Abstract:
The identification of regulatory modules is one of the most important tasks in order to discover disease markers. This paper presents a methodology to infer coexpression ...Show MoreMetadata
Abstract:
The identification of regulatory modules is one of the most important tasks in order to discover disease markers. This paper presents a methodology to infer coexpression networks based on local patterns in gene expression data matrix. In the proposed algorithm two steps can clearly be differentiated. Firstly, a Biclustering procedure that uses a Scatter Search schema to find biclusters and, secondly, a network extraction procedure based on linear correlations among the genes of the previously obtained bicluster. Experimental results from Yeast cell Cycle are reported where three different algorithms have been applied. Also, a possible understanding of one of the obtained networks has been presented from a biological point of view.
Date of Conference: 22-24 November 2011
Date Added to IEEE Xplore: 02 January 2012
ISBN Information: