
An Empirical Study of Web-Based Inspection Meetings

Filippo Lanubile

Dipartimento di Informatica

University of Bari

Bari, Italy

lanubile@di.uniba.it

Teresa Mallardo

RCOST – Research Center on Software Technology

University of Sannio

Benevento, Italy

mallardo@unisannio.it

Abstract

Software inspections are a software engineering “best

practice” for defect detection and rework reduction. In

this paper, we describe an empirical evaluation with

using a tool aiming to provide Internet groupware

support for distributed software inspections. The tool is

based on a restructured inspection process where

inspection meetings have the only goal of removing false

positives rather than finding additional defects. In place

of face-to-face meetings, the tool provides web-based

discussion forums and support for voting.

We present an empirical study of nine remote

inspections which were held as part of a university

course. We investigated whether all collected defects are

worth to be discussed as a group. Results show that

discussions for filtering out false positives (non true

defects) might be restricted to defects which were

discovered by only one inspector.

1. Introduction

Software inspection is an industry best practice for

delivering high-quality software. The main benefit of

software inspections derives from detecting defects early

during software development and then reducing avoidable

rework. Software inspections are distinguished from other

types of peer reviews in that they rigorously define:

a phased process to follow;

roles performed by peers during review (e.g.,

moderator, author, recorder, reader, and reviewer1);

a reading toolset to guide the review activity (e.g.,

defect taxonomies, product checklists, or scenario-

based reading techniques);

forms and report templates to collect product and

process data.

1 Some roles, such as reader and recorder, are defined specifically for the

inspection meeting stage.

From the seminal work of Fagan [3] to its many

variants [8], the software inspection process is essentially

made up of six consecutive steps, as shown in Figure 1.

Planning

Overview

Preparation

Inspection Meeting

Rework

Follow-Up

Preparation
Preparation

Figure 1. Conventional inspection process

During Planning, the moderator selects the inspection

team, arranges the inspection material and sends it to the

rest of the team, and makes a schedule for the next steps.

During Overview, the moderator can optionally present

process and product-related information for newcomers,

if any. During Preparation, each inspector analyzes the

document to become familiar with it and individually find

potential defects. During the Inspection Meeting, all the

inspectors encounter to collect and discuss the defects

from the individual reviews and further review the

document to find further defects. During Rework, the

author revises the document to fix the defects. Finally,

during Follow-Up the moderator verifies author’s fixes,

gives a final recommendation, and collects process and

product data for quality improvement.

The main changes from the original Fagan’s inspection

have been a shift of primary goals for the Preparation and

Inspection Meeting stages [8]. In order to make visible

the quality of preparation prior to the meeting, the main

Proceedings of the 2003 International Symposium on Empirical Software Engineering (ISESE’03)
0-7695-2002-2/03 $ 17.00 © 2003 IEEE

goal for Preparation has changed from pure

understanding to defect detection, and so inspectors have

to individually take notes of defects [5, 14].

Consequently, the main goal of the Inspection Meeting

has been reduced from defect discovery, as a result of

team analysis, to group consolidation of the defects

individually found during Preparation.

In the attempt to shorten the overall cost and total time

of the inspection process, the need for a meeting of the

whole inspection team has been debated among

researchers and practitioners. Parnas and Weiss first

dropped the team meeting in their Active Design Reviews

[15]. Then Votta [22] showed how defect collection

meetings lengthened the elapsed time of software

inspections at Lucent Technologies of almost one third,

with defects discovered at the meeting (meeting gains)

matched by defects not recorded at the meeting although

found during preparation (meeting losses). Further studies

[1, 2, 4, 9, 13, 17, 19] have also observed that the net

meetings improvement (difference between meeting gains

and meeting losses) was not positive, and then nominal

teams (teams who do not interact in a face-to-face

meeting) are at least equivalent to real teams, at a lower

cost and time. However, meetings have been found useful

for filtering out false positives (defects erroneously

reported as such by inspectors), training novices, and

increasing self-confidence [7, 9].

