A Hybrid CBR and BN Architecture Refined through Data Analysis

Tore Bruland
Norwegian University of Science and Technology

Department of Cancer Research and Molecular Medicine

Trondheim, Norway
torebrul@idi.ntnu.no

Abstract—The overall goal of this research is to study rea-
soning under uncertainty by combining Bayesian Networks and
Case-Based Reasoning through constructing an experimental
decision support system for classification of cancer pain. We
have experimentally analysed a medical dataset in order to
reveal properties of the data with respect to properties of
the two reasoning methods. We also preprocessed our medical
data with help from a clinical expert, which resulted in four
data sets with different characteristics. This culminates in a
hybrid system architecture, where CBR handles the exceptions
or outliers with respect to the distribution of the data and the
target class, while BN handles the more common situations.
Through a set of experiments under varying conditions we
show that a hybrid BN+CBR system is favorable over each
single method.

Keywords-Bayesian Networks, Case-Based Reasoning, Ma-
chine Learning, Hybrid Systems, Decision Support

I. INTRODUCTION

Types of knowledge can be characterized along the two
dimensions strength of a theory and completeness of a
theory. A strong theory domain contains statements that are
universally true or false. In a strongest possible theory, a
perfect theory, all statements are universally true or false. A
weak theory domain, on the other hand, contains statements
that are more or less plausible, with stronger or weaker
support. Lack of theory strength has to be compensated
by the utilization of all the relevant knowledge and data
in order to build multiple explanations in support of an
hypothesis, while a strong theory may need only a single
explanation, i.e. a proof. Mathematics is an example of a
strong theory domain, as are many other domains artificially
created, bounded and controlled by humans. Domains which
involve understanding of natural phenomena, and interac-
tions between technologies and nature, are typically weak
theory domains (although strong sub-theories often exist).
Medical diagnosis and treatment, our target domain in the
study reported here, is one such example.

A weak theory domain may be expressed by a set of
general statements that are typically true, together with a set
of “exceptions”, often referred to as outliers. An example is
a patient not responding to treatment as expected from the
general theory. This indicates that the theory is incomplete,
i.e. it can not explain all observed instances.
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In weak theory domains it is more common to talk about
models than theories. A model of a part of reality may be
global or local. Global models are generalizations, either
acquired manually through top down model construction,
or in a bottom-up fashion through automated learning from
a set of examples. Local models, on the other hand, are
specific to one or a few situations.

Medical knowledge is to a large extent available through
guidelines for diagnosis and treatment (“best practice”), but
also as clinicians’ specific experiences that may or may not
conform with the general guidelines. A substantial body of
research has shown that it is extremely difficult to build
a strong computational model in medicine based on gen-
eralized knowledge only (e.g. [1], [2]). Another important
source of information that clinicians make use of in their
daily practice is the set of personal specific experiences
gained through daily work. There is ample evidence that
clinicians partly reason from theoretical knowledge, and
partly from case-specific or prototype-based experience,
depending on how strong causal theories the particular
medical area is supported with [3]. It has been argued that
computerized medical decision support should to a larger
degree concentrate on the rare but difficult patient cases,
instead of the more frequent routine ones [4], [5]. Past
patient cases provide a level of specificity that is focused
on single patients rather than generalized principles. Useful
knowledge can be learned from one case only. Generalized
and situation-specific knowledge therefore have a strong
potential for effectively complementing each other in a
decision-support setting.

We are exploring the combination of the two knowledge
types by studying architectures for integration of Bayesian
Networks (BN) and Case-Based Reasoning (CBR) at two
different levels: One is the level of functional modules,
where CBR and BN modules cooperate according to the rel-
ative strengths of the two knowledge types for the particular
tasks addressed. The other is the level of data characteristics,
where an analysis of existing data is used to guide how
problem solving should be split between BN and CBR.
An architecture of functional modules was described in an
earlier paper [6], while the level of data characterization is
the focus of the present paper.



Our target application is the classification of pain for
patients in palliative care. The target class is a patient’s
pain level after two weeks from the current date. The
pain level can take one of three values: mild, moderate,
severe. The three values are abstractions over a scale from
0 to 10. The problem is a prediction problem casted as a
classification problem. Based on a data set of approximately
1800 patients, we have used machine learning methods to
study the dependencies between the target class and the
various patient features. The purpose has been to get an
understanding of the overall data landscape, to look for
combinations of features and feature values that are more
predictive of the target class than others, and to compare a
BN and a CBR method for prediction accuracy and model
transparency. We present the experiments and discuss the
results. Initially, in order to reveal characteristic properties
of BN and CBR from data under our own control, a synthetic
data set was generated. Results from that analysis then
guided our experiments on the medical data.

