
System Test Case Prioritization of New and Regression Test Cases

Hema Srikanth1, Laurie Williams1, Jason Osborne2
1 Department of Computer Science, North Carolina State University, Raleigh, NC 27695

2 Department of Statistics, North Carolina State University, Raleigh, NC 27695
Email: {hlsrikan, lawilli3, jaosborn}@ ncsu.edu

Abstract

Test case prioritization techniques have been shown
to be beneficial for improving regression-testing
activities. With prioritization, the rate of fault detection
is improved, thus allowing testers to detect faults
earlier in the system-testing phase. Most of the
prioritization techniques to date have been code
coverage-based. These techniques may treat all faults
equally. We build upon prior test case prioritization
research with two main goals: (1) to improve user-
perceived software quality in a cost effective way by
considering potential defect severity and (2) to improve
the rate of detection of severe faults during system-
level testing of new code and regression testing of
existing code. We present a value-driven approach to
system-level test case prioritization called the
Prioritization of Requirements for Test (PORT). PORT
prioritizes system test cases based upon four factors:
requirements volatility, customer priority,
implementation complexity, and fault proneness of the
requirements. We conducted a PORT case study on
four projects developed by students in advanced
graduate software testing class. Our results show that
PORT prioritization at the system level improves the
rate of detection of severe faults. Additionally,
customer priority was shown to be one of the most
important prioritization factors contributing to the
improved rate of fault detection.

1. Introduction

In today’s changing business environment, time to
market is a key factor to achieving project success. For a
project to be most successful, quality must be maximized
while minimizing cost and keeping delivery time short [16].
Quality can be measured by the customer satisfaction with
the resulting system based on the requirements that are

incorporated successfully in the system [16]. Boehm
proposes a value-based approach to software engineering that
measures the value the system provides to the prospective
customers [6]. Boehm suggests that currently most of the
software engineering research and practice is done in a value-
neutral setting whereby all requirements, use cases, test
cases, and defects are treated as equally important without
considering the business value provided to the customer.
Value-based engineering involves the prioritization of
development activities, keeping in mind stakeholder value
propositions. Value-based software engineering practices are
believed to improve user-perceived software quality [5, 6]. In
this paper, we explore a value-driven approach to prioritizing
software system test with the objective of improving user-
perceived software quality. Software testing is a strenuous
and expensive process [4, 8]. Research has shown that at
least 50% of the total software cost is comprised of testing
activities [12, 31]. Companies are often faced with lack of
time and resources, which limits their ability to effectively
complete testing efforts. Often, the engineering team is
compelled to stop their testing efforts abruptly due to
schedule pressures and is forced to deliver the system with
compromised software quality.

To optimize the time and cost spent on testing,
prioritization of test cases in a test suite can be beneficial [2,
3, 9, 10, 24, 25]. Test case prioritization (TCP) involves the
explicit planning of the execution of test cases in a specific
order with the intention of increasing the effectiveness of
software testing activities by improving the rate of fault
detection earlier in the software process [24, 25]. TCP has
been primarily applied to improve regression testing efforts
[9, 10, 24, 25]. Regression testing is the process of retesting
of a system or component to verify that changes made to the
system code have not caused unintended effects and that the
system is still compliant with the specified requirements [14].
Software engineers save test cases and re run these test cases
as regression tests in later versions. Running the entire set of
test cases on a new and/or revised version could be
expensive. Currently, regression TCP techniques use
structural coverage criteria to select the test cases [23].
Structural coverage techniques, such as statement or branch
coverage, are applicable at the code level [7].

We extend the code-coverage TCP techniques [24,
25] and apply TCP at a system-level for both new and
regression tests. The objective of this research is to

develop and validate a system-level test case
prioritization scheme to reveal severe faults earlier
and to improve customer-perceived software quality.
We build upon the current TCP techniques [9, 10, 24,
25] and propose Prioritization of Requirements for
Testing (PORT Version 1.1). PORT can be used to
prioritize system-level black box test when traceability
between requirements, test case, and test/field failures
is maintained by the development team. The PORT
algorithm is based upon four prioritization factors: (1)
customer-assigned priority of requirements, (2)
developer-perceived implementation complexity, (3)
requirements volatility, and (4) fault proneness of
requirements. PORT Version 1.0 [27-29] incorporated
only three prioritization factors; PORT (Version 1.1)
involves incorporating the fourth prioritization factor:
fault proneness. We believe that directing test efforts
using these four factors would enable more efficient
identification of severe faults earlier in the software
process. By focusing on customer-assigned priority, we
aim to identify requirements, which would increase
customer-perceived software quality. We hypothesize
that applying test case prioritization by incorporating
knowledge gained in the requirements phase would
allow the team to decrease testing cost by reducing the
likelihood of the requirements errors appearing in the
field.

