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Abstract—The experimental analysis of meta-heuristic algo-
rithm performance is usually based on comparing average per-
formance metric values over a set of algorithm instances. When
algorithms getting tight in performance gains, the additional
consideration of significance of a metric improvement comes
into play. However, from this moment the comparison changes
from an absolute to a relative mode. Here the implications
of this paradigm shift are investigated. Significance relations
are formally established. Based on this, a trade-off between
increasing cycle-freeness of the relation and small maximum
sets can be identified, allowing for the selection of a proper
significance level and resulting ranking of a set of algorithms.
The procedure is exemplified on the CEC’05 benchmark of
real parameter single objective optimization problems. The
significance relation here is based on awarding ranking points
for relative performance gains, similar to the Borda count
voting method or the Wilcoxon signed rank test. In the
particular CEC’05 case, five ranks for algorithm performance
can be clearly identified.

Keywords-benchmarking, meta-heuristic algorithms, Borda
count, relational optimization

I. INTRODUCTION

Recently there is growing interest in the experimental
analysis of algorithm performance. The establishment of
computational paradigms like soft computing and compu-
tational intelligence has lead to a rapidly increasing number
of new algorithm proposals, esp. based on computational
models of evolution, genetics, or swarms intelligence, but
also modifications of hitherto uniform algorithms to the level
of the appearance of new algorithms, or combination, fusion
and hybridization of existing algorithms into new ones. The
common aspects of these algorithms — often called meta-
heuristic algorithms — is that their design is essentially
problem-independent, that their processing usually includes
random factors, and that there are no guarantees or known
bounds for their performance while they posses parameters
influencing the likelihood of good results by adjustable effort
like population size or number of generations. Thus, the
algorithm performance can differ from problem to problem,
and on algorithm instance to algorithm instance, allowing for
a performance competition between all those algorithms.

However, the experimental evaluation of algorithm per-
formance faces a number of problems. Just to name the
essential ones: (1) the problem of specifying a subset of test

functions that are challenging enough to generate a spec-
trum of performance values, while avoiding any “needle-
in-a-haystack” pure-chance search that would not provide
any meaningful insights into strength and weaknesses of
the studied algorithm; (2) fairness of comparison, usually
understood as measuring performance under “equal effort”
conditions like same number of test function evaluations
(but commonly not memory usage or CPU time); (3) the
means of quantifying the experimental results into perfor-
mance measures and the way of comparing them (where
the No-Free-Lunch theorems [1] state the fundamental
non-existence of a distinguishing measure for all possible
functions but also [2] stating the non-existence of related
benchmarks); (4) the question about favorable parameter
settings and the related identity of an algorithm, which often
allows for a number of structural modifications to be applied
while the algorithm is still considered the same, and which
of these design choices to tolerate while still maintaining a
fair comparison.

A number of approaches tried to accommodate these prob-
lems and proposed a set of benchmark functions and related
bounds on effort-related algorithm parameters. Among them,
the series of benchmark suites presented at the annual IEEE
Conference on Evolutionary Computation (CEC) gained a
lot of attention. From 2005, where a general benchmark
on evolutionary real parameter single objective optimization
was presented as an open contests (as well as in 2010
and 2013), a number of benchmarks on various specific
aspects followed: for example on evolutionary constrained
real parameter single objective optimization problems in
2006, on large-scale single objective global optimization
with bound constraints in 2008 and 2010, on niching in
2010. In between, the CEC’05 benchmark has become a
de facto standard for the evaluation of new algorithms.

Subsequent publications like [3] showed that despite the
well-thought and modern design of these benchmarks, the
problem of a proper evaluation of the results remained an
issue. This is also related to the growing acceptance of
statistical methods in the evaluation of experimental algo-
rithm performance, assuming that each algorithm unveils a
statistical distribution of its performance values. The general
consideration here is about significance of a performance
improvement. While it has become common to repeat
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experiments 10 or 30 times and consider the numerical
average of closest approaches to known extrema of a specific
benchmark function as a suitable quantity, it became also
clear that an algorithm, showing here performance p+ ε is
not automatically better than an algorithm with performance
p — it has to be significantly better as well. The meaning of
significance then is usually related to a statistical confidence
value that the average performances stemmed from different
distributions (more precisely: to reject the H0 hypothesis
that for two algorithms both performance outcomes follow
the same distribution). However, the notion of significance
also introduces another relevant aspect in the question for
the “best algorithm” that has not been solicited so far: the
loss of an absolute comparison.