We give a brief background in the next section, in terms of
core properties of BN and CBR, and a summary of the high-
level functional architecture. This is followed in Section
IIT by an overview of the hybrid data-level architeture.
In Section IV our experiments with a synthetic dataset
is presented, followed by an analysis of CBR and BN
properties on the medical data in Section V. In section VI
the hybrid CBR+BN system is tested. Finally, we conclude
and give directions for future research.

II. BACKGROUND

A Bayesian network consists of a directed acyclic graph
and quantitative probability information [7], [8]. The graph
contains nodes that represent the random variables in the
domain, and use directed links to assert conditional indepen-
dence statements (the links are often interpreted as carrying
causal information [9]). For each random variable, one has
to define the conditional distribution of that variable given
the variable’s parents (the nodes in the graph having links
pointing directly into that node). The joint distribution over
the variables {x1,...,2,} can then be calculated as

P(z1,..., ) = [ [ P (wilparents(z;)) . (1)
i=1

A BN can either be constructed by domain experts or be
learned from data (or by a combination of these approaches,
[10]). The resulting model will be the BN with the best
ability for predicting new instances, and typically a BN is
therefore optimized for density estimation and not classifi-
cation. This can be alleviated using one of the numerous
Bayesian classifier schemes, instead of a general-purpose

learning scheme [11].
Case-Based Reasoning [12] is a method that solves new
problems from previous solved reasoning tasks. CBR has
a vocabulary to describe a case as a problem statement, a

solution, and possibly an outcome. A case base holds the
previously solved cases, and the reasoning process can be
described as a cycle with the following four steps [13]: First,
a query case is described and the RETRIEVE step finds all
similar cases from the case base. The best matching case is
selected and the REUSE step takes this case and adapts it
to fit the best solution. The REVISE step takes the solution
and evaluates its quality. The final step is RETAIN, which
learns from the problem solving experience by updating the
case base.

CBR systems are lazy learners, which delay the inductive
learning step until a new instance arrives. Similarity assess-
ment is a core problem in CBR, and the methods range from
simple, global similarity metrics to complex algorithms for
local similarity that also take situational context and general
domain knowledge into account. An example of a global
similarity function, which calculates the similarity between
a query case and a target case, is shown in Equation (2).

i=1

where T is a target case, Q is the query case, ¢; is feature ¢
from the target case, g; is feature ¢ from the query case, n
is the number of features, i indicates the individual feature,
ranging from 1 to n, f is the feature similarity function, and
w; 1s the weight for feature i.

Both BN and CBR are methods that handle uncertainty,
although in different ways. The uncertainty that a decision
maker is faced with can be divided into aleatory and
epistemic uncertainty, where the aleatory uncertainty is the
general randomness that can be characterized by probability
distributions, and epistemic uncertainty is insufficient knowl-
edge. The different types of uncertainty requires different
reasoning processes, and we have previously argued for a
BN and CBR hybrid, and a corresponding architecture [6],
to handle the two types of uncertainty.

The architecture has four sub-architectures that represent
different ways of combining CBR and BN:

o In BN-CBR-1, a BN is used to pre-process the case
base, and only the cases that are found relevant by the
BN model are used by CBR. This architecture is similar
to the one used by Gomes [14].

« In BN-CBR-2, the BN model infers a set of variables
used by the CBR system. The CBR query is constructed
from that variable and the input variables. A similar set
up was also used by our research group in earlier work
[15].

« In CBR-BN-1, a CBR solution is used to update a node
in a BN model. A somewhat similar architecture is used
by Tran et al. [16]. Frank et. al. selects a large number
of nearest neighbours from a query, and train a Naive
Bayes model before classification [17].

o In CBR-BN-2, a CBR solution contains a local BN



model. This architecture has similarities with the one
used by Pavoén et al. [18].

The four sub-architectures are meant to be basic building
blocks in a larger reasoning system. For example, if a step
in the CBR cycle needs to reason with uncertainty, then
some variables from the CBR system can be updated in the
BN model, where inference subsequently takes place. The
result is returned and CBR can continue its process. It is
also possible to go the other way: a BN model can have a
need for a more detailed local model and this is possible
with CBR. A query case is created from some nodes in the
BN model and after a similar case is found, its solution is
used to update the BN model and the reasoning process can
continue.

III. THE DATA LEVEL ARCHITECTURE

The role of CBR in our architecture is to provide decision
support for the few but difficult patient cases, i.e. the patients
that do not conform with generalized patters and routine
practice. These are the most time consuming and resource
demanding patients, for which intelligent decision support
is particularly called for. Our approach is in line with other
hybrid methods that use CBR to handle outliers, exceptions,
and non-compliances, while generalization-based methods
take care of the more common type of situations [4].

Our understanding of the strengths and weaknesses of
the reasoning processes leads us towards a system in which
the “typical” patients are treated as information that can be
utilized by the the BN, and outliers are utilized by the CBR
engine. The hybrid system, shown in Fig.1, can be put into
effect when we are able to specify the criteria for splitting
the data between BN and CBR. In the preprocessing phase,
the medical data is collected from each incoming patient and
the result of the split is stored in an outliers data store and in
a commons data store. The commons data store is the basis
of the BN model created with a data mining tool, and the
model is accessible by the BN software used in the hybrid.
The architecture can be instantiated in two different ways,
indicated by the arrows “A” and “B” in the figure:

A) When a new patient arrives, the CBR system checks
whether it sufficiently matches one or more past outliers.
If that is the case, the solutions of the similar cases are
suggested to the physician. If no matching outlier is found,
the BN system is used to classify the patient according to
the generalized knowledge.

B) When a new patient arrives, the BN system checks
whether it is a patient of a common type by calculating the
target class probabilities in the BN. If the observation is
sufficiently well covered by the model, and one class has a
sufficient “degree of belief” in the Bayesian network, that
class is suggested to the clinician. If not, a check of whether
the patient matches a past outliers is made, and if so the
solution of the similar cases are suggested to the clinician.

In addition to the fixed and sequential strategies A and
B the architecture opens up for iterative control loops. For
example, instead of only one threshold for each of the CBR
or the BN components, representing a similarity degree and a
probabilistic degree of belief, respectively, a set of thresholds
of decreasing values can be defined. After first the CBR
component and then the BN have failed (strategy A), a lower
level of thresholds is activated and the control is given back
to the initial method (here: CBR). The loop iterates until
the lowest levels have been reached, and the system has to
give up. It should be noted that to display a few of the
closest matched outlier cases, and/or the set of most likely
target classes with probabilities, even if the thresholds are
not high, can be of valuable help to the clinician.

This data level architecture raises some essential ques-
tions:

1) Are outliers better handled separately (e.g., by a CBR
component in a hybrid system), or as an integral part
of one system?

e Does the incorporation of local models give im-
provements over a global model? We would have
to consider not only prediction accuracy in this sit-
uation, but also include other important features,
like model transparency.

e To utilize a hybrid model, we must be able to
detect that a case is an outlier. Can this be easily
and reliably done?

2) Our medical data is marred with what we call dupli-
cates; separate objects that share the same description
(but not necessarily have the same class label). What
effect do duplicates have on the classification results?

3) Given that a hybrid system is used: Should we use
the same data representation for BN and CBR, or
should we adapt the representation of new objects to
the reasoning system we employ for that object?
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Figure 1. The Hybrid System and the Preprocessing Step
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Figure 2. 1000 Instances of the local/global dataset

IV. EXPERIMENTING WITH SYNTHETIC DATA

The aim of this pre-study is to investigate how the compo-
nents of the hybrid system behave in a controlled setting. We
will produce datasets with given characteristics to see how
these properties influence the behaviour of the BN and CBR
models, with a view towards better understanding the two
reasoning models’ abilities. We will attempt to answer the
first two essential questions raised in the previous section.
The third will be addressed through experiments with the
medical data set.

We use a knowledge poor instance-based learner (IBL)
as the representative of a CBR classifier in the experiments.
BN and IBL address different aspects of machine learning.
For instance, BN is good at building a joint probability
distribution (relating to the idea of a “global” model), where
IBL utilizes the notion of similar cases (“local” model).
Whenever a “global” model is appropriate, we would expect
BN to be able to learn this model from data, and to represent
the model such that it can be inspected and understood by
a user. If “local” models are appropriate, we expect a BN
model to perform poorly, in terms of predictive accuracy or
model transparency (or both).

Our first experiment is designed to investigate the notion
of local and global models, and to do so, we generated a
synthetic dataset. The dataset contains the features X and
Y, and the class variable C. The dataset is generated using
the algorithm shown in Listing 1, and we generate datsets
with 200, 500, 1000, 5000 and 9000 instances, see Fig.2,
where the class values are divided into groups in attribute
space.

Listing 1.  Algorithm for Calculating the Class for Dataset 1
if ( x in [152,319] and y in [127,286] )
class = cl;
else if ( x in [494,660] and y in [383,549] )
class = c2;
else if ( x in [602,767] and y in [126,288] )
class = c3;
else if ( x in [104,307] and y in [489,655] )

class c3;

else 1f ( x in [610,794] and y in [625,808] )
class = cl;
else

class = c4;

From the scatter plot in Fig.2 we can see that the data
resembles the number five of a dice, where the first class
state is divided between the pip up to the left and down to
the right, the second is the pip up to the right and down to the
left, the third class state is the pip in the center, and the forth
class state is the rest. One would think that a representation
utilizing local models would suit this dataset well. It is, for
instance, clear from Listing 1 that as long as X > 794,
the class is ¢ = ¢4, independently of the value of Y, hence
in the context defined by X > 794 we would not want to
involve Y in the classification process. On the other hand,
for the case X € [610,660], it is y that defines the class,
and a different model structure is required.

