
Evolutionary Biclustering based on Expression Patterns

Beatriz Pontes

Department of Computer Science

University of Seville

Seville, Spain

Email: bepontes@us.es

Raúl Giráldez, Jesús S. Aguilar-Ruiz

School of Engineering

Pablo de Olavide University

Seville, Spain

Email: {giraldez, aguilar}@upo.es

Abstract—The majority of the biclustering approaches for
microarray data analysis use the Mean Squared Residue (MSR)
as the main evaluation measure for guiding the heuristic.
MSR has been proven to be inefficient to recognize several
kind of interesting patterns for biclusters. Transposed Virtual
Error (VEt) has recently been discovered to overcome MSR
drawbacks, being able to recognize shifting and/or scaling
patterns. In this work we propose a parallel evolutionary
biclustering algorithm which uses VEt as the main part of
the fitness function, which has been designed using the volume
and overlapping as other objectives to optimize. The resulting
algorithm has been tested on both synthetic and benchmark
real data producing satisfactory results. These results has been
compared to those of the most popular biclustering algorithm
developed by Cheng and Church and based in the use of MSR.

Keywords-genetic algorithm; parallel computing; gene ex-
pression data; microarray analysis; biclustering;

I. INTRODUCTION

Microarray technologies allow to simultaneously measure

the expression level of thousand of genes, producing large

numerical data matrices in which rows represent genes under

study and columns refer to the experimental conditions

the genes have been put through [1]. One of the main

characteristics of microarrays of gene expression data is that

they are unbalanced. This means that the number of genes

under study is much greater than the number of experimen-

tal conditions. Gene expression matrices from microarrays

would contain thousands of rows but only a few columns

(usually less than a hundred). In order to discover relevant

information from these matrices, several data mining tech-

niques have already been applied. Clustering techniques aim

at finding groups of genes that present a similar variation of

expression level under all the experimental conditions [2].

However, relevant genes are not necessarily related to every

condition. Biclustering techniques [3] outperform traditional

clustering in two main aspects: firstly, they simultaneously

group genes and conditions, thus a bicluster will group not

only genes but also the conditions under which the genes

are related. Secondly, while overlapping is rarely admit-

ted among different clusters, intersection among biclusters

is permitted, where several genes and conditions may be

grouped together in more than one bicluster.

The biclustering problem has been proven to be NP-hard

[4]. It consist of selecting a number of sub-matrices from

a microarray, using both dimensions simultaneously. Due

to the complexity of this problem, an exhaustive search is

impracticable and therefore it is essential the application of

any heuristic methodology, in combination with an evalu-

ation measure for biclusters. Cheng and Church [5] were

the first in applying biclustering to microarray data, using a

greedy search algorithm combined with random replacement

in order to render it non-deterministic. They also developed

the well-known evaluation measure Mean Squared Residue

(MSR). Both heuristic and evaluation measure have been

proven to be inefficient for the biclustering problem [6], [7].

Since 2000, some others heuristics have been proposed [8],

[9], [10], some of them using evolutionary approaches [11],

[12], [13], although the majority of them use MSR as the

main guidance for the algorithm.

When looking for a coherent behaviour of a group of

genes, the different possibilities can be grouped in two

main patterns: shifting and scaling behaviours [6]. They can

also be summarized into a third one, the combined shifting

and scaling pattern, and which is the most interesting one

since it is the most probable in real gene expression data

[14]. In 2010, Pontes et al. [15] proposed a new evaluation

measure for biclusters, named Transposed Virtual Error

(VEt) and based on these expression patterns concepts. VEt

has been proven to be efficient in order to identify all these

kind of patterns in biclusters. Nevertheless, when using any

evaluation measure in a specific heuristic for biclustering,

there exist other objectives that are needed to be taken into

account, such as the size of the biclusters, gene expression

variance or overlapping amount, among others.

In this work we present a new biclustering approach

combining a genetic algorithm with VEt [15]. Our algorithm

presents the advantage of being configurable with parame-

ters. These parameters may be setting in order to modify

the characteristic of the results.We conducted several exper-

iments on both synthetic and real data from microarrays.

Since many generations are needed in order to come up

to good solutions, we have implemented our evolutionary

algorithm parallel computation, making thus good use of

the computer resources.