Based on the above empirical studies that argue the

need for traditional meetings and on behavioral theory of

group performance, Sauer et al. have proposed in [20] a

reorganization of the inspection process to shorten the

overall cost and total time of the inspection process. The

alternative design for software inspections mainly

consists of replacing the Preparation and Inspection

Meeting phases of the classical inspection process with

three new sequential phases: Discovery, Collection and

Discrimination (see Figure 2).

The Discovery phase reflects the shift of goal for the

Preparation phase that has changed from pure

understanding to defect detection, and so inspectors are

asked to individually take notes of defects.

The other two inspection phases are the result of

separating the activities of defect collection (i.e., putting

together defects found by individual reviewers) from

defect discrimination (i.e., removing false positives),

having removed the goal for team activities of finding

further defects. The Collection phase is an individual task

and requires either the moderator or the author himself.

The Discrimination phase is the only phase where

inspectors interact in a meeting. Sauer et al. suggest that

the participation of the entire inspection team is not

required; the number of discussants can be reduced to a

minimal set, even a single expert reviewer paired with the

author.

Planning

Overview

Discovery

Collection

Discrimination

Rework

Discovery
Discovery

Follow-Up

Figure 2. Reengineered inspection process

Another change for saving time and diminishing

coordination overhead is introduced by skipping the

Discrimination phase either entirely, passing all the

collected defects directly to the author for rework, or

partially, excluding from the discussion any potential

defects (found by inspectors during the Discovery phase

and merged in the Collection phase) that are considered to

have high chances to be true defects. Sauer et al. suggest

to select for the Discrimination phase only unique defects,

that is defects which were found by only one inspector

during the Discovery phase, while excluding duplicates,

that is defects which were discovered by multiple

inspectors and were merged during the Collection phase.

To our knowledge, the entry criteria for the

Discrimination phase have not been tested by means of

empirical studies of software inspections but they are

based on the behavioral theory of group performance and

analogies with studies on audit reviews. Knowing which

defects are worth of a discussion for discrimination

purposes contributes to reduce inspection costs (because

of less issues into the discussion agenda) without

overwhelming the author with false positives that do not

require rework.

In this paper we present an empirical study of software

inspection aiming to assess the entry criteria for the

Discrimination phase. Our empirical investigation is

performed in the context of geographically distributed

software inspections supported by an Internet-based tool

specifically developed for the purpose.

The remainder of this paper is organized as follows.

Section 2 presents the tool we used to support remote

inspections. Section 3 describes the empirical study and

Section 4 shows the results from data analysis. Finally,

Section 5 summarizes findings and concludes with final

remarks.

2. Tool Support for Distributed Inspection

Proceedings of the 2003 International Symposium on Empirical Software Engineering (ISESE’03)
0-7695-2002-2/03 $ 17.00 © 2003 IEEE

The conventional process for software inspections

hinders their applicability in the context of global

software development, where software engineering

activities are spread across multiple sites and even

multiple countries [6]. In order to provide an Internet-

based infrastructure for geographically distributed

inspection teams, we developed a tool called the Internet-

Based Inspection System (IBIS) [11, 12].

IBIS is mainly a web application to achieve the

maximum of simplicity of use and deployment. All

structured and persistent data are stored as XML files,

programmatically accessed via the DOM API, and

automatically manipulated by XSL transformations. All

required groupware features are developed from dynamic

web pages on the basis of scripts and server-side

components. Event notification is achieved through

automatic generation of emails.

Although Internet-based support makes it possible to

reach skilled reviewers everywhere, it does not provide a

process itself for the effective interaction of

geographically dispersed inspection teams. Because of its

roots on manual activities and face-to-face meetings, the

conventional inspection process was considered

inadequate to support distributed inspections, and thus we

choose the reengineered inspection process [20],

previously discussed, as the underlying model of software

inspection.

In the following, we describe the use of the tool within

the Collection and Discrimination phases. While the

Discrimination phase is the object of interest for this

paper, its entry criteria are defined in the Collection

phase.

In the Collection stage, all the discovery logs from

individual inspectors are collapsed into a unique defect

inspection list (see Figure 3). The moderator can set

identical defects from multiple inspectors as duplicates.