Table I
ACCURACY RESULTS FOR THE LOCAL/GLOBAL DATASET

Num 200 500 1000 5000 9000
BN | 80.0 (0.0) | 94.3 (2.8) | 96.3 (1.9) | 994 (0.3) | 99.7 (0.1)
Bl | 89.8 (6.4) | 93.5(3.2) | 958 (2.1) | 983 (0.5) | 98.8 (0.3)
IBS | 922 (6.4) | 922 (3.7) | 95.5(2.0) | 982 (0.5) | 98.7 (0.3)
B9 | 89.7(6.2) | 93.4(3.3) | 95.5(1.9) | 98.1 (0.6) | 98.5(0.3)

The data mining tool Weka [19] is used to run the
experiments, and we used the following algorithms: i) BN
classifier [20] with the simulated annealing and tabu search
[21] options. Note that the BN implementation in weka
assumes discrete data, hence a discretisation procedure must
also be run [22]. ii) For IBL, the k-nearest neighbors
classifier IBk [23], mostly run with k& = 1. The results are
shown in Table I, where the classification accuracies and
related standard deviations are shown as a function of the
size of the dataset. Not surprisingly, IBk is better than BN for
the smallest dataset (200 cases). The BN algorithm does not
have a sufficient amount of data to choose the rather complex
gold standard model, and also fails to discretise the data with
sufficient granularity. However, the BN algorithm surpasses
the IBk algorithm in classification accuracy, and for the
larger datasets (N > 1000), the BN algorithm performs
slightly better than IBk in terms of accuracy, and also
obtaining more robust results (lower standard deviation).
Changing the number of neighbors (option k) in IBk does
not seem to affect the classification accuracy significantly.
Just looking at the predictive accuracy, one would then
conclude that the BN is superior to IBk, and we have no
argument for the proposed data-level architecture: As long
as sufficient data is available, a BN can learn any distribution
arbitrarily well, and therefore outperform “local” models.
However, model transparency is also crucial in our domain,
and we therefore investigate the learned BN, see Fig.3.
Although the model captures the data generation process
with high accuracy, it is very difficult to understand the
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Figure 3. Learned BN Model, N = 9000.

classification rule it implements as it is hidden inside the
conditional probability tables of the model. By examining
the graphical structure alone we can, for instance, not see
the context-specific independence [24] of Y and C' when
X > 794, nor understand that the classification function
is particularly reliant on Y when X € [610,660]. The BN
structure’s representation is a global model, and the local
models of context-specific independence is somewhat lost.!
The answer to our first question is therefore that a single
global model is infeasible when the domain can be more
naturally described by a set of local models.

We can detect “outliers” either using the BN or the CBR
sub-system. The BN can simply use the match between the
model and the query (measured by, e.g., the conflict measure,
[8]) to determine that the query fits poorly with the model.
Alternatively, the CBR sub-system can compare a new query
to its existing case-base of outliers. Either way, our system is
able to detect outliers effectively. We therefore conclude that
a hybrid data-level architecture is both useful and realizable.

Our next fundamental question relates to duplicates (also
known as “class ambiguities”), and we will now proceed by
investigating the effect duplicates have on the performance
of BN and IBL using a synthetic dataset. The dataset
contains the features X, Y and C. The variables are nominal
(categorical scale), where X can take any of the four states
X1, T2, T3 Or x4, Y € {y1,y2,y3}, and the possible
classes are {c1, ¢, c3,cC4,¢5}. A random number generator
assign states to X and Y (each configuration being equally
probable), and the class was defined using the algorithm in
Listing 2.

Listing 2. Gold standard model, “Duplicates” dataset
if ( x1 and yl1 ) class=cl; if ( x1 and y2 ) class=c2;
if ( x1 and y3 ) class=c3; if ( x2 and yl1 ) class=c4;
if ( x2 and y2 ) class=c5; if ( x2 and y3 ) class=cl;
if ( %3 and y1 ) class=c2; if ( %3 and y2 ) class=c3;
if ( x3 and y3 ) class=c4; if ( x4 and yl ) class=c5;
if ( x4 and y2 ) class=cl; if ( x4 and y3 ) class=c2;

! Alternative methods of learning BNs from data, including [25], attempt
to learn a representation of the conditional probability tables that capture
this aspect, but this only partly alleviates our problem, as one still will
have a global BN structure, which does not capture the context-specific
independences.