537978-1-4577-1676-8/11/$26.00 c©2011 IEEE

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on February 08,2022 at 11:12:44 UTC from IEEE Xplore. Restrictions apply.

II. PARALLEL GENETIC ALGORITHM

Genetic algorithms are classified as population-based

meta-heuristics for combinatorial optimization, iteratively

trying to improve a candidate solution with regard to a given

measure of quality. Genetic algorithms start with a set of

possible solutions instead of a single one. This characteristic

allow genetic algorithms to explore a larger subset of the

whole space of solutions, at the same time as it helps them

to avoid becoming trapped at a local optimum. These reasons

made genetic algorithms very suited to the biclustering

problem.

Regarding encoding, we have adopted the same individual

representation in other evolutionary biclustering works [12],

where each bicluster is represented by a fixed sized binary

string in which a bit is set to one if the corresponding

gene or condition is present in the bicluster, and set to zero

otherwise.

Starting by an initial population, genetic algorithms select

some individuals and recombine them to generate a new

population of individuals. This process is repeated for a

number of generations until the algorithm converges or

a certain stop criteria is met. Our biclustering algorithm

comprises two processes, one inner to the other. The inner

procedure corresponds to the genetic algorithm, which starts

with an initial population and iteratively improves it in

order to come up to a good bicluster solution. A coverage

sequential procedure is used to produce a predefined number

of biclusters n, invoking n times the inner algorithm.

In the following subsections we explain the initial pop-

ulation and generational change strategies, which have also

been parallelized to improve time performance. In both

cases, there exists no communication among the different

activities, thus reducing synchronization and coordination

times. Furthermore, we have no shared resources for writing,

thus avoiding concurrent accesses.

A. Initial Population

In order to design the initial population strategy, we con-

ducted several tests in which perfect biclusters were hidden

in random data matrices. Using random strategies similar to

the ones in [13] or [11], the algorithm did not always find the

best solution. Nevertheless, our algorithm always converged

to the best solution when the initial population contained at

least one 3×3 sized bicluster representing a partial solution.

The initial population we have adopted consist in ran-

domly generating 3×3 sub-matrices, henceforth seeds. The

key is to generate much more seeds than the size of the

population and then select the best ones. The probability of

a randomly generated seed to be part of the solution can be

computed as the number of possible seeds in the solution

divided by the number of possible seeds in the whole data

matrix, as in equation 1, where M, N, |I| and |J| are the

number of rows and columns of the microarray data matrix

and the solution, respectively.

Favorable seeds

Total seeds
=

(|I|
3

)× (|J|
3

)

(
M
3

)× (
N
3

) (1)

Thus, our algorithm computes the number or seeds that

needed to be generated in order to have at least one of

them included in the solution. This can only be done with

synthetic data, but it also gives us an idea of the number of

seeds to generate in the case of real data.

The initialization procedure is carried out once per biclus-

ter. Nevertheless, when looking for very small biclusters, or

when the size of the microarray is very big, this initialization

could take a very long time. We have therefore parallelized

this phase using a pool of threads the size of the available

cores in the computer, creating afterwards as many activities

as cores. The task of each activity will be to generate a

number of seeds such that the total number of seeds are

generated by all the activities.

B. Generational change

Generational change is the mechanism that allows the

population to improve its individuals, according to the fitness

function and trying to converge to the optimal solution. Sev-

eral operators are involved in this process. Firstly, a selector

is needed in order to choose the individuals from one gen-

eration to the next. These individuals can be incorporated in

the next generation in several ways: replicating themselves,

being mutated, being crossed with other(s) individual(s) or

by the combination of some of this operators.

Elitism is applied in order to ensure the convergence

of the algorithm [16]. Also, a mutated copy of the best

individual is incorporated into the next population. The

rest of individuals are computed by selecting one or two

individuals and applying crossover or/and mutation. We have

used tournament of size 3 as selection mechanism. The 80%

of the remaining individuals are generated by the crossover

of two previously selected chromosomes, while the other

20% individuals correspond to replications. The resulting

offspring is mutated with a certain probability in both cases.

Three distinct crossover operators are used in our algo-

rithm with equal probability: one-point crossover, two-points

crossover, and uniform crossover. We have also applied two

different mutation operators: the simple one and the uniform

one, with 0.2 and 0.0001 probabilities, respectively.

The number of generations (iterations) is 1500 genera-

tions, although if there is no significant improvement after

150 consecutive generations, the iterations are stopped. This

number of generations has been set experimentally using

synthetic data. In our algorithm, the evaluation is performed

at the same time as the creation of new offsprings, allowing

us to parallelize the whole generational change process. We

have used again a pool of threads the size the number of

cores in the computer. In this case, each activity submitted

to the pool would be responsible for the creation of a new

chromosome, together with its evaluation.

538 2011 11th International Conference on Intelligent Systems Design and Applications

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on February 08,2022 at 11:12:44 UTC from IEEE Xplore. Restrictions apply.

III. FITNESS FUNCTION

This section presents the distinct objectives used in our

algorithm, as well as the reasoning on how they have been

put together into a single fitness function.

We have used VEt [15] as the main part of the fitness. It

has to be minimized since its optimal value is 0, and it has

a linear increasing behaviour when the amount of error in

a bicluster gets bigger, measured according to the distance

from its nearest perfect pattern.

The final fitness function is shown in equation 2 and is

made up of three different terms, referring to the quality

metric, volume and overlap. Each term is multiplied by

a weight which defines its importance when evaluating a

candidate solution. The default values for the weights in

equation 2 have been obtained experimentally, but they

can be modified according to the user preferences. Next

subsections explain the terms involved in the evaluation of

the solutions.

Phi(B) =
V Et (B)
V Et (M)

+wv ·Vol(B)+wov ·Overlap(B) (2)

A. VEt for the Evaluation of Biclusters

Transposed Virtual Error (VEt) [15] is an evaluation

measure for biclusters based on the concepts of expression

patterns. It is computed by first creating a Virtual Condition,

which is a vector containing the means of every row in the

bicluster. Afterwards, a process of standardization is carried

out both the bicluster data and the virtual condition. In the

case of the bicluster the standardization is computed by

using the means and deviations per column. Finally, VEt

measures the differences between the standardized values

for every experimental condition and the standardized virtual

condition.

The range of values of VEt depends of the values in a

microarray. Although the algorithm pursuit to minimize it,

the weight of the other terms of the fitness function would

have to be recomputed when using a different microarray.

In order to avoid this situation, we divide it by the VEt

value of the whole microarray. This value is not necessarily

the maximum VEt , but it is certainly a good upper limit.

First term in equation 2 represents the evaluation metric for

biclusters.

B. Volume Term in the Fitness Function

In this subsection we study the different possibilities for

tackling with biclusters sizes in the fitness function. At this

point we have two contrary objectives to be optimized. On

the one hand, VEt has to be minimized and normally the

smaller a bicluster is, the lower VEt will be. On the other

hand, the volume has to be maximized and the general

tendency is that bigger biclusters will have bigger values

for VEt . In order to design the volume term for the fitness

we took into account the following issues:

-ln(|I|)/(ln(|I|)+wg)

Figure 1: Final volume term representation

• Use of a logarithmic scale. Little changes in the number

of rows or columns would not have a significant effect.

• Two separated terms for number of genes and condi-

tions. This is necessary for avoiding too unbalanced

biclusters, but also desirable in order to allow to con-

figure each dimension size independently.

• Fixed range. Minimum and maximum values for both

terms (gene and condition sizes) should not be depen-

dant on any parameter value.

The final design of the term for the volume is the one

shown in equation 3, where |I| and |J| refer to the number

of genes and conditions, respectively, and wg, wc are the

configuring parameters.

Vol(B) = (
− ln(|I|)

ln(|I|)+wg

)+(
− ln(|J|)

ln(|J|)+wc

) (3)

The graphical representation of one of the terms in

equation 3 can be seen in figure 1. Although the range of

all the functions represented are the same, those functions

whose constant value is greater decrease slower. Depending

on the value of the constant used, the term will have more

influence over the fitness function at the beginning of the

algorithm. At a certain point, increasing the number of rows

or columns for a certain solution would not compensate the

lose of quality, according to VEt . The moment in which

the algorithm stop increasing the size of the solutions and

focus on improving the quality depends on the value of the

constant used. The smaller the constant is, the sooner the

algorithm will stop increasing the size. In figure 1 it can

be clearly seen that for the smaller value of wg represented

(wg = 0.25), the function decreases slower from a smaller

value of m than for greater values of wg.

Increasing the constant associated to rows (wg) will

produce biclusters with a greater number of genes, while

increasing the constant associated to columns (wc) will

produce biclusters with more experimental conditions. More-

over, when adding equation 3 to the fitness function it is also

necessary to include a weight wv which will put the different

terms involved on the same level.

2011 11th International Conference on Intelligent Systems Design and Applications 539

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on February 08,2022 at 11:12:44 UTC from IEEE Xplore. Restrictions apply.

C. Controlling the Overlapping

Overlapping among biclusters is usually permitted but

controlled in the literature [17]. Overlapping differs from

VEt and volume in the sense that it cannot be evaluated

on a bicluster by itself. The way in which overlapping is

controlled differs from ones authors to others. Cheng and

Church [5] try to avoid overlapping by replacing in the mi-

croarray data those values contained in each found bicluster

by random ones. The main drawback of this strategy is that

the replacement does not really avoid including those values

in future biclusters. Therefore, if a bicluster is overlapped

with a former one, that means that this new bicluster has

been found using random values instead of the real ones.

In our work, we have adopted a strategy similar to the

one used in [11], where a matrix of weights the size of the

microarray is initialized with zero values at the beginning

of the algorithm. Every time a bicluster is found, the

weight matrix is updated increasing by one those elements

contained in the bicluster.

Overlap(B) =
∑i∈I, j∈J W (ei j)

|I|× |J|× (n−1)
(4)

We have incorporated into the fitness function the last

term shown in equation 4 in order to limit the overlap among

biclusters. I and J refers to the sets of rows and columns in

the bicluster B , respectively. W represents the weight matrix

and ei j values corresponds to the elements of the bicluster B .

This equation computes how many times had the elements

of B appeared in any former biclusters, and divides it by the

size of B and the order of the solution minus one. This way,

we are being more permissive with the latest solutions, and

also enclosing the overlapping factor in the interval [0,1].

Furthermore, a weight wov is used to control the level of

overlapping that the user is intended to admit.

IV. EXPERIMENTS

Synthetic data experiments were carried out with two

purposes: tune the algorithm configuration and stablish

comparisons when the solution is known. Experiments on

real data have also been carried out with two well-known

microarray benchmark data sets.

The experiments conducted for time comparison purposes

have been carried out in a personal computer with an Intel(R)

Core(TM)2 Quad CPU Q6600 @ 2.40GHz processor, 4GB

of main memory and Windows 7 operating system.

A. Synthetic Data Experiments

We have randomly generated matrices the size of one of

the most tested benchmark microarrays in biclustering: yeast

Saccharomyces cerevisiae cell cycle expression dataset [18],

made up of 2884 rows and 17 columns. We have also defined

several sizes for the inclusion of perfect biclusters: 20 ×
10, 60× 12, 100× 13, 150× 15 and 200× 16. For each of

these sizes we have generated a perfect bicluster according

Figure 2: Gene and Condition Match Scores

to a combined shifting and scaling patters and 5 different

random artificial microarrays (2884×17). Thus, each of the

5 different sized perfect biclusters has been inserted into 5

different microarrays in random positions. Furthermore, we

have also generated the same number of microarrays adding

noise to the data with random values generated from normal

distribution, with mean equals to 0 and deviation equals to

0.25. All in all, there are 50 different experiments, 25 in

which the biclusters follow a perfect pattern and 25 where

noise has been included in the data. Each experiment has

been run twice, with both the parallel algorithm and the

non-parallel one, in order to establish a time performance

comparison among them. We have also run each experiment

several times and computed the mean of the obtained results.

We have compared the obtained results of all the set of

experiments with those obtained using Cheng and Church

Algorithm [5]. Match score performance measure [3] has

been used to measure the extend to which the found bicluster

adjusts to the inserted one.

Let B1(I1,J1) and B2(I2,J2) be two biclusters. Gene match

score is defined as SI(I1, I2) =
|I1∩I2|
|I1∪I2| and condition match

score is defined as SJ(J1,J2) =
|J1∩J2|
|J1∪J2| , varying from 0, where

the two biclusters have no elements in common, to 1, when

both biclusters are the same.

Figure 2 displays the gene and condition match scores

of the executions of both our algorithm and Cheng and

Churchs one. X-axis represents gene match scores and Y-

axis represents condition match scores. Each square refers

the comparison of a bicluster found by Cheng and Church

algorithm and the equivalent solution, while each rhombus

refers to the comparison of a bicluster found by our algo-

rithm and its corresponding solution. Most of the rhombus

are located in the right top corner, which means that most

of the biclusters found by our algorithm match almost

completely the solution. Only five biclusters have very low

gene match score, below 0.3, corresponding to biclusters in

which noise had been added. Many of the biclusters found

by Cheng and Church algorithm are also located near the

right top part of the graph, although not so close to the

corner.

540 2011 11th International Conference on Intelligent Systems Design and Applications

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on February 08,2022 at 11:12:44 UTC from IEEE Xplore. Restrictions apply.

Table I: Paralellization factors for synthetic data

BicSize MinGenerations GenChangeF InitializationF

20x10 428 (P) 3.47±0.81 3.56±0.65

60x12 637 (NP) 3.72±0.68 3.93±0.06

100x13 556 (NP) 3.97±0.71 3.74±0.02

150x15 689 (NP) 3.82±0.54 3.63±0.09

200x16 844 (NP) 3.89±0.54 3.59±0.18

Table II: Summary of the results for Yeast and Lymphoma datasets

Average
Yeast Lymphoma

EA(0.5) Ch&Ch EA(0.5) Ch&Ch

VEt 0.051±0.02 0.10±0.11 0.215±0.04 0.57±0.10

Genes 54.32±28.77 166.71±226.4 57.5±41.11 269.22±204.71

Conds. 11.21±3.23 12.09±4.39 18.44±7.01 24.5±20.92

Overlap 0.017±0.009 0.064±0.08 0.004±0.002 0.064±0.043

Table I shows the parallelization factor on both population

initialization and generational change. Column MinGener-

ations shows the minimum number of generations of both

parallel (P) and non-parallel (NP) algorithms needed to reach

the stop criteria for one execution. The means and deviations

of the parallelization factors for generational changes are

shown in the third column, while last column shows the

means and deviations of the parallelization factors for several

executions of the initialization procedure. The means are

close to the number of processors (4) in both cases, meaning

that we have successfully minimized synchronization and

coordination times. Deviation values are higher for the

situations in which the number of executions are higher

(generational change) or where the process takes longer

to end (initialization for the smallest bicluster), due to the

intervention of the operating system.

B. Real Data Experiments

The proposed algorithm has been applied to two bench-

mark real-life data sets, yeast Saccharomyces cerevisiae cell

cycle dataset [18], containing 2884 genes and 17 conditions,

and human large B-cell Lymphoma [19], consisting of 4026

genes and 96 conditions. Both datasets can be downloaded

from http://arep.med.harvard.edu/biclustering, as well as 100

biclusters found for each dataset by Cheng and Church [5].

We provide default values for the different weights in the

fitness function, obtained experimentally. wv and wov have

been set to 5.0, while wg and wc have been set to 0.25

and 0.5, respectively. Increasing these two weights leads

the algorithm towards bigger biclusters, or vice versa, as

explained in section III.

Table II summarizes the results for both datasets. For

each dataset, first column corresponds to one execution of

our evolutionary algorithm (EA). For each execution, the

mean of VEt , number of genes, number of conditions and

overlap of 100 biclusters are reported, and also the standard

deviations are given. The same metrics of the 100 biclusters

obtained by Cheng&Church algorithm are reported in the

second column for each dataset.

Regarding yeast dataset, it can be seen in table II that

Table III: Paralellization factors for real data

Dataset MinGenerations GenChangeF InitializationF

Yeast 838(NP) 3.66±0.57 3.30±0.66

Lymphoma 1216(NP) 3.92±0.7 3.75±0.05

the mean of the VEt values in the Ch&Ch algorithm is

almost the double of the mean of VEt for all our executions.