Looking for duplicates is helped by the ability to sort the

merged defect list with respect to location fields (e.g.,

document page number or requirement number) and

reading support questions (i.e., which question in a

checklist or a scenario was helpful for defect discovery).

Collapsing duplicates from the collection of discovery

logs is an iterative task (it can be performed over multiple

sessions too).

Duplicates can be excluded from the Discrimination

stage and let them go directly to the Rework stage.

Looking at the inspection defects list the moderator may

select which defects are worth to be discussed in the

Discrimination stage and which inspectors will participate

to the discussion. This decision can be supported by the

display of inspectors’ performance statistics, such as total

number of reported defects and number of unique defects.

In the Discrimination stage, discussion takes place

asynchronously as in a discussion forum. Each defect in

the discrimination list is mapped to a threaded discussion

(see Figure 4). Invited inspectors may add their comments

inside the threads. To support decision making,

discussants can also vote by rating any potential defect as

true defect or false positive (see Figure 5). When a

consensus has been reached, the moderator can mark

potential defects as false positives, thus removing them

from the list that will go to the author for rework

(potential defects marked as false positives appear

strikethrough in Figure 4).

Figure 3. Merging discovery logs

Figure 4. Defects included in the discrimination list

Proceedings of the 2003 International Symposium on Empirical Software Engineering (ISESE’03)
0-7695-2002-2/03 $ 17.00 © 2003 IEEE

Figure 5. A discussion about a defect

3. The Empirical Study

We ran nine distributed inspections with participants

interacting with the IBIS tool from university labs or

home (no face-to-face meetings), thus reproducing the

conditions of geographically dispersed teams.

Participants were 5th-year computer science students

attending a web engineering course at the University of

Bari. As a course assignment, students had to develop a

web application, including documentation, working in

groups of two or three people. The requirements

documents of the nine student projects (ranging from 7 to

23 pages) were submitted for inspection and a member of

the development team was selected to act as the author in

the inspection. Because of the need to have a trained

moderator, one of the researchers played the role of

moderator for all the nine inspections. The rest of the

inspection team was formed by two or three external (to

the class) reviewers plus a student who was randomly

selected from the class.

Table 1 summarizes the intermediate results of the

nine inspections at the end of the Collection stage, when

all the defects individually found have been merged in a

single list, including duplicates. The Discrimination stage

was planned to include all the collected defects (both

unique and duplicated defects) and invite the entire

inspection team to the discussion.

Focusing on the Discrimination stage, where collected

potential defects are discussed with the main goal of

discriminating true defects from false positives (to be

removed), we looked for answers to the following

questions.

3.1. Decision Making

Q1 Are there differences between unique defects and

duplicates with respect to decision making?

Based on findings from previous studies [1, 10, 20],

our hypothesis was that plurality effects apply: duplicates

(defects found by more than one inspector) are more

likely to be accepted as true defects than unique defects

(defects found by only one inspector). Answering this

question can lead to reduce the list of potential defects to

be discussed as a group, thus saving cumulative team

effort and shrinking elapsed time.

We measured the following variables (measures have

been normalized):

% unique defects removed as FP: ratio of unique

defects marked as “false positive” to total number of

unique defects;

% duplicates removed as FP: ratio of duplicates

marked as “false positive” to total number of

duplicates;

Table 1: Inspections before entering Discrimination stage

Inspection ID Insp1 Insp2 Insp3 Insp4 Insp5 Insp6 Insp7 Insp8 Insp9

Inspection team size 6 6 6 6 5 5 5 5 4

Defects individually

recorded (at Discovery)

53 60 39 76 35 36 52 24 29

Average discovery effort 54 min 1 h 48 min 2 h 35 min 1 h

7 min

1 h

30 min

1 h

22 min

1 h

33 min

Defects merged and

selected for discrimination

(at Collection)

33 37 28 52 28 22 41 15 19

Unique defects (found by

only one inspector)

20 25 21 38 24 15 34 9 12

Duplicates (found by

multiple inspectors)

13 12 7 14 4 7 7 6 7

Collection effort 2 h

9 min

2 h

25 min

1 h

30 min

2 h

15 min

1 h

15 min

2 h 1 h

30 min

1 h 1 h

30 min

Proceedings of the 2003 International Symposium on Empirical Software Engineering (ISESE’03)
0-7695-2002-2/03 $ 17.00 © 2003 IEEE

3.2. Voting

Q2 Are there differences between unique defects and

duplicates with respect to voting?

In the IBIS tool, it is the moderator to mark potential

defects as false positives, which are then removed from

the list of defects going to the Rework stage to be fixed.

However, the moderator should take decisions with the

consensus of the inspection team. An approach to assess

the degree of consensus is looking at inspectors’ votes, if

any. A vote is a ballot between “true defect” (TD) and

“false positive” (FP).

We measured the following variables (measures have

been normalized):

votes as FP per unique defect: ratio of votes on

unique defects in favor of “false positive” to total

number of unique defects;

votes as FP per duplicate: ratio of votes on duplicates

in favor of “false positive” to total number of

duplicates.

votes as TD per unique defect: ratio of votes on

unique defects in favor of “true defect” to total

number of unique defects;

votes as TD per duplicate: ratio of votes on

duplicates in favor of “true defect” to total number of

duplicates;

3.3. Discussion intensity

Q3 Are there differences between unique defects and

duplicates with respect to discussion?

Although voting is an unequivocal method for

communicating intentions, votes without an explicit

exchange of messages among discussants would not be

helpful to support moderator’s decisions, and will be

ignored while taking a decision about a potential defect.

We measured the following variables (measures have

been normalized):

discussion intensity on unique defects: ratio of posted

messages on unique defects to total number of unique

defects;

discussion intensity on duplicates: ratio of posted

messages on duplicates to total number of duplicates;

3.4. Contribution to discussion

Q4 Are there differences between participants with

respect to discussion?

No value would be gained by letting passive

participants to affect moderator’s decisions by means of

“silent” votes. Answering this question can lead to

identify the critical group size for the discrimination task,

above which discussants do not actively contribute to

decision making. This implies saving inspection costs by

reducing the number of inspectors to be invited for

discussion.

We measured the following variables:

messages from moderator: number of messages with

the moderator as sender;

messages from author: number of messages with the

author as sender;

messages from the most active reviewer: number of

messages sent by the reviewer (neither moderator or

author) who was the most active discussant with

respect to other reviewers (except moderator and

author).

4. Data Analysis

In order to answer the first three research questions,

we need to compare a couple of variables (the former for

unique defects and the latter for duplicates) which are

measured in the same sample of cases. Because our

sample is very small (nine inspection teams) and we could

not rely on the normality assumption, we used the

Wilcoxon’s matched pairs test as a nonparametric

alternative to the t-test for dependent samples. The

Wilcoxon’s matched pairs test only assumes that the

variables to be compared are on an ordinal scale and that

the differences between the two variables can be rank

ordered too. Analogously, to answer the fourth research

question we need to compare three variables which are

measured in the same sample of cases. In this case we

used the Friedman ANOVA by ranks test as a

nonparametric alternative to a one-way repeated measures

analysis of variance. The Friedman ANOVA assumes that

the variables are measured on at least an ordinal scale.

The null hypothesis is that the variables contain samples

drawn from the same population, and then identical

medians.

We run a total of five tests. In order to lower the

probability of getting a significant result purely by

chance, we control the level of significance for a set of

tests through the Dunn-Bonferroni procedure [23].

Briefly, an experimenter may obtain the significance level

for a single test as ind = expw / m , where expw is

the desired level of significance for the entire empirical

study and m is the number of tests in the study. In our

case, if we set expw to 0.05, we will need a p-value less

than 0.01 (ind = 0.05 / 5) to conclude that a single test

has found a significant difference.

For the first question (are there differences between

unique defects and duplicates with respect to decision

making?) we compared the percentage of unique defects

removed as false positives with the percentage of

duplicates removed as false positives. Figure 6 shows

Proceedings of the 2003 International Symposium on Empirical Software Engineering (ISESE’03)
0-7695-2002-2/03 $ 17.00 © 2003 IEEE

multiple bar plots for the two variables as measured in the

nine inspections. We found a significant difference

between the two variables (p = 0.0077), that is the

proportion of unique defects that were rejected as false

positives was higher than for duplicates.

 %
 d

u
p

lic
a

te
s
 r

e
m

o
v
e

d
 a

s
 F

P

 %
 u

n
iq

u
e

 d
e

fs
 r

e
m

o
v
e

d
 a

s
 F

P
Insp1 Insp2 Insp3 Insp4 Insp5 Insp6 Insp7 Insp8 Insp9

0%

20%

40%

60%

80%

100%

Figure 6. Duplicates and unique defects

removed as false positives

For the second question (are there differences between

unique defects and duplicates with respect to voting?) we

performed two tests to compare the votes as “false

positive” (or “true defect”) per unique defect with the

votes as “false positive” (or “true defect”) per duplicate.

 Figure 7 and Figure 8 show multiple bar plots for the

two couples of variables. The first test (about votes as FP)

showed a significant difference (p = 0.0077) between the

two variables, with more votes as false positives per

unique defect than per duplicate. On the contrary, the

other test (about votes as TD) failed to reveal any

significant difference between the two variables (p =

0,0663). This can be explained with discussants being

more active in expressing affirmative votes (i.e., “this is a

true defect”) rather than negative votes (i.e., “this is not a

true defect”), and with true defects being more than false

positives both for unique defects and for duplicates.
 v

o
te

s
 a

s
 F

P
 p

e
r

d
u

p
lic

a
te

 v
o

te
s
 a

s
 F

P
 p

e
r

u
n

iq
u

e
 d

e
f

Insp1 Insp2 Insp3 Insp4 Insp5 Insp6 Insp7 Insp8 Insp9
0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

Figure 7. Votes as false positive

per duplicate and unique defect

 v
o

te
s
 a

s
 T

D
 p

e
r

d
u

p
lic

a
te

 v
o

te
s
 a

s
 T

D
 p

e
r

u
n

iq
u

e
 d

e
f

Insp1 Insp2 Insp3 Insp4 Insp5 Insp6 Insp7 Insp8 Insp9
0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

Figure 8. Votes as true defect

per duplicate and unique defect

For the third question (are there differences between

unique defects and duplicates with respect to

discussion?), we compared the discussion intensity on

duplicates with that on unique defects. Figure 9 shows

multiple bar plots for the two variables. The test failed to

reveal a significant difference between the two variables

(p = 0.0506), that is messages per discussion thread did

not differ between duplicates and unique defects.

For the fourth question (are there differences between

participants with respect to discussion?) we analyzed

posted messages with respect to the sender. Figure 10

shows multiple bar plots for three variables, respectively

messages from moderator, author, and the most active

reviewer. The test found a significant difference between

the three variables (p = 0.0043), with messages from both

moderator and author being more frequent than messages

from the most active reviewer, and then from every other

reviewer.

Proceedings of the 2003 International Symposium on Empirical Software Engineering (ISESE’03)
0-7695-2002-2/03 $ 17.00 © 2003 IEEE

 d
is

c
u

s
s
io

n
 i
n

te
n

s
it
y
 o

n
 d

u
p

lic
a

te
s

 d
is

c
u

s
s
io

n
 i
n

te
n

s
it
y
 o

n
 u

n
iq

u
e

 d
e

fs

Insp1 Insp2 Insp3 Insp4 Insp5 Insp6 Insp7 Insp8 Insp9
0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

Figure 9. Discussion intensity on

duplicates and unique defects

 m
e

s
s
a

g
e

s
 f

ro
m

 m
o

d
e

ra
to

r

 m
e

s
s
a

g
e

s
 f

ro
m

 a
u

th
o

r

 m
e

s
s
a

g
e

s
 f

ro
m

 t
h

e
 m

o
s
t

a
c
ti
v
e

 r
e

v
ie

w
e

r

Insp1 Insp2 Insp3 Insp4 Insp5 Insp6 Insp7 Insp8 Insp9
0

5

10

15

20

25

30

35

40

45

Figure 10. Posted messages per sender

5. Conclusions

In this paper we have investigated the entry criteria

(which potential defects to select and which participants

to invite) for web-based inspection meetings, where

inspectors discriminate true defects from false positives.

Tool support provides interacting groups with

asynchronous electronic meetings in place of face-to-face

meetings.

We specifically tested the hypothesis that defects

individually found by multiple inspectors (duplicates) are

accepted as true defects in a group discussion, and then

can skip the Discrimination stage. So, we measured the

performance of the Discrimination stage, as applied to

potential defects collected from individual inspectors, and

looked at differences between duplicates and unique

defects (defects identified by only one reviewer).

We found that unique defects had higher chances than

duplicates to be identified as false positives (conversely,

duplicates had higher chances to be accepted as true

defects). We found that decisions about false positives

were actually supported by group consensus, as expressed

by negative acknowledgments (votes as false positives)

being proportionally higher for duplicates than for unique

defects. On the other hand, we did not find significant

differences between duplicates and unique defects with

respect to discussion intensity.

Our findings are consistent with the hypothesis of

considering duplicates unworthy a group meeting for the

purpose of discrimination, thus limiting inspection team

effort devoted to discussion. However, we cannot exclude

that inspectors could benefit from discussing about all

potential defects (including both duplicates and unique

defects) for the purpose of joint learning.

We also found that most of the group discussion

consisted of messages sent by either the moderator or the

document’s author. The other inspectors were less active

in the discussion and mainly expressed their judgments by

means of electronic votes without complementary

messages. Then, our findings support the proposal in [20]

of limiting discrimination meetings to a couple of

discussants (in our case, the moderator and the author).

Restricting the group size (other than the list of issues to

discuss) for the discrimination task reduces the team

effort that a project manager should allocate for running

inspections.

For our empirical study, we can identify the following

threats to external validity that limit the generalization of

these findings to the industrial practice of software

inspections.

Representative subjects. Since we involved students

both as documents’ authors and as reviewers, they may

not be representative of the population of software

professionals. Our fifth-year students can be considered

equivalent to newcomers that are usually recruited in

inspection teams for learning purposes. This threat is also

mitigated by the presence of three skilled reviewers in

each inspection team, who had been specifically trained

on requirements engineering and inspection process, and

had performed various inspections in the past.

Representative artifacts. The requirements documents

inspected in this study may not be representative of

industrial requirements documents. Our documents were

requirements specifications for web applications while

inspections are often conducted for dependable systems

where quality and rework costs are perceived as critical.

Representative processes. Tool-supported distributed

inspections in this study, based on a reengineered

inspection process, may not be representative of industrial

practice. Although software inspections are often

identified with the Fagan’s model [3], there are actually

many variants of the inspection process which have been

applied in industry and have been reported in the

literature [8, 18]. Tool-supported inspections have also

gained industrial adoption [16, 21].

How representative any of our findings are can only be

determined by conducting further replications.

Proceedings of the 2003 International Symposium on Empirical Software Engineering (ISESE’03)
0-7695-2002-2/03 $ 17.00 © 2003 IEEE

Acknowledgments

We gratefully acknowledge the collaboration of Fabio

Calefato, Mina Di Bari, and Raffaella Massaro in the

development of the tool for distributed inspection and the

execution of the experiment. Thanks also to all the

students who participated to the remote inspections.

References

[1] A. Bianchi, F. Lanubile, and G. Visaggio, “A

controlled experiment to assess the effectiveness of

inspection meetings”, Proc. of METRICS 2001,

London, United Kingdom, April 2001, pp.42-50.

[2] M. Ciolkowksi, C. Differding, O. Laitenberger, and

J. Munch, “Empirical Investigation of Perspective-

based Reading: A Replicated Experiment”, ISERN

Report 97-13, 1997.

[3] M. E. Fagan, “Design and Code Inspections to

Reduce Errors in Program Development”, IBM

Systems Journal, 15(3): 182–211, 1976.

[4] P. Fusaro, F. Lanubile, and G. Visaggio, “A

Replicated Experiment to Assess Requirements

Inspection Techniques”, Empirical Software

Engineering, 2: 39–57, 1997.

[5] T. Gilb, and D. Graham, Software Inspection,

Addison-Wesley, Reading, MA, 1993.

[6] J. D. Herbsleb, and D. Moitra, “Global Software

Development“, IEEE Software, 18(2): 16-20, 2001.

[7] P. M. Johnson, and D. Tjahjono, “Does Every

Inspection Really Need a Meeting?”, Empirical

Software Engineering, 3: 9-35, 1998.

[8] O. Laitenberger, and J.M. DeBaud, “An

Encompassing Life Cycle Centric Survey of

Software Inspection”, The Journal of Systems and

Software, 50: 5-31, 2000.

[9] L. P. W. Land, R. Jeffery, and C. Sauer,

“Validating the Defect Detection Performance

Advantage of Group Designs for Software

Reviews: Report of a Replicated Experiment”,

Caesar Technical Report 97/2, Univ. of New South

Wales, 1997.

[10] L. P. W. Land, C. Sauer, R. Jeffery, “The Use of

Procedural Roles in Code Inspections: An

Experimental Study”, Empirical Software

Engineering, 5(1): 11-34, March 2000.

[11] F. Lanubile, and T. Mallardo, “Tool Support for

Distributed Inspection”, Proc. of COMPSAC 2002,

Oxford, UK, 2002.

[12] F. Lanubile, and T. Mallardo, “Preliminary

Evaluation of Tool-based Support for Distributed

Inspection”, Proc. of the ICSE Int. Workshop on

Global Software Development, Orlando, FL, USA,

2002.

[13] J. Miller, M. Wood, and M. Roper, “Further

Experiences with Scenarios and Checklists”,

Empirical Software Engineering, 3: 37–64, 1998.

[14] National Aeronautics and Space Administration,

Software Formal Inspection Guidebook, Technical

Report NASA-GB-A302, 1993. Available at

http://satc.gsfc.nasa.gov/fi/fipage.html

[15] D. L. Parnas and D. M. Weiss, “Active Design

Reviews: Principles and Practice”, Journal of

Systems and Software, 7: 259–265, 1987.

[16] J. M. Perpich, D. E. Perry, A. Porter, L. Votta and

M. W. Wad, “Anywhere, anytime code inspections:

using the Web to remove inspection bottlenecks in

large-scale software development”, Proc. of the

19th ICSE, Boston, USA May 1997, pp. 14-21.

[17] A. Porter, L. G. Votta, and V. R. Basili,

“Comparing Detection Methods for Software

Requirements Inspections: A Replicated

Experiment”, IEEE Trans. on Software

Engineering, 21(6): 563–575, June 1995.

[18] A. Porter, H. Siy, A. Mockus, and L. Votta,

“Understanding the sources of variation in software

inspections”, ACM Trans. on Software Engineering

and Methodology, 7(1): 41-79, 1998.

[19] A. Porter, and L. Votta, “Comparing Detection

Methods for Software Requirements Specification:

A Replication Using Professional Subjects”,

Empirical Software Engineering, 3: 355-379, 1998.

[20] C. Sauer, D. R. Jeffery, L. Land, and P. Yetton,

“The effectiveness of software development

technical reviews: A behaviorally motivated

program of research”, IEEE Trans. on Software

Engineering, 26(1): 1–14, 2000.

[21] M. van Genuchten, C. van Dijk, H. Scholten, and

D. Vogel, “Using Group Support Systems for

Software Inspections”, IEEE Software, 18(3) : 60-

65, 2001

[22] L. G. Votta, “Does Every Inspection Need a

Meeting?”, ACM Software Engineering Notes,

18(5): 107–114, December 1993.

[23] B. J. Winer, D. R. Brown, K. M. Michels,

Statistical Principles in Experimental Design, third

edition, McGraw-Hill, New York, 1991.

Proceedings of the 2003 International Symposium on Empirical Software Engineering (ISESE’03)
0-7695-2002-2/03 $ 17.00 © 2003 IEEE