To determine the effectiveness of PORT Version
1.0, we conducted a two-phased feasibility study in
four similar student projects developed in a senior
graduate software testing class at North Carolina State
University. Pairs of students developed a TCP
application with an average size of approximately 2500
lines of Java code (LOC). Students turned in two final
versions of their application (one good version and one
with 20 injected defects) and tested other teams’
applications. In the first phase of the study, we analyze
the defects found by the students on other teams’
projects. In the second phase, we analyze the ability of
PORT to enable earlier discovery of the injected
defects. We discuss these results in Section 5.

This rest of this paper is structured as follows.
Section 2 gives a high-level overview of TCP. Section
3 presents the PORT technique. Sections 4 and 5
discuss the PORT validation algorithm and the case
study conducted. Section 6 presents the summary and
future work.

2. Related Work

This section describes code coverage-based TCP
strategies [9, 10, 24, 25] and their benefits. Coverage-
based TCP techniques involve ranking test cases based

on the coverage they provide. For prioritized statement
coverage, test cases are ranked based on the number of
statements executed/covered by the test case such that
the test case covering the maximum number of
statements would be executed first. Some of the other
coverage techniques involve branch and function
coverage. For branch and function coverage, tests are
prioritized based on the program branches or program
functions covered respectively.

The benefits of code coverage-based strategies were
measured using a weighted Average of the Percentage of
Faults Detected (APFD) [24]. The APFD value is a measure
of how quickly the faults are identified for a given test suite
set. The APFD values range from 0 to 100 and are monitored
during test suite execution. The APFD values represent the
area under the curve by plotting percentage of faults detected
on y-axis of a graph, and percentage of test suite run on x-
axis of a graph. We analyze a similar validation metric to
assess the efficacy of PORT, Weighted Percentage of Faults
Detected (WPFD), as will be discussed in Section 5.

Several case studies demonstrated the benefits of code
coverage-based TCP strategies [9, 10, 24, 25]. The
researchers used various prioritization techniques to measure
the APFD values and found statistically significant results
that APFD values were not the same for all of the techniques.
The code coverage-based TCP strategies were shown to
improve the rate of fault detection, allowing the testing team
to start debugging activities earlier in the software process
and resulting in faster software release than otherwise
possible [24].

 If all faults are not equally severe, severity-neutral TCP
strategies and associated APFD metric can provide
misleading information [11]. As a result, Elbaum et al. [10,
24] incorporated fault severity in a TCP strategy [11]. Instead
of representing Test Suite Fraction in the horizontal axis (as
done for APFD), Percentage of Total Test Case Cost
Incurred (as done for APFDc) is represented. Additionally,
instead of representing Percent Faults Detected on the
vertical axis (as for APFD), Percentage Total Fault Severity
Detected (as done for APFDc) is represented. The APFDc
measures the unit-of-fault-severity-detected-per-unit-test-cost
[11]. The use of APFDc is primarily done for assessing the
prioritization orders post hoc, i.e. when the severity and cost
values are known. Elbaum et al. use six levels of fault
severity where they use a linear approach as one of the ways
to assign fault severity values. Linear approach involves
assigning a severity value ranging from 1 to 6 to the faults.
Another approach, exponential, involves assigning severity
values from 20 through 25. We follow a similar approach of
measuring the Total Severity of Faults Detected for an
ordered test suite. We apply four levels of severity and use a
10-point scale to assign severity values to faults as discussed
in Section 4.

3. Prioritizations of Requirements for
Testing

Building on this work, we propose a multi-faceted,
system-level prioritization technique called PORT. In this
section, we explain the current set of PORT prioritization
factors, the PORT prioritization factor collection process, and
the algorithm underlying PORT.

3.1 Prioritization Factors

The algorithm underlying PORT Version 1.1 prioritizes
based upon four factors: (1) customer-assigned priority on
requirements, (2) requirement volatility, (3) developer-
perceived implementation complexity, and (4) fault
proneness of requirements. We discuss below these four
factors, the reasoning of why they were chosen in our
prioritization technique, and their importance to software
testing.

• Customer-assigned priority (CP) is a measure of the
importance of a requirement to the customer. The customer
assigns a value for each requirement ranging from 1 to 10
where 10 is the requirement with the highest customer
priority.

Reasoning: Approximately 45% of the software
functions are never used, 19% are rarely used, and only 36%
of the software functions are sometimes or always used [19].
A fault that lies along the path of normal execution results in
frequent failures, and the majority of the effort should be
spent in finding these faults [20, 21]. A focus on customer
requirements for development has been shown to improve
customer-perceived value and satisfaction [5, 6, 16]. By
identifying and thoroughly testing the fraction of
requirements that would be of highest importance to the
customer, we aim to increase the business value generated to
the customer. Additionally, if the testing efforts were stopped
abruptly due to schedule pressures, the requirements of
highest value to the customer would have been tested early
and thoroughly.

• Requirements volatility (RV) is based on the number
of times a requirement has been changed during the
development cycle. If a requirement has changed more than
ten times, the volatility values for all requirements are
quantified on a 10-point scale. Requirements volatility is an
assessment of the requirements change once the
implementation begins [17].

Reasoning: Roughly 50% of all faults identified in a
project are errors introduced in the requirements phase [18].
Studies conducted by the Standish Group report that 30% of
all projects are cancelled before completion, and 70% of the
remaining projects fail to deliver the required system
functionality. The most significant factor to cause these
project failures were attributed to changing requirements
[30]. The biggest cause for project failures happens to be lack
of user input, and changing or incomplete requirements [15,
18, 22]. Roughly 25% of the requirements for an average
project change before project completion [22], and volatile
requirements tend to make the testing activities difficult and
cause the software to contain high defect density [17].
Changing requirements result in re-design, the addition or
deletion of existing functions, and often an increase in the
fault density in the program [17]. Severe defects that escape
into the field can cost 100 times more to fix after delivery
than correcting the problem in the requirements phase [26].

For non-severe defects, the ratio is 2:1 for fixing the defect in
the field as opposed to pre-delivery [26].

• Implementation complexity (IC) is a subjective
measure of how difficult the development team perceives the
implementation of requirement to be. Each requirement is
analyzed to assess the anticipated implementation complexity
and is assigned a value ranging from 1 to 10; the larger value
indicates higher complexity. IC is a prioritization factor for
requirements being implemented for the first time or for all
requirements in the first release.

Reasoning: Requirements with high implementation
complexity tend to have a higher number of faults [1].
Amland [1] conducted a case study to find that the functions
with high number of faults were the functions with higher
McCabe Complexity [1]. Twenty percent of the modules
result in 80% of the faults [26, 32], and roughly 50% of the
modules are defect free [26].

• Fault proneness of requirements (FP) allows the
development team to identify the requirements which have
had customer-reported failures. As the system evolves into
several versions, the developers can use the data collected
from prior versions to identify requirements that are likely to
be error prone. FP is based on the number of field failures
and in-house system test failures found in the code that
implements a requirement. FP is not considered for new
requirements, only for those requirements that have already
been in a released product.

Reasoning: Research has shown that fault-prone
modules are more likely to cause field failures than the
modules, which are not fault prone [20].

Through our research, we will examine and refine the
set of PORT prioritization factors. Our goal is to identify the
minimum set of factors which can be used to effectively
prioritize system-level test cases.

3.2 PORT Prioritization Factor Collection
Process

The process for collection and updating the PORT
factors is shown in Figure 1. There are five stakeholders in
the process and a system for providing automatic updates.
(An open source tool is available for automatic updates).
The roles of each of these stakeholders are defined below:

The customer states the system requirements, the
priority of the each requirement, and any additions or
changes to the requirements throughout development. The
customer also reports field failures when the product has
been delivered.

The requirements analyst records the requirements and
associated priorities and any changes to requirements.

The maintenance engineer fixes defects when field
failures are reported and maps the failure back to the
requirement(s) that were impacted by the failure.

The developer provides a subjective assessment of how
complex a requirement is to implement.

The tester writes test cases for each requirement,
mapping the requirement to its test case(s), and runs the test
cases. Test case failures are reported, mapping the test case
failure to the test case that revealed the failure.

The PORT tool increments requirements volatility when
a requirement is changed or added late and increments fault

proneness when a test failure or field failure is reported. In
the absence of a tool, these values can be tracked manually.

Figure 1: PORT Prioritization Factor Collection Process

3.3 PORT Algorithm

Factor values are assigned during the design analysis
phase, and evolve continually during the software
development process as the project evolves. Based on the
project and customer needs, the development team assigns
weight to the prioritization factor such that the assigned total
weight (1.0) is divided amongst the four factors. Factor
weight, which is unique for each project, allows the PORT
user to customize the priority of each factor for a particular
project. For example, if the requirements for a project have
been very stable, then the development team might assign
RV a relatively smaller portion of the total weight. A default
value can be assigned, giving each factor equal weight.

For every requirement, Equation 1 is used to calculate a
Prioritization Factor Value (PFV).

)*(
4

1
∑
=

=
j

jiji htFactorWeigeFactorValuPFV

 (1)
PFVi represents prioritization factor value for

requirement i, which is the summation of the product of
factor value and the assigned factor weight for each of the
factors. FactorValueij represents the value for factor j for
requirement i, and FactorWeightj represents the factor weight
for jth factor for a particular product. PFV is a measure of the
importance of testing a requirement.

A value-matrix representation of PFV for requirements
is shown in Equation 2 below where PFV (P) is the product
of value (V) and weight (w).

)1*4(
)4*(

1111

)1*(

1

....

....

....

.

.

.

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

Rv

FP

RC

CP

n
FP
n

RV
n

IC
n

CP
n

FPRVICCP

nn

w
w
w
w

RRRR

RRRR

PFV

PFV

VwP

(2)
The computation of PFVi for a requirement is used in

computing the Weighted Priority (WP) of its associated test
cases. WP of the test case is the product of two elements: (1)
the average PFV of the requirement(s) the test case maps to
and (2) the requirements-coverage a test case provides.
Requirements coverage is the fraction of the total project
requirements exercised by a test case. Let there be n total
requirements for a product/release, and test case j maps to i
requirements. WPj is an indication of the priority of running
a particular test case. WPj is represented by the Equation 3.

⎟
⎠
⎞

⎜
⎝
⎛

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

∑

∑

=

=

n
i

PFV

PFV
WP n

y
y

i

x
x

j *

1

1 (3)

The test cases are ordered for execution based on the
descending order of WP values such that the test case with
the highest WP value is run first and so on.

4. Validation Algorithm

Refinement and validation of PORT will proceed via the
analysis of the severity of faults detected for a product. For
analysis purposes, each failure is assigned a severity value
(SV) on a 10-point scale as shown below:
• Highly severe (Severity 1): SV value of 10;

• Medium severe (Severity 2), SV of 6;

• Less severe (Severity 3), SV of 4; and

• Least severe (Severity 4), SV of 2.

Total Severity of Faults Detected (TSFD) is the
summation of severity values of all faults identified for a
release. Equation 4 shows TSFD for a product/release, where
t represents total number of faults identified for the
product/release.

∑
=

=
t

l
lSVTSFD

1
 (4)

The Average Severity of Faults Detected (ASFD) is
computed for each requirement to analyze if the requirement
with a higher computed PFV actually had higher average
severe faults when the product was system tested or used by
the customer. The ASFD for requirement i (ASFDi) is the
ratio of the summation of severity values of faults identified
for that requirement divided by the TSFD. The computation
of ASFD is shown in Equation 5, where m is the number of
faults mapped to requirement i.

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
∑
=

TSFD

SV
ASFD

m

j
j

i
1 (5)

ASFD is used to analyze the effectiveness of PORT
technique by mapping the total percentage of severe faults
identified for a requirement to the PFV for that requirement.
The case study showing the use of ASFD is discussed in
Section 5.

5. PORT Feasibility Study

To measure the effectiveness of PORT (Version 1.0),
four similar projects with average size of approximately 2500
lines of Java code (LOC) were analyzed. The projects were
developed by students in an advanced graduate-level

software testing class at North Carolina State University. The
class was divided into four pairs of students, and each team
was given the same 19 requirements to develop a TCP tool.
For each project, the students assigned values for RV and IC.
The research team (who acted as the customer) assigned
values for customer priority (CP). The factor weights were
assigned based on discussion between the customer and
students.

The student projects were analyzed in two phases. In
the first phase we evaluate the faults identified by external
testers and map the ASFD for requirement to their respective
PFV. The results are presented in Section 5.1. In the second
phase, the research team tested the four systems by applying
PORT technique and via a random prioritization strategy to
measure the effectiveness of PORT technique. The results of
this phase are discussed in Section 5.2.

5.1 Phase I

At the completion of the project, each student group
tested two other student projects by using their own black
box system tests. Each group acted as an external, objective
test team, thus improving the objectivity of the results. When
the testers identified a failure, they assigned a severity level
to the failure. On average, 15 faults were identified for each
project. These defects were analyzed to determine which
requirement/s the defects mapped to. The PFV and ASFD for
each of the 19 requirements and the TSFD was computed for
each project.

The requirements were grouped into one of five
categories based on the range of PFV for that requirement
where a lower PFV range indicates a lower priority for this
requirement to be tested. For each PFV range, the mean
ASFD values for requirements in that range were computed
for each project. Figure 2 shows the results for the four
projects. The curves indicate that for all four team projects,
as the PFV range increases, the ASFD values increase as
well.

For Team 2, the average severity was highest for the

PFV range of 8-10. For the other three teams (1, 3, and 4),
the average severity was highest for the PFV range of 6-7.99.
For these three teams, there were not any requirements that
mapped to the PFV range of 8-10. This change in PFV for
the requirements among teams is a result of the different
value-set assigned for IC and RV factors. So the highest
possible range for these three teams (1, 3 and 4) was 6-7.99
because of the lower values of IC and RV assigned by the
students. The results, as depicted in Figure 2, show that
requirements with higher PFV range have higher ASFD
values, and vice versa [28, 29].

0

2

4

6

8

10

12

14

PF Value Range

M
ea

n
AS

FD
 V

al
ue

s
Team 1

Team 2

Team 3

Team 4

Team 1 0 0 2 12.34 N

Team 2 0 0 1.87 5.71 10.5

Team 3 0 0 3.27 7.3 N

Team 4 0 0.97 3.73 9.46 N

0-1.99 2-3.99 4-5.99 6-7.99 8-10.0

Figure 2: Comparison of ASFD and PFV Range

5.2 Phase II

In the second phase of the study, we compared the
PORT technique with a random prioritization strategy
towards testing student projects. As an extra credit
assignment, the students were asked to create a faulty version
of their project by injecting 20 faults. The students were
instructed that for each project, at least 50% of the faults to
be of Severity 1 and 2, and the other 50% comprised of
Severity 3 faults.

To test these four student projects, approximately 50
system test cases were written for the student projects by the
lead researcher. The test cases were written to test at least
one success condition and one failure condition for each
requirement. At least one fourth of the test cases mapped to
multiple requirements. The test cases were run and the test
failures were recorded. The test results were then analyzed
considering if the test cases were run in the order prescribed
by PORT and if they were run in random order. The goal
was to identify the effectiveness of PORT in improving the
rate of detection of severe faults when compared with
random prioritization approach. For each of the four projects,
the following two factors were determined for both
prioritization approaches:

• Rate of detection of severe faults.
• Contribution of prioritization factors towards the

effectiveness of PORT.
The experimental setup and the results for each of these

two factors are discussed below.
5.2.1. Rate of Detection of Severe Faults

Goal: This section involves identifying the
effectiveness of PORT technique in improving the rate of
detection of severe faults by testing four faulty applications.

Setup: Using the values and weights for the
prioritization factors provided by students and the research

team, the PFV for the 19 requirements was computed. Based
on the PFV of the requirements and the requirements
coverage provided by the system test cases, WP value was
computed for each test case. The PORT technique calls for
execution of the test cases in the descending order of the WP
value. The random strategy involved a random permutation
of test cases for execution.

The four faulty applications were tested by running the
system test cases to find the induced faults in the application.
The faults found were mapped to their respective
requirements. The TSFD was computed for all four projects.
After executing each case, the test case status was noted:
Pass/Fail. If a test case failed, the SV of the fault identified
was noted. After all test cases were executed and all the
induced faults were identified and their SV noted, analysis
was done to measure the rate of fault detection. A graph was
plotted with fraction of test suite executed on x-axis, and
percentage of TSFD on y-axis. The rate of detection of faults
is computed using a metric called Weighted Percentage of
Faults Detected (WPFD), which is the area under the curve
when plotting a graph with percentage of TSFD on the y-axis
and fraction of test suite executed on the x-axis. Twenty
unique random prioritization sets for each of the four projects
were generated to allow for statistical comparison. The mean
WPFD values for the 20 random different orderings are
compared against the WPFD achieved for the PORT
technique. We applied statistical analysis to determine the
effectiveness of PORT in comparison to 20 different sets of
randomly prioritized test cases.

Results: For each team, percentage of TSFD was
determined at different stages of test suite execution: after
executing one-fourth, one-half, three-fourth and all the test
cases. For the purposes of depicting the results graphically,
we show a sample comparison of a WPFD for a random run
and WPFD for PORT for a team in Figure 3. For this
comparison the WPFD for PORT is better than WPFD for
the chosen random run.