Also the size of the biclusters found by Ch&Ch algorithm is

much bigger that the ones found by our proposal.In fact, the

number of genes vary from 2 to 989, being the first reported

biclusters much greater than the last ones. Also, many

of these biclusters are really clusters, since they contains

the whole set of conditions. Our approach also produces

biclusters of different sizes, but the range of the number of

genes and conditions is not so wide, the minimum number

of genes in a bicluster was 7, and the maximum 182. The

minimum number of conditions was 6, and the maximum 17,

although only 11 biclusters were obtained with the whole

set of conditions (against 37 biclusters in Ch&Ch). The

amount of overlap in the biclusters found by Ch&Ch is also

much greater than for the evolutionary algorithm, almost the

triple. It is important to notice that Ch&Ch algorithm tries to

avoid overlapping among biclusters by introducing random

values once a bicluster is found. This means that biclusters

containing any amount of overlap with the previous ones

has been computed using random values instead the original

ones.

The results for the lymphoma dataset can also be seen

in the two last columns of table II. We can draw similar

conclusions than for the yeast dataset. In general, our

algorithm produces steadier results, in the sense that the

biclusters obtained are diverse in volume but no so disparate

as for Ch&Ch. Note that the deviation of our executions are

much lower than for Ch&Ch. The minimum and maximum

genes in a bicluster produced by Ch&Ch are 2 and 757, re-

spectively, while our algorithms produces biclusters between

4 and 310. The number of conditions varies from 7 to 96 for

Ch&Ch and from 10 o 61 in our approach. Also, the mean

of VEt values for our biclusters is almost the half than the

mean of Ch&Ch biclusters, and the overlapping factors are

up to six times the overlapping factors of our algorithm.

Table III summarizes the time comparison for the real

datasets, in the same format as in table I. Note that initial-

ization factor is slightly lower for the yeast dataset. This

can be explained by the fact that in this dataset there exist

much more seeds with VEt equals to zero. The initialization

strategy for the real datasets is to generate seeds until a

predefined number of seeds is reached (one million for

yeast and lymphoma), or until it finds the population size

number of seeds with VEt equals to zero. Since the seeds

are generated independently in the different processors, this

second conditions is easier to be met in the non-parallel

algorithm. Nevertheless, the time difference given by the

initialization factor is still important.

2011 11th International Conference on Intelligent Systems Design and Applications 541

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on February 08,2022 at 11:12:44 UTC from IEEE Xplore. Restrictions apply.

V. CONCLUSIONS

In this work we present a genetic parallel algorithm for the

biclustering problem, in which the fitness function has been

carefully studied in order to guide the algorithm towards

the best possible solutions attending to three different objec-

tives, two of them to be minimized (overlap and evaluation

measure) and the other to be maximized (volume). We also

provide guidelines for its personalization. VEt has been

used as the metric for quantifying the goodness of the

candidate solutions. VEt [15] is based on the concepts of

behavioural patterns and overcomes MSR drawbacks, being

able to recognize both shifting and scaling patterns in gene

expression data either separately or simultaneously. The

parallelization of the algorithm has been implemented in two

different stages, corresponding to the most computationally

expensive phases: initialization and generational change. We

have performed several experiments on both synthetic and

benchmark real data, confronting the results with those

obtained by Cheng and Church, and also computing the time

performance with regard to a non-parallel version of our

algorithm, where the parallelization factor is almost reached.

ACKNOWLEDGMENT

This research is supported by the Spanish Ministry of

Science and Technology under grant TIN2007-68084-C02-

00 and the Junta de Andalucı́a Research Program.

REFERENCES

[1] C. Tilstone, “Dna microarrays: Vital statistics,” Nature, vol.
424, pp. 610–612, 2003.

[2] M.B. Eisen, P.T. Spellman, P.O. Brown and D. Botstein,
“Cluster analysis and display of genome-wide expression
patterns,” PNAS, vol. 95, pp. 14 863–14 868, 1998.

[3] A. Prelić, S. Bleuler, P. Zimmermann, and et al., “A sys-
tematic comparison and evaluation of biclustering methods
for gene expression data,” Bioinformatics, vol. 22, pp. 1122–
1129, 2006.