To illustrate the meaning of this, compare the situation
with typical ways of performing sport contests, where we
can easily identify two main lines. For some sports, we
are considering absolute means of success. In 100-meter
dash, the performance is just the time needed to pass the
100 meter distance. This is an absolute value. The record
performance can be saved and is available at any later time to
decide on the setting of a new record performance. Currently,
it is 9.58s, which is a result from 2009. In comparison,
team sports like soccer, baseball, tennis or handball do not
have such an absolute value of performance and is therefore
performed in tournaments. It means from one match there is
no quantity derived that allows to judge the performance of
the next match (we are not considering global achievements
that go into the “hall of fame” here). The performance
evaluation is relative. This has a number of implications: for
example, we can tolerate for intransitivity in a tournament,
which would be nonsense in a race — when team A wins
against team B and team B afterwards against team C
there is no reason to assume that in a later match team
A is guaranteed to win against team C. However, there are
various attempts to assign ratings to teams that allow for the
approximate computation (or prediction) of ranks and match
outcomes, as for example Massey’s approach of assigning
ratings such that their difference is as close as possible to
known match outcomes [4], or Keener’s approach of rating
inspired by the famous page rank procedure as it is used by
Google(TM) search engine [5].

Algorithm performance shares aspects with both kinds
of sport contest evaluations: an algorithm does not need
the parallel processing of another algorithm to assess its
performance for some benchmark function (otherwise the
study of algorithm performance would enter the realms of
game theory). But as soon as we introduce the aspect of
significance, there is no absolute single value measure avail-
able anymore and the justification of algorithm betterness
becomes a pairwise exercise, thus a relative one.

Here we want to study a way to account for these
aspects based on a purely (set) relational framework. We
contribute a formal definition of a performance comparison

with significance and identify a subset of relations where an
optimal choice of the significance level is feasible, based on
the relation between minimal number of cycles appearing in
the comparison and the smallest number of best algorithms
(section II). In section III we apply this framework to some
results presented for the CEC’05 benchmark in order to
demonstrate the design of feasible relations for comparison,
followed by a discussion in section IV.

II. MAXIMALITY OF SIGNIFICANCE RELATIONS

Usually in optimization we study a real-valued function
y = f(x) where the quest is for a value x that maximizes (in
case f is seen as a quality or fitness function) or minimizes
(in case f is seen as a coast function) the function value y.
In a number of circumstances, especially related to modern
applications of computer science, this approach (then called
global optimization) appears to be not fully adequate to re-
flect aspects of optimality like fairness, resource limitations,
user preferences or simply multiple conflicting objectives.
Thus, relational optimization attempts to generalize this
concept of optimality by studying maximality of relations.

A (set-theoretic) binary relation between elements of a
domain A is a subset of A×A, i.e. a number of ordered pairs
of elements of A that are considered to be in that relation
with each other. This is also the way to interpret above
optimality task: if x1 and x2 are from the domain of f and
we have f(x1) > f(x2) and we are looking for maximality,
then the relation Ropt is just the real-valued larger relation
between function values, and the pair (x1, x2) ∈ Ropt.

The essential point, following Suzumura’s theory of social
choice [6] is that a concept of maximality can be considered
for any relation, no matter what its domain and what the
specific way of specifying related pairs. To do this, we first
consider the asymmetric part P (R) of a relation: it is the part
of the relation where the order in the pair matters, i.e. for a
relation R the pair (x, y) ∈ R but not (y, x). The elements
of R that are not in P (R) then establish the symmetric
part I(R) where both (x, y) and (y, x) belong to R. Thus,
we have R = P (R) ∪ I(R) and P (R) ∩ I(R) = ∅ and a
convenient test for each pair in R whether it belongs to the
asymmetric or the symmetric part.

Now, for the asymmetric part we consider all elements of
the domain that never appear in the second position: this is
the maximum set of R. If we read (x, y) ∈ R as “x is better
than/dominates/is preferred to y” then for any element of
the domain that never appears in the role of y here it means
that there is no better, or preferred element, or that it is
non-dominated.

We see that this definition only uses the set-theoretic
specification of a relation and nothing else, and includes
the above example of function optimality as a special case.

It has to be distinguished from greatestness of a domain
element. For a greatest element x from the best set of
a relation, for each y ∈ A (including x itself) we have



Table I
THE AVERAGE PERFORMANCES FOR 100 RUNS ON THE 25 TEST PROBLEMS OF THE CEC’05 BENCHMARK IN DIMENSION 10 FOR 11 TEST

ALGORITHMS.THE VALUES HERE ARE THE SAME AS THE VALUES USED IN [3], WITH SOME ADJUSTMENT OF NUMERICAL SCALE FOR BETTER
READABILITY.

BLX-GL50 BLX-MA CoEVO DE DMS-L-PSO EDA G-CMA-ES K-PCX L-CMA-ES L-SaDE SPC-PNX

f1 1.00E-09 1.00E-09 1.00E-09 1.00E-09 1.00E-09 1.00E-09 1.00E-09 1.00E-09 1.00E-09 1.00E-09 1.00E-09
f2 1.00E-09 1.00E-09 1.00E-09 1.00E-09 1.00E-09 1.00E-09 1.00E-09 1.00E-09 1.00E-09 1.00E-09 1.00E-09
f3 5.71E+02 4.77E+04 1.00E-09 1.94E-06 1.00E-09 2.12E+01 1.00E-09 4.15E-01 1.00E-09 1.67E-02 1.08E+05
f4 1.00E-09 2.00E-08 1.00E-09 1.00E-09 1.89E-03 1.00E-09 1.00E-09 7.94E-07 1.76E+06 1.42E-05 1.00E-09
f5 1.00E-09 2.12E-02 2.133 1.00E-09 1.14E-06 1.00E-09 1.00E-09 4.85E+01 1.00E-09 0.012 1.00E-09

f6 1.00E-09 1.49 1.25E+01 1.59E-01 6.89E-08 4.18E-02 1.00E-09 4.78E-01 1.00E-09 1.20E-08 1.89E+01
f7 1.17E-02 1.97E-01 3.71E-02 1.46E-01 4.52E-02 4.21E-01 1.00E-09 2.31E-01 1.00E-09 0.02 8.26E-02
f8 20.35 20.19 20.27 20.4 20 20.34 20 20 20 20 20.99
f9 1.154 0.4379 19.19 0.955 1.00E-09 5.418 0.239 0.119 44.9 1.00E-09 4.02
f10 4.975 5.643 26.77 12.5 3.622 5.289 7.96E-02 0.239 40.8 4.969 7.304
f11 2.334 4.557 9.029 0.847 4.623 3.944 0.934 6.65 3.65 4.891 1.91
f12 406.9 74.3 604.6 31.7 2.4001 442.3 29.3 149 209 4.50E-07 259.5
f13 0.7498 0.7736 1.137 0.977 0.3689 1.841 0.696 0.653 0.494 0.22 0.8379
f14 2.172 2.03 3.706 3.45 2.36 2.63 3.01 2.35 4.01 2.915 3.046

f15 400 269.6 293.8 259 4.854 365 228 510 211 32 253.8
f16 93.49 101.6 177.2 113 94.76 143.9 91.3 95.9 105 101.2 109.6
f17 109 127 211.8 115 110.1 156.8 123 97.3 549 114.1 119
f18 420 803.3 901.4 400 760.7 483.2 332 752 497 719.4 439.6
f19 449 762.8 844.5 420 714.3 564.4 326 751 516 704.9 380
f20 446 800 862.9 460 822 651.9 300 813 442 713 440
f21 689.3 721.8 634.9 492 536 484 500 1050 404 464 680.1
f22 758.6 670.9 778.9 718 692.4 770.9 729 659 740 734.9 749.3
f23 638.9 926.7 834.6 572 730.3 640.5 559 1060 791 664.1 575.9
f24 200 224 313.8 200 224 200 200 406 865 200 200
f25 403.6 395.7 257.3 923 365.7 373 374 406 442 375.9 406

(x, y) ∈ R that is, using above readings, x is better
than any other element, preferred to any other element, or
dominating any element of A. There are some relations
between the maximum set and the best set (for example
that the best set is a subset of the maximum set). In case of
global optimality both basically coincide, but in the general
case not. However, the specific way of defining verifiable
relations in optimization problems gives preference for the
concept of maximality - for the price that there is usually
more than one maximal element, compared to usually empty
best sets.

Now we consider maximum sets of relations within the
scope of experimental algorithm analysis, taking significance
into account.

Definition 1. A significance relation is a family Rσ of
relations parameterized by the (real-valued non-negative)
significance level σ such that:

1) For σ1 > σ2, Rσ1
⊆ Rσ2

and
2) For σ →∞, Rσ → ∅

The relation R0 is called the base relation.

These two requirements reflect the common ideas behind
significance. Take as an example the comparison of two

algorithms by their average performances on a number of
benchmark functions: in order to consider algorithm A really
better than algorithm B we set a threshold s such that
algorithm A is only considered to be better than B when
having a larger average than for B by margin s. If we
increase that s the number of cases where A is better than
B will decrease — this is the first requirement. If s becomes
larger, at some point, no algorithm will be better than any
other by such a large margin, and the relation becomes the
empty set. Last but not least, in case of s = 0 the relation
becomes the standard real-valued larger-relation that can be
seen as the base relation for comparison.

Now that there is some evolution of relations over the span
of confidence values, the question is what happens to their
maximum sets when σ is increasing. It needs two comments:
(1) the definition of maximum sets applies to any rela-
tion. However, maximum sets can be empty. A sufficient
condition for the existence of non-empty maximum sets
for finite and non-empty domains is cycle-freeness of the
relation. Cycle-freeness means that there is no sequence of
one or more elements xi (i = 1, . . . , k) where (x1, x2) ∈
P (R), (x2, x3) ∈ P (R), . . . , (xk−1, xk) ∈ P (R) and also
(xk, x1) ∈ R. Note that the naming “cycle” refers to the



alternative representation of a relation as a directed graph,
where cycles are equivalent to fully connected components.
The definition of P (R) clarifies the issue for k = 1 and
k = 2, but in other cases it can become a complicated task
to decide whether there are cycles or not. But even if there
are cycles, it does not automatically imply empty maximum
sets in specific cases. However, the empty set, or empty
relation does not contain cycles for sure, and therefore by
a continuity argument, for any significance relation there is
some σ such that for this value and all larger the relation
will be cycle-free and the existence of maximum elements
is guaranteed.
(2) On the other hand, for the empty relation each element
of the domain is maximal. Under the additional constraint
that Rσ for each σ is an asymmetric relation, then the size
of maximum sets increases monotonically with increasing
σ.

Taking both arguments together, we can identify a signif-
icance level where the relation becomes cycle-free (or one
where the maximum set is non-empty) while the size of the
maximum set is at the lowest non-negative level. From this
we can identify the “best algorithms” by that maximum set.

At the end, we have to consider how to design an appro-
priate relation. This will be demonstrated in the next section,
where we are going to apply the theoretical foundation given
in this section to the CEC’05 benchmark.

III. APPLICATION TO CEC’05 BENCHMARK

The CEC’05 benchmark is composed of 25 functions that
fall into three categories: functions 1 to 5 are unimodal
functions, functions 6 to 14 multi-modal functions and the
remaining functions 15 to 25 are so-called hybrid composi-
tion functions. For details see the corresponding technical
report [7]. For the contest, 11 algorithms were selected.
Achieved performance values for dimension 10 versions of
all 25 problems can be seen in Table 1 (these are the same
values that were studied in [3]). A quick glance on this table
already reveals a number of issues that make sure that the
evaluation of the outcome of the experiment is not straight-
forward. At first, the performances differ largely in order of
magnitude. Values 1×10−9 represent cases were the problem
was “fully solved” i.e. the algorithm were stopped at this
point. Such values are predominant in the first category of
unimodal functions. For functions of the second category we
find varying performance, while the third category provides
most challenging functions, and algorithms seems to yield
comparable bad performance values.

If considering a base function for the specification of a
significance relation, this makes clear that the average of
these values per algorithm is not suitable due to the different
scale of the performance values for the particular functions,
as well as any reference to Euclidian distances between
points with performance values as components. In fact, what
we need is

• Horizontal scale-freeness: each problem function pro-
vides its own scale for the typical range of performance
values. It can be achieved by considering the relative
gains of performance instead of taking reference to
absolute values.

• Vertical scale-freeness: the evaluation also needs to take
the differing performance scales of different problems
into account. This can be achieved by awarding rank
points, as it is done in the Borda count method for
voting (see [8] for a gentle introduction into this
topic), or the Wilcoxon signed rank test for statistical
significance.

Based on these arguments, the proposed significance
relations for given significance level σ applied to two vectors
x and y both of dimension n and with positive components
is as follows:

1) Compute the ranking vector r where ri =
max[xi/yi, yi/xi] (i = 1, . . . , n) as well as the signa-
ture vector s where si is +1 if xi > yi, -1 if xi < yi
and 0 if xi = yi.

2) Sort the components of ri in non-decreasing order to
yield the vector r̃(i).

3) The award points vector a is the vector (1, 2, . . . , n)
permuted in the same way as the permutation leading
from r to r̃.

4) Compute the scalar product D = a · s̃ (where s̃ is the
sorted version of s). In case of ties, collect the corr.
award points and share equally between x and y.

5) If D ≥ σ then x is in significance relation to y,
otherwise not.

In summary, the ratios between corr. components of x
and y (the larger one divided by the smaller one) are sorted
by size, and signed award points are given two x or y, 1
for the smallest ratio, 2 for the second smallest etc. If x
had the larger component, the sign is +1, -1 otherwise. For
example, consider the vectors x = (2, 8, 6) and y = (4, 2, 3)
and significance σ = 2. Then r = (4/2, 8/2, 6/3) = (2, 4, 2)
which is sorted as r̃ = (2, 2, 4) and the corr. award vector is
s = (1, 3, 2) ((2, 3, 1) is also possible but would not affect
the result). The sign vector registers which vector had the
larger component: s = (−1, 1, 1), s̃ = (−1, 1, 1). Since the
two first components of r̃ are equal, the total award points
1+2 = 3 are shared equally as 3/2 = 1.5 and x receives 1.5
(for its second component) and 3 (for the third component)
while y receives 1.5 for the second component. The total is
D = 1.5+3−1.5 = 3. Since 3 is larger than the confidence,
x is in relation to y (or: x is better than y with significance
at least 2).

We apply this relation to the CEC’05 benchmark function
results for dimension 10 on the 11 test algorithms. It means
that we select various increasing values of σ until the relation
becomes cycle-free, and then look for the maximal (or: non-
dominated) elements. Figure 1 shows the result for σ = 10.
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Figure 1. Graph of the significance relation for CEC’05 benchmark functions and test algorithms and significance level 10.
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Figure 2. Graph of the significance relation for CEC’05 benchmark functions and test algorithms and significance level 60.

It is shown as a directed graph where a directed edge (or arc)
refers to the relation between the corr. algorithm to exist (the
algorithms are given as numbers in the order of the header
row of Table 1). A number of things can be seen:

• Algorithm 7 is a clear winner, as it is in significance
relation to all other algorithms.

• Algorithm 3 is a clear looser, since it is dominated by
all other algorithms.

• There is one cycle in the graph, linking algorithms 1,
10, 5, 4 and back to 1.

• Algorithms 2, 6, 8, 9 and 11 appear to be on lower rank
than this cycle, but of higher rank than algorithm 3.

If we increase σ at around 15 the relation becomes cycle-
free and above four ranks consolidate (not shown here for
space reasons). For σ = 60 (Fig. 2) we can distinguish five
ranks (7 as top performer as before, next rank 5, 1 and 10,
next rank 4, 9, 11, then 2, 6 and 8, and last as well as least
3). Note that algorithm 4 was part of the cycle before, now it
is ranked below all other members of the cycle. For σ = 100
it will shrink to 4 ranks and at some point all but algorithms



7 and 3 will be on the same second rank.

IV. DISCUSSION

The analysis of the CEC’05 example shows that the
procedure is feasible and allows for a ranking of a number of
algorithms. Here some related thoughts and considerations:
(1) The procedure possibly assigns same rank to several
algorithms. In the worst case, all algorithms or its larger
part can be on the same rank - that is when for the
smallest significance level σ where the relation becomes
cycle-free suddenly many elements are not dominated by
any other element. While this is possible in theory, in this
case the design of the benchmark might be questioned since
it also indicates a lack of distinctiveness from the selected
benchmark functions (for example, when all algorithms can
solve all problems). As the result for the CEC’05 benchmark
shows, there can be even a best algorithm.
(2) The computational effort of the evaluation is rather small
- as long as the number of algorithms is bounded. It needs
pairwise comparison and a linear comparison procedure.
However, even polynomial complexity can become hard
when the number of algorithms is of order 1 Million or
so, since then there would be 1012 comparisons, an effort
far beyond the available computational power these days.
In this case, meta-heuristic algorithms can be designed to
approximate maximum sets of general relations [9].
(3) The selection of σ depends on the specific choice of
algorithms. It means if the set of algorithm changes, the
selection procedure for σ can also give a different value.
So questions like this may come up: algorithm 7 was the
winner of the CEC’05 benchmark. What to do to make
an even better algorithm? The answer depends much on
the benchmark functions themselves, but a direct answer is:
either to be better than algorithm 7 for all functions, or being
better for functions where algorithm 7 (compared e.g. to next
rank algorithms) is weak.

V. SUMMARY

A method for the evaluation of benchmark results for
function optimization has been presented. It is based on the
general concept of significance relations: two algorithms are
in such a relation if one performs better than the other by
a gain that is numerically represented as significance level.
When the significance level is increased there must be a
level where the relation becomes cycle-free and provides a
full ranking of all algorithms (thus also providing a partial
order of the algorithms). The procedure distinguishes from
the classical “compare the average performances” in the
sense that it accounts for significance while switching to a
relational mode (instead of absolute mode) of comparison.
The feasibility of the approach has been shown by using test
results for the CEC’05 benchmark.
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