIONS

The task of identifying the most important attributes
and performing dimensionality reduction by discarding the
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Figure 2. Bonferroni Dunn Test (p < 0.05)



irrelevant and redundant attributes is known to be of prior
importance in supervised learning. Many features selection
approaches have been introduced to accomplish this task.
Filter-based approaches, which are known to be most ef-
ficient and reasonably effective for the traditional settings,
are not directly applicable for finding the most important
features in multiple instance learning. This situation calls
for the development of new or an adaptation of existing
approaches for the settings when only the labels for bags of
instances, but not for the individual instances, are known in
the training data.

In this paper we considered ReliefF-MI algorithm based
on ReliefF principles. ReliefF-MI can be applied to continu-
ous and discrete problems. It is expected to be faster than the
existing wrapper methods for feature selection and can be
applied to any of the existing MIL algorithms, since feature
selection is performed as the preprocessing step.

Experimental results showed the effectiveness of our
approach for seventeen MIL algorithms in three different
benchmark applications.

We hope that these promising results will promote the
development of other filter approaches for feature selection
in MIL.
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