0

25

50

75

100

0 0.25 0.5 0.75 1

Fraction of Test Suite Run

%
ag

e
of

 T
SF

D

PORT Random

Figure 3: WPFD for PORT and Random

The WPFD results achieved for 20 random sets

were used to compare the effectiveness of PORT by
comparing the mean WPFD of 20 permutations with
WPFD for PORT. The PORT technique involves
generating a repeatable prioritized ordering; thus, we
have only one set of PORT WPFD results. The mean
WPFD values for Random TCP (for n=20) are listed in

Table 2. To investigate the effectiveness of PORT, the
following null and alternative hypotheses were
considered:

H0: WPFD for PORT = Mean WPFD for Random
TCP

Ha: WPFD for PORT > Mean WPFD for Random
TCP

Table 2: WPFD for PORT and Random

Random TCP
Set #

Team 1:
WPFD

Team 2:
WPFD

Team 3:
WPFD

Team 4:
WPFD

MEAN
WPFD-
Random

TCP

43.49 51.00 51.14 49.67

of Times
PORT is

better than
Random

order

18 20 20 17

PORT TCP:
WPFD 67.12 83.49 63.41 54.43

Test Statistic 4.99 8.48 8.84 7.49

P value < 0.001 < 0.001 < 0.001 < 0.001

Sign Statistic 18 20 20 17

sign-test p-
value =0.0002 <0.0001 <0.0001 =0.0013

We find statistically significant results in favor of

Ha, PORT is better than random prioritization (p <
0.001). The results indicate that PORT strategy leads to
improved rate of severe fault detection for all four
projects. The difference between PORT and mean for
these twenty permutations is significant (p < 0.001).

Alternatively, the sign test may be used to investigate
the null hypothesis that the WPFD for is no better than that
for a randomly chosen prioritization. The sign test is a

nonparametric procedure that makes no assumptions about
the distribution of WPFD. For example, in the 20 randomly
chosen prioritizations for Team 1, PORT was observed to
have a better WPFD 18 times. Using the binomial
distribution, the probability of observing 18 or more
successes under the null hypothesis of equivalence is p =
0.0002, a highly significant result. The last row of Table 2
gives the results for a sign-test for each of the four teams
5.2.2. Analysis of PORT Factors

Goal: This section involves: (1) investigating whether
requirements with higher ASFD originate from requirements
with higher range of PFV, and (2) identifying the mean
contribution of the prioritization factors towards the PFV of
the requirements.

Setup: The ASFD for each requirement provides a
measure of the severity of faults detected from that
requirement. For all four projects while applying PORT, the
faults identified were mapped back to their respective
requirements, and the ASFD for each requirement was
computed. For all four projects, we computed the
contribution of each of the three prioritization factors towards
the PFV for each of the nineteen requirements and the mean
contribution of the over all project requirements.

Table 3: ASFD and % of Total Requirements

Results: This section discusses the results of the

effectiveness of the prioritization factors in the PORT
technique. The results are divided in two parts: (1) Table 3
shows the mapping of ASFD values and PFV for
requirements for all four projects, and (2) Figure 4 shows the
contribution of the prioritization factors towards PFV of the
requirements for all projects. The requirements are grouped
in the PFV range as shown in Table 3.

For each of the PFV range of requirements, the
mean ASFD values for requirements in that range is
computed. The results presented in Table 3 show that
the higher percentage of ASFD originates from
requirements with PFV range of 6 or higher. For
example for Team 2, 100% of the ASFD originates
from requirements with PFV range greater than 7,
although roughly only 50% of the total requirements
fall under the range of 7 or higher.

The mean contribution results for all three
prioritization factors are represented in Figure 4. The
CP was ranked as the biggest contributor for all four
projects, followed by IC and RV. On average customer
priority contribution was at least 55% of the total PFV
for all four projects. At least 22% of the total PFV
contribution for all projects came from implementation
complexity.

 Team 1 Team 2 Team 3 Team 4

PFV
Range

A R A R A R A R

8-10 N N 51.7 26.3 N N 9.1 5.3

7-7.99 43 15.8 48.3 26.3 63 36.8 46.3 36.8

6-6.99 30.6 21 0 10.5 22.5 21 24 26.3

5-5.99 26.4 36.9 0 15.8 14.6 26.3 8.3 10.5

4-4.99 0 5.3 0 5.3 0 5.3 4.1 5.3

0-3.99 0 21.1 0 15.8 0 10.5 8.3 15.8

R – Percentage of Total Requirements in PFV Range
A- Average Severity of Faults Detected in Percentage
N – N/A: N represents that zero requirements mapped to that
particular PFV range, and therefore the ASFD for that range
is Not Available.

0
10
20
30
40
50
60
70
80

Fa
ct

or

C
on

tr
ib

ut
io

n

Team
1

Team
2

Team
3

Team
4

Teams

CP
RC
RV

Figure 4: Contribution of Prioritization Factors

The least contribution came from requirements

volatility, which was less than 10% for all four projects. The
RV had a lesser value, as the requirements for the project
were very stable. Also, the project scope was limited as it
was a part of a graduate course curriculum, and the students
had less than 10 weeks to finish the project implementation.
Due to the stable nature of the student projects, these results
do not induce us to remove the RV factor from future case
studies of PORT; RV is likely to be a significant factor in
industrial projects.
6. Acknowledgements

We would like to thank the North Carolina State
University (NCSU) Software Engineering Realsearch Group
for their helpful suggestions on this paper. This material is
based upon work partially supported by the National Science
Foundation under CAREER Grant No. 0346903. Any
opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do
not necessarily reflect the views of the National Science
Foundation.

7. Summary

In this paper we propose the PORT technique for
prioritizing system level test cases to improve the rate
of fault detection of severe faults. We use three
prioritization factors in our PORT (Version 1.0):
requirements volatility, implementation complexity
and customer priority. PORT (Version 1.0) was
applied to four similar student team projects that were
developed in an advanced graduate software-testing
course. In our next version of PORT (Version 1.1), we
will incorporate FP as the fourth factor where FP
would apply to requirements that are currently in a
release product. For these systems with second or
higher release, the requirements, which were part of a
prior release, would be analyzed for FP while the
newly-introduced requirements for that current release
would be evaluated for IC.

Our initial results for PORT (Version 1.0)
originate from a two-phase feasibility study. The first
phase involved analyzing faults identified from four
systems as a result of peer testing. The second phase
involved executing approximately 50 system test cases
on four faulty applications to identify rate of fault
detection of induced faults.

The Phase 1 results indicted that on average higher

severity faults were mapped to requirements with
higher range of PFV. The results achieved in this phase
motivated us to apply PORT for test suite planning and
execution of four team projects.

In the Phase 2 of our feasibility study, we evaluate
the effectiveness of PORT technique towards meeting
our research goals: (1) improve the rate of detection of
severe faults, and (2) assess the contribution of
prioritization factors. The Phase 2 results indicate that
PORT technique leads to improved rate of detection of
severe faults in comparison to random ordering of test
cases at a statistically significant level for the four
projects. Phase 2 results also show that CP is the
biggest contributor towards the effectiveness of PORT
followed by IC. These results are supportive that the
PORT technique could improve the effectiveness of
testing activities by focusing on: (1) functionality that
is of highest value to the customer, and (2) improving
the rate of detection of severe faults. Rectifying severe
faults is believed to improve customer-perceived
software quality.

Prioritization at the system level can also be
beneficial because the PORT technique requires the
team to conduct system analysis and to write concrete
test cases. The act of writing concrete test cases
immediately after requirements specification can lead
to the identification of ambiguous and unclear
requirements, allowing requirements errors to be
identified and rectified earlier. The PORT technique
allows the engineering team to monitor the
requirements covered in system test; the ability to
monitor requirements covered in system test is
believed to be one of the challenges faced by the
industry [13]. Future studies will be conducted on
industrial projects.
8. References

[1] S. Amland, "Risk Based Testing and Metrics," 5th

International Conference EuroSTAR ’99, Barcelona,
Spain, 1999, pp. 1-20.

[2] F. Basanieri, A. Betolino, and E. Marchetti, "CoWTeSt:
A Cost Weighed Test Strategy," Escom-Scope 2001,
London, England, April 2001, pp. 387-396.

[3] F. Basanieri, A. Betolino, and E. Marchetti, "The
Cow_Suite Approach to Planning and Deriving Test
Suites in UML Projects," Fifth International Conference
on the Unified Modeling Language - the Language and
its applications UML 2002, Dresden, Germany,
September 2002, pp. 383-397.

[4] B. Beizer, Software Testing Techniques. New York,
NY: Van Nostrand Reinhold, 1990.

[5] B. Boehm, "Value-Based Software Engineering," ACM
Software Engineering Notes, vol. 28, no. 2, pp. 1-12,
March 2003.

[6] B. Boehm and L. Huang, "Value-Based Software
Engineering: A Case Study," IEEE Computer, vol. 36,
no. 3, pp. 33-41, March 2003.

[7] Y. Chen, R. Probert, and D. Sims, "Specification based
Regression Test Selection with Risk Analysis,"
Conference of the Center for Advanced Studies on
Collaborative Research, Ontario, Canada, 2002, pp. 1-
14.

[8] R. Craig and S. Jaskiel, Systematic Software Testing.
Norwood, MA: Artech House Publishers, 2002.

[9] S. Elbaum, A. Malishevsky, and G. Rothermel,
"Prioritizing Test Cases for Regression Testing,"
Proceedings of the ACM International Symposium on
Software Testing and Analysis, vol. 25, no. 5, pp. 102-
112, August 2000.