We say that two observations o, and os are duplicates if
their attribute descriptions are identical (i.e., equality for
both x and y in the synthetic dataset). Further, duplicates
are of Type 1 (also denoted copies) when two objects are
equal (including the class belonging), duplicates of Type
2 (or class ambiguity, also known as class noise [26] and
label misclassification [27]) when the objects have different
values for the class. For example, the two observations
01 = (z1,y1,¢1), and 03 = (21,41, c2) are duplicates of
Type 2.

The first version of the data set contains Type 1-duplicates
only, giving the total size N = 500 observations. The second
version of the dataset starts from the first, but has 10% of
the instances switched from duplicate of Type 1 to Type 2.
For example, the dataset has 42 duplicates of Type 1 for the
object (z1,y1) , and 3 duplicates of Type 2. Gradually, the
dataset is more and more corrupted with class ambiguities,
giving a total of four different datasets. The results are
presented in Table II. We notice that the classification
accuracies for BN and IBk are similar, and that the results
are as expected. Obviously, the target concept (Listing 2)
is very simple, and N = 500 noise-free observations is
sufficient for the methods to detect the gold standard model
(Version 1 of the dataset). Next, duplicates of Type 2 seem to
make both methods perform poorer. This is not surprising, as
increasing the frequency of class ambiguities is essentially
the same as increasing the theoretically achievable error of
the Bayes optimal classifier [28], see also [26], [27].

The answer to the second topic of the previous section is
thus divided into two parts: i) Copies (duplicates of Type 1)
are helpful when learning a BN from data, as more obser-
vations give a better picture of the underlying distribution
that generates the dataset. Similarly, copies lengthen the list
of similar cases in IBL and they have a positive impact
when k > 1. ii) Class ambiguity (Type 2 duplicates) confuse
both algorithms, and the end result is a lower classification
accuracy.

V. EXPERIMENTING WITH THE MEDICAL DATASET

Based on the discussion of the previous section, we
conclude that a hybrid model can be useful when we want
to optimize predictive accuracy and model transparency
together. In this section we will continue our investigations
with a view towards deciding on the representation that
the different reasoning systems should work with. It is
well known that where BN is a probabilistic model, which

Table 11
RESULTS FOR THE DUPLICATES DATASET

Ver | Amb BayesNet IB1 IB5 1B17
1 0 | 100.0 (0.0) | 100.0 (0.0) | 100.0 (0.0) | 100.0 (0.0)
2 10 90.4 (3.6) 90.4 (3.6) 90.4 (3.6) 90.4 (3.6)
3 20 82.0 (4.3) 82.2 (4.3) 82.2 (4.3) 82.2 (4.3)
4 30 76.0 (5.4) 76.0 (5.4) 76.0 (5.4) 76.0 (5.4)




gracefully handles noisy or irrelevant attributes in the object
description, IBL can be harmed by this type of data. This
motivates that different representations can be optimal for
the two systems, something we will investigate using our
medical dataset.

The hybrid system used for these experiments is the CBR-
BN-1 architecture introduced in Section III. It is imple-
mented within jColibri (CBR software from the University
of Madrid) and Smile (Bayesian network software from the
University of Pittsburgh).

The dataset for these experiments is anonymized and
contains information about 1800 patients with cancer pain.
The dataset is basically a time series, where a patient is
examined at point of entry, referred to as the baseline, then
measurements are repeated after one week, two weeks, three,
four, and twelve weeks. The target class we want to predict
is the patient’s average pain intensity in week 2. In our first
experiment only baseline data are given as input, while in a
second experiment week 1 data are included as well.

We want to test the effect of feature relevance on the
methods, so a cancer pain specialist has selected the most
important features and placed them into the four groups:
A, B, C , and D. Group A contains the 5 most important
features, group B adds 5 slightly less relevant features, etc.
The full dataset (denoted AU BUC UD or ABCD for
short) consists of 22 attributes. A brief statistical analysis
is run and frequency diagrams are created for numeric
features and frequency tables for categorical features. Only
a few numeric features were present; the features with a
few integer values are converted into categorical features.
After removing instances with missing data in important
features, the remaining dataset contains 1569 instances.
Three features about pain intensity are scaled down from a
range of 0-10 to three states (mild, moderate and severe). We
then analyzed the data by learning BN and IBk classifiers,
and calculating the predictive ability of these models.

Table IIT
CLASSIFICATION ACCURACY FOR DIFFERENT ATTRIBUTE SETS

Dataset BN IB1 1B5S

A 64.1 (3.2) | 60.2 (3.6) | 61.2 (3.3)
AB 64.2 (3.2) | 56.0 (4.1) | 60.3 (3.6)
ABC 62.9 (3.3) | 54.2 (3.6) | 60.1 (3.6)
ABCD | 62.5(3.5) | 50.0 (3.2) | 55.4 (3.7)

The results, see Table III, indicate that the domain expert’s
indications of which attributes are the most important are
of high quality. There is no model that can show (signif-
icantly) improved accuracy as attributes outside dataset A
are added. We conclude that for the present data, we can
use the attributes in dataset 4 as representation for both
reasoning systems, and do not need to make method-specific
representations.