[4] A. Tanay, R. Sharan, and R. Shamir, “Discovering statistically
significant biclusters in gene expression data,” Bioinformatics,
vol. 18, pp. 136–144, 2002.

[5] Y. Cheng and G. M. Church, “Biclustering of expression
data,” in Proceedings of the 8th International Conference on
Intellingent Systemns for Molecular Biology, La Jolla, CA,
2000, pp. 93–103.

[6] J. S. Aguilar-Ruiz, “Shifting and scaling patterns from gene
expression data,” Bioinformatics, vol. 21, pp. 3840–3845,
2005.

[7] A. Mukhopadhyay, U. Maulik, and S. Bandyopadhyay, “A
novel coherence measure for discovering scaling biclusters
from gene expression data,” Journal of Bioinformatics and
Computational Biology, vol. 7, no. 5, pp. 853–868, 2009.

[8] X. Liu and L. Wang, “Computing the maximum similarity
bi-clusters of gene expression data,” Bioinformatics, vol. 23,
pp. 50–56, 2007.

[9] J. Liu, Z. Li, X. Hu, and Y. Chen, “Biclustering of
microarray data with mospo based on crowding distance.”
BMC bioinformatics, vol. 10 Suppl 4, no. Suppl 4, pp.
S9+, 2009. [Online]. Available: http://dx.doi.org/10.1186/
1471-2105-10-S4-S9

[10] W.-H. Yang, D.-Q. Dai, and H. Yan, “Finding correlated
biclusters from gene expression data,” IEEE Transactions
on Knowledge and Data Engineering, vol. 23, pp. 568–584,
2011.

[11] F. Divina and J. S. Aguilar-Ruiz, “Biclustering of expression
data with evolutionary computation,” IEEE Transactions on
Knowledge & Data Engineering, vol. 18, no. 5, pp. 590–602,
2006.

[12] S. Mitra and H. Banka, “Multi-objective evolutionary
biclustering of gene expression data,” Pattern Recognition,
vol. 39, no. 12, pp. 2464 – 2477, 2006, bioinformatics. [On-
line]. Available: http://www.sciencedirect.com/science/article/
B6V14-4JRVB39-1/2/bb276259c35cdbcaa8a90a50d9d0c66f

[13] A. Mukhopadhyay, U. Maulik, and S. Bandyopadhyay, “Find-
ing multiple coherent biclusters in microarray data using
varible string length multiobjective genetic algorithm,” IEEE
Transactions on Information Technology in Biomedicine,
vol. 13, no. 6, 2009.

[14] X. Xu, Y. Lu, A. K. H. Tung, and W. Wang, “Mining shifting-
and-scaling co-regulation patterns on gene expression pro-
files,” in 22nd International Conference on Data Engineering
(ICDE’06), 2006, pp. 89–99.

[15] B. Pontes, R. Girldez, and J. S. Aguilar-Ruiz, “Measuring
the quality of shifting and scaling patterns in biclusters,” in
Lecture Notes in Computer Science, vol. 6268, 2010, pp. 242–
252.

[16] C. Coello Coello, “Evolutionary multi-objective optimization:
a historical view of the field,” Computational Intelligence
Magazine, IEEE, vol. 1, no. 1, pp. 28 – 36, feb. 2006.

[17] A. P. Gasch and M. B. Eisen, “Exploring the condi-
tional coregulation of yeast gene expression through fuzzy
k-means clustering,” Genome Biology, vol. 3(11), p. re-
search0059.10059.22, 2002.

[18] R. Cho, M. Campbell, E. Winzeler, L. Steinmetz, A. Conway,
L. Wodicka, T. Wolfsberg, A. Gabrielian, D. Landsman,
D. Lockhart, and R. Davis, “A genome-wide transcriptional
analysis of the mitotic cell cycle,” Molecular Cell, vol. 2, pp.
65–73, 1998.

[19] A. A. Alizadeh, M. B. Eisen, R. E. Davis, and et al., “Distinct
types of diffuse large b-cell lymphoma identified by gene
expression profiling,” Nature, vol. 403, pp. 503–511, 2000.

542 2011 11th International Conference on Intelligent Systems Design and Applications

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on February 08,2022 at 11:12:44 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