[10] S. Elbaum, A. Malishevsky, and G. Rothermel, "Test
Case Prioritization: A Family of Empirical Studies,"
IEEE Transactions on Software Engineering, vol. 28,
no. 2, pp. 159-182, February, 2002.

[11] S. Elbaum, A. Malishevsky, and G. Rothermel,
"Incorporating Varying Test Costs and Fault Severities
into Test Case Prioritization," 23rd International
Conference on Software Engineering, Ontario, Canada,
May 2001, pp. 329-338.

[12] M. Harrold, "Testing: A Roadmap," International
Conference on Software Engineering, Limerick, Ireland,
2000, pp. 61-72.

[13] P. Hsia, A. M. Davis, and D. C. Kung, "Status report:
requirements engineering," IEEE Software, vol. 10, no.
6, pp. 75-79, November 1993.

[14] IEEE, "IEEE Standard 610.12-1990, IEEE Standard
Glossary of Software Engineering Terminology," 1990.

[15] C. Jones, "Software Challenges: Strategies for
Managing Requirements Creep," IEEE Computer, vol.
29, no. 6, pp. 92 - 94, June 1996.

[16] J. Karlsson and K. Ryan, "A Cost-Value Approach for
Prioritizing Requirements," IEEE Software, vol. 14, no.
5, pp. 67-74, Sep-Oct 1997.

[17] Y. K. Malaiya and J. Denton, "Requirements volatility
and defect density," 10th Intl' Symposium on Software
Reliability Engineering, Boca Ratan, Florida, November
1999, pp. 285-298.

[18] G. Mogyorodi, "Requirements-Based Testing: An
Overview," 39th International Conference and
Exhibition on Technology of Object-Oriented
Languages and Systems, Santa Barbara, California,
August 2001, pp. 286-295.

[19] F. Moisiadis, "Prioritising Use Cases and Scenarios,"
37th International Conference on Technology of OO
Languages and Systems, Sydney, NSW, 2000, pp. 108-
119.

[20] J. C. Munson and S. Elbaum, "Software reliability as a
function of user execution patterns and practice," 32nd
Annual Hawaii International Conference of System
Sciences, Maui, HI, 1999, pp. 255-285.

[21] J. Musa, Software Reliability Engineering. New York,
NY: McGraw-Hill, 1999.

[22] J. O'Neal and D. Carver, "Analyzing the Impact of
Changing Requirements," IEEE International
Conference on Software Maintenance, Los Alamitos,
California, 2001, pp. 190-195.

[23] G. Rothermel and M. Harrold, "Selecting Tests and
Identifying Coverage Requirements for Modified
Software," ACM International Symposium on Software
Testing and Analysis, Seattle, WA, August 1994, pp.
169-184.

[24] G. Rothermel, R. Untch, C. Chu, and M. Harrold, "Test
Case Prioritization," IEEE Transactions on Software
Engineering, vol. 27, no. 10, pp. 929-948, October,
2001.

[25] G. Rothermel, R. Untch, C. Chu, and M. Harrold, "Test
Case Prioritization: An Empirical Study," International
Conference on Software Maintenance, Oxford, UK,
September 1999, pp. 179 - 188.

[26] F. Shull, V. Basili, B. Boehm, W. Brown, P. Costa, M.
Lindvall, D. Port, I. Rus, R. Tesoriero, and M.
Zelkowitz, "What We Learned about Fighting Defects,"
IEEE Symposium on Software Metrics, Ottawa,
Canada, June 2002, pp. 249-258.

[27] H. Srikanth, "Requirements Based Test Case
Prioritization," Student Research Forum in 12th ACM
SIGSOFT Int’l Symposium on the Foundations of

Software Engineering, Newport Beach, California,
2004, pp.

[28] H. Srikanth, "Requirements-Based Test Case
Prioritization," Doctoral Symposium in International
Conference of Software Engineering, St. Louis, MO,
2005, pp.

[29] H. Srikanth and L. Williams, "On Economic Benefits of
System Level Test Case Prioritization," International
Conference on Software Engineering, St. Loius, MO,
2005, pp.

[30] Standish.Group, "CHAOS."
http://www.standishgroup.com/chaos.htm.

[31] L. Tahat, B. Vaysburg, B. Korel, and A. Bader,
"Requirement-Based Automated Black-Box Test
Generation," 25th Annual International Computer
Software and Applications Conference, Chicago,
Illinois, 2001, pp. 489-495.

[32] E. Wong, J. Horgan, M. Syring, W. Zage, and D. Zage,
"Applying design metrics to predict fault-proneness: a
case study on a large-scale software system," Software
Practice and Experience, vol. 30, no., pp. 1587-1608,
2000.