In the second set of experiments data from baseline are
combined with data from week 1 in order to classify the

average pain for week 2. The full dataset consists of 29
attributes. As Table IV shows, and not surprisingly, we get
better results than without week 1 data. In this test two
other machine learning methods was added for comparison,
support vector machines (SVM) and Adaboost, which both
are regarded among the best classifier methods for this
type of data. The SVM result where computed by LibSVM
(software from the National Taiwan University) with the
Easy.pl Python program. The Adaboost result was computed
with Weka’s AdaboostM1 classifier with the default decision
stump option.

Table IV
CLASSIFICATION ACCURACY AS FOR DIFFERENT ATTRIBUTE SETS

Dataset BN 1B9 Adaboost | SVM
A mix 69.2 (3.6) | 69.5 (3.3) | 70.6 (3.4) 70.7
AB mix 70.2 (3.5) | 67.6 (3.3) | 70.6 (3.4) 70.9
ABC mix 67.6 (3.0) | 66.6 (2.9) | 70.6 (3.4) 70.7
ABCD mix | 67.4 (3.2) | 65.7 (3.1) | 70.6 (3.4) 70,6

The goal was to investigate whether BN and IBk gave
a better accuracy combined than on their own. The IBk
classifier with Euclidean distance was augmented with a
simple ’domain model’ and a different class calculation.
The domain model is very simple: It assumes that the
variables baseline average pain and week 1 average pain
must be equal in the query and the instance. A Bayesian
model is used to calculate the class value. One calculation
is performed for each instance that is picked from the ranked
list of matched cases. The dataset ABCD mix was split into
ten test sets and ten training sets. Ten Bayesian models were
trained on each training set using Weka, and the models
were converted into Smile format. The data was discretized
in order to simplify the communication between BN and
IBk. Five classifiers were used:

cl Bayesian Network

c2 IBk

c3 1Bk with BN (IBk-bn)

c4 IBk with domain model (IBk-m)

c¢5 IBk with BN, and domain model (IBk-bn-m)
The parameters for the 1Bk classifiers where k = 1,3,5,7,9
and 11. The Bayesian models where learned with fabu
search and maximum five parents. The best average accura-
cies are shown in Table V.

Table V
BEST AVERAGE ACCURACY

cl c2 c3 c4 c5
k 9 9 9 3
accuracy | 67.5 | 64.6 | 68.8 | 68.4 | 69.6

The differences between Bayesian Networks and the other
classifiers are shown in Table VI together with the p-values
from a two tailed paired t-test. The pair BN and IBk have
a p-value of 0.01619 which means that BN has a better



accuracy (statistical significant at level 0.01619). The pair
BN and IBk-bn, and the pair BN IBk-m have the p-values
0.13405 and 0.50179, respectively, and statistically signifi-
cant differences can thus not be claimed. The pair BN and
IBk-bn-m has a p-value of 0.01093. Since the BN classifier
was better than the 1Bk, the IBk-bn-m classifier is also better
than the IBk. The results show that the combination of 1Bk,
BN and a model is better than BN and IBk alone.

Table VI
ANALYSIS OF STATISTICAL SIGNIFICANCE

cl-c2 cl-c3 cl-c4 cl-c5
fold 1 -0,01000 | -0,04000 | -0,05000 | -0,04000
fold 2 0,02000 0,03000 0,02000 0,01000
fold 3 0,10000 0,02000 0,05000 0,00000
fold 4 0,02000 | -0,02000 | -0,08000 0,00000
fold 5 0,06000 | -0,03000 0,01000 | -0,03000
fold 6 0,00000 | -0,02000 | -0,02000 | -0,02000
fold 7 0,02000 | -0,01000 | -0,04000 | -0,02000
fold 8 0,03000 | -0,01000 0,04000 | -0,03000
fold 9 0,03000 | -0,05000 | -0,01000 | -0,06000
fold 10 0,02000 0,00000 | -0,01000 | -0,02000
mean 0,02900 | -0,01300 | -0,00900 | -0,02100
var 0,00097 0,00062 0,00165 0,00043
t 2,95127 | -1,64658 | -0,69971 | -3,19423
abs-t 2,95127 1,64658 0,69971 3,19423
p 0,01619 0,13405 0,50179 0,01093

A version of the nearest-neighbor classifier that uses a
radius (IBr), instead of a fixed k, was also created. This
classifier was also augmented with a simple model and a
different class calculation. Some queries did not have any
similar cases, because of the radius setting.

Table VII
RESULTS USING RADIUS

IBr | IBr-bn | IBr-m | IBr-bn-r
Radius V5 V6 VT VT
% outliers | 53.9 30.4 20.4 20.4
Accuracy 68.0 70.3 66.0 71.2

The outliers in table Table VII are the average number of
outliers among the instances in the test datasets. The table
contains some results from the radius classifiers. Since all
variables are categorical, the radius indicates the maximum
variables that can be unequal. A radius equal to v/5 permits
up to 5 unequal variables among 29, and the table shows that
IBr got 53.9 % outliers (averaged over the ten datasets). The
remaining test instances have an accuracy of 0.68.

We also investigated two other datasets (credit-g and
waveform) from the UC Irvine Machine Learning Repos-
itory, in order so see if they followed the same pattern as
the medical dataset. In a search for simple domain models
for these data sets we did not find any suitable models that
could improve the accuracy. The c3 classifier showed similar
accuracy as the cl classifier on the credit-g dataset. None of
the classifiers with the nearest neighbor performed well on
the waveform dataset.

VI. CONCLUSION AND FURTHER WORK

In the research reported here we have studied the com-
bination of case-based reasoning and Bayesian networks
for medical decision support. A central issue has been to
represent and reason with different forms of uncertainty,
and to that end utilize the individual abilities of CBR
and BN, leading to a data-level architecture of our hybrid
system. The combination of BN and CBR in the architecture
takes advantage of an important property of both methods:
The knowledge contained in a BN represents generalized
knowledge in terms of statistical distributions. As such it
holds information about individuals (i.e. patients) that are
“averaged” over the number of patients, and hence influ-
enced by the number of individuals with the same feature
values. A case base, on the other hand, contains knowledge
at the level of an individual patient, and the knowledge
contribution of a single individual, represented as a case, is
not necessarily dependent on whether there are many other
individuals with the same feature values. What matters is
that there is a strong similarity match between a query case
(a new patient) and an existing case in the case base (a past
patient).

The architecture raised a number of important questions,
and a substantial data analysis was undertaken in order
to identify characteristics of the data with respect to the
properties and abilities of simple instantiations of the two
methods.

Experiments with synthetic datasets showed that the BN
is capable of learning complex goal models if it has suf-
ficient training data, but potentially at the cost of model
transparency. Further, we verified that both methods have
problems with the training data that contains class ambi-
guities. It is known that the BN method is more robust to
irrelevant features than the IBL-based CBR, but a domain
expert’s feature selection was shown to be helpful in that
respect, and we concluded that both reasoning systems can
utilize the same patient representation.

An IBL learner, i.e. a knowledge-poor CBR method, was
used in the experiments described in this paper. This was an
initial study to identify characteristics of a plain and simple
CBR method as such. In our ongoing work we shift to a
more knowledge-intensive CBR approach, inspired by our
earlier Creek system [6], [15], but replacing the original
semantic network with a Bayesian network. We are currently
in the process of building a domain model using BN-based
Influence Diagrams.

ACKNOWLEDGMENT

This research is partly conducted within the project TL-
CPC (Transactional Research in Lung Cancer and Palliative
Care), a nationally funded project lead by Stein Kaasa
(contract no NFR-183362) in which we cooperate with the
Medical Faculty of NTNU and the St. Olav Hospital in
Trondheim. We wish to thank Cinzia Brunelli and Anne



Kari Knudsen for providing the medical data set, interpreting
the data, and analyzing the relevance of the features from a
clinical perspective.

[1]

(2]

(]

(6]

[11]

[14]

REFERENCES

D. R. Patel, V.L.and Kaufman and A. J. F., “Emerging
Paradigms of Cognition in Medical Decision-making,” Jour-
nal of Biomedical Informatics, vol. 35, no. 1-2, pp. 52-75,
2002.

R. Schmidt, S. Montani, R. Bellazzi, L. Portinale, and
L. Gierl, “Cased-based Reasoning for Medical Knowledge-
based Systems,” International Journal of Medical Informat-
ics, vol. 64, no. 2-3, pp. 355-367, 2001.

W. Ahn, N. Kim, M. Lassaline, and M. Dennis, “Causal
Status as a Determinant of Feature Centrality* 1,” Cognitive
Psychology, vol. 41, no. 4, pp. 361-416, 2000.

R. Schmidt and O. Vorobieva, “Explaining Medical Model
Exceptions,” Computational Intelligence in Healthcare 4, pp.
265-287, 2010.

S. Montani, “Case-based Reasoning for Managing Non-
compliance with Clinical Guidelines,” Computational Intel-
ligence, vol. 25, no. 3, pp. 196213, 2009.

T. Bruland, A. Aamodt, and H. Langseth, “Architectures
Integrating Case-Based Reasoning and Bayesian Networks
for Clinical Decision Support,” in Intelligent Information
Processing V, Z. Shi, S. Vadera, A. Aamodt, and D. Leake,
Eds. Springer, 2010, pp. 82-91.

J. Pearl, Probabilistic Reasoning in Intelligent Systems: Net-
works of Plausible Inference. Morgan Kaufmann, 1988.

F. V. Jensen and T. D. Nielsen, Bayesian Networks and
Decision Graphs, 2nd ed. Springer Verlag, 2007.

J. Pearl, Causality — Models, Reasoning, and Inference.
Cambridge, UK: Cambridge University Press, 2000.

D. Heckerman, D. Geiger, and D. M. Chickering, “Learning
Bayesian Networks: The Combination of Knowledge and
Statistical Data,” Machine Learning, vol. 20, pp. 197-243,
1995.

R. Greiner, A. J. Grove, and D. Schuurmans, “Learning
Bayesian Nets that Perform Well,” in Proceedings of the Thir-
teenth Conference on Uncertainty in Artificial Intelligence.
San Francisco, CA.: Morgan Kaufmann Publishers, 1997, pp.
198-207.

D. W. Aha, C. Marling, and I. D. Watson, “Case-Based Rea-
soning; a Special Issue on State-of-the-Art,” The Knowledge
Engineering Review, vol. 20, no. 03, 2005.

A. Aamodt and E. Plaza., “Case-Based Reasoning: Foun-
dational Issues, Methodological Variations, and System Ap-
proaches,” AI Communications, vol. 7, no. 1, pp. 39-59, 1994.

P. Gomes, “Software Design Retrieval Using Bayesian Net-
works and WordNet,” Lecture Notes in Computer Science, pp.
184-197, 2004.

[15]

[16]

[18]

[19]

[20]

[21]

[22]

[23]

[26]

[27]

A. Aamodt and H. Langseth, “Integrating Bayesian Networks
into Knowledge-Intensive CBR,” in 4441 Workshop on Case-
Based Reasoning Integrations, 1998.

H. Tran and J. Schonwilder, “Fault Resolution in Case-
Based Reasoning,” in Proceedings of the 10th Pacific Rim
International Conference on Artificial Intelligence: Trends in
Artificial Intelligence. Springer, 2008, p. 429.

E. Frank, M. Hall, and B. Pfahringer, “Locally Weighted
Naive Bayes,” in Proceedings of the 19th Conference on
Uncertainty in Artificial Intelligence, vol. 256, 2003, pp. 249—
256.

R. Pavon, F. Diaz, R. Laza, and V. Luzén, “Automatic
Parameter Tuning with a Bayesian Case-Based Reasoning
System. A case of study,” Expert Systems With Applications,
vol. 36, no. 2P2, pp. 3407-3420, 2009.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann,
and I. Witten, “The WEKA Data Mining Software: An
update,” ACM SIGKDD Explorations Newsletter, vol. 11,
no. 1, pp. 10-18, 2009.

R. R. Bouckaert, “Bayesian Network Classifiers in Weka ,”
Weka documentation, 2008.

——, “Bayesian Belief Networks: from Construction to In-
ference,” Ph.D Thesis, The University of Utrecht, 1995.

U. Fayyad and K. Irani, “Multi-interval Discretization of
Continuous-valued Attributes for Classification Learning,” in
Proceedings of the Thirteenth International Joint Conferance
on Artificial Intelligence. Chambury, France: Morgan Kauf-
mann, 1993, pp. 1022-1027.

D. Aha, D. Kibler, and M. Albert, “Instance-Based Learning
Algorithms,” Machine learning, vol. 6, no. 1, pp. 37-66,
1991.

C. Boutilier, N. Friedman, M. Goldszmidt, and D. Koller,
“Context-Specific Independence in Bayesian Networks,” in
Proceedings of the Twelfth Annual Conference on Uncertainty
in Artificial Intelligence. Morgan Kaufmann, 1996, pp. 115—
123.

N. Friedman and M. Goldszmidt, “Learning Bayesian net-
works with local structure,” in Proceedings of the Twelfth
Annual Conference on Uncertainty in Artificial Intelligence.
Morgan Kaufmann, 1996, pp. 252-262.

X. Zhu and X. Wu, “Class Noise vs. Attribute Noise: A
Quantitative Study of Their Impacts,” Artificial Intelligence
Review, vol. 22, no. 3, pp. 177-210, 2004.

C. Brodley and M. Friedl, “Identifying Mislabeled Training
Data,” in Journal of Artificial Intelligence Research. Al
Access Foundation and Morgan Kaufmann Publishers, 1999,
pp. 131-167.

T. M. Mitchell, Machine Learning. Boston, MA.: McGraw
Hill, 1997.



