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Abstract 
 

Test case prioritization techniques have been shown 
to be beneficial for improving regression-testing 
activities. With prioritization, the rate of fault detection 
is improved, thus allowing testers to detect faults 
earlier in the system-testing phase. Most of the 
prioritization techniques to date have been code 
coverage-based. These techniques may treat all faults 
equally. We build upon prior test case prioritization 
research with two main goals:  (1) to improve user-
perceived software quality in a cost effective way by 
considering potential defect severity and (2) to improve 
the rate of detection of severe faults during system-
level testing of new code and regression testing of 
existing code. We present a value-driven approach to 
system-level test case prioritization called the 
Prioritization of Requirements for Test (PORT).  PORT 
prioritizes system test cases based upon four factors: 
requirements volatility, customer priority, 
implementation complexity, and fault proneness of the 
requirements. We conducted a PORT case study on 
four projects developed by students in advanced 
graduate software testing class. Our results show that 
PORT prioritization at the system level improves the 
rate of detection of severe faults. Additionally, 
customer priority was shown to be one of the most 
important prioritization factors contributing to the 
improved rate of fault detection. 

 
 

1. Introduction 
 

In today’s changing business environment, time to 
market is a key factor to achieving project success. For a 
project to be most successful, quality must be maximized 
while minimizing cost and keeping delivery time short [16]. 
Quality can be measured by the customer satisfaction with 
the resulting system based on the requirements that are 

incorporated successfully in the system [16]. Boehm 
proposes a value-based approach to software engineering that 
measures the value the system provides to the prospective 
customers [6]. Boehm suggests that currently most of the 
software engineering research and practice is done in a value-
neutral setting whereby all requirements, use cases, test 
cases, and defects are treated as equally important without 
considering the business value provided to the customer. 
Value-based engineering involves the prioritization of 
development activities, keeping in mind stakeholder value 
propositions. Value-based software engineering practices are 
believed to improve user-perceived software quality [5, 6]. In 
this paper, we explore a value-driven approach to prioritizing 
software system test with the objective of improving user-
perceived software quality. Software testing is a strenuous 
and expensive process [4, 8]. Research has shown that at 
least 50% of the total software cost is comprised of testing 
activities [12, 31]. Companies are often faced with lack of 
time and resources, which limits their ability to effectively 
complete testing efforts. Often, the engineering team is 
compelled to stop their testing efforts abruptly due to 
schedule pressures and is forced to deliver the system with 
compromised software quality.  

To optimize the time and cost spent on testing, 
prioritization of test cases in a test suite can be beneficial [2, 
3, 9, 10, 24, 25]. Test case prioritization (TCP) involves the 
explicit planning of the execution of test cases in a specific 
order with the intention of increasing the effectiveness of 
software testing activities by improving the rate of fault 
detection earlier in the software process [24, 25]. TCP has 
been primarily applied to improve regression testing efforts 
[9, 10, 24, 25]. Regression testing is the process of retesting 
of a system or component to verify that changes made to the 
system code have not caused unintended effects and that the 
system is still compliant with the specified requirements [14].  
Software engineers save test cases and re run these test cases 
as regression tests in later versions. Running the entire set of 
test cases on a new and/or revised version could be 
expensive. Currently, regression TCP techniques use 
structural coverage criteria to select the test cases [23]. 
Structural coverage techniques, such as statement or branch 
coverage, are applicable at the code level [7].  

We extend the code-coverage TCP techniques [24, 
25] and apply TCP at a system-level for both new and 
regression tests. The objective of this research is to 



develop and validate a system-level test case 
prioritization scheme to reveal severe faults earlier 
and to improve customer-perceived software quality.  
We build upon the current TCP techniques [9, 10, 24, 
25] and propose Prioritization of Requirements for 
Testing (PORT Version 1.1).  PORT can be used to 
prioritize system-level black box test when traceability 
between requirements, test case, and test/field failures 
is maintained by the development team.  The PORT 
algorithm is based upon four prioritization factors: (1) 
customer-assigned priority of requirements, (2) 
developer-perceived implementation complexity, (3) 
requirements volatility, and (4) fault proneness of 
requirements. PORT Version 1.0 [27-29] incorporated 
only three prioritization factors; PORT (Version 1.1) 
involves incorporating the fourth prioritization factor: 
fault proneness. We believe that directing test efforts 
using these four factors would enable more efficient 
identification of severe faults earlier in the software 
process. By focusing on customer-assigned priority, we 
aim to identify requirements, which would increase 
customer-perceived software quality. We hypothesize 
that applying test case prioritization by incorporating 
knowledge gained in the requirements phase would 
allow the team to decrease testing cost by reducing the 
likelihood of the requirements errors appearing in the 
field. 

To determine the effectiveness of PORT Version 
1.0, we conducted a two-phased feasibility study in 
four similar student projects developed in a senior 
graduate software testing class at North Carolina State 
University. Pairs of students developed a TCP 
application with an average size of approximately 2500 
lines of Java code (LOC).  Students turned in two final 
versions of their application (one good version and one 
with 20 injected defects) and tested other teams’ 
applications.  In the first phase of the study, we analyze 
the defects found by the students on other teams’ 
projects.  In the second phase, we analyze the ability of 
PORT to enable earlier discovery of the injected 
defects.  We discuss these results in Section 5.  

This rest of this paper is structured as follows. 
Section 2 gives a high-level overview of TCP. Section 
3 presents the PORT technique. Sections 4 and 5 
discuss the PORT validation algorithm and the case 
study conducted. Section 6 presents the summary and 
future work. 

 

2. Related Work 
 

This section describes code coverage-based TCP 
strategies [9, 10, 24, 25] and their benefits. Coverage-
based TCP techniques involve ranking test cases based 

on the coverage they provide. For prioritized statement 
coverage, test cases are ranked based on the number of 
statements executed/covered by the test case such that 
the test case covering the maximum number of 
statements would be executed first. Some of the other 
coverage techniques involve branch and function 
coverage. For branch and function coverage, tests are 
prioritized based on the program branches or program 
functions covered respectively.  

The benefits of code coverage-based strategies were 
measured using a weighted Average of the Percentage of 
Faults Detected (APFD) [24]. The APFD value is a measure 
of how quickly the faults are identified for a given test suite 
set. The APFD values range from 0 to 100 and are monitored 
during test suite execution. The APFD values represent the 
area under the curve by plotting percentage of faults detected 
on y-axis of a graph, and percentage of test suite run on x-
axis of a graph. We analyze a similar validation metric to 
assess the efficacy of PORT, Weighted Percentage of Faults 
Detected (WPFD), as will be discussed in Section 5. 

Several case studies demonstrated the benefits of code 
coverage-based TCP strategies [9, 10, 24, 25]. The 
researchers used various prioritization techniques to measure 
the APFD values and found statistically significant results 
that APFD values were not the same for all of the techniques. 
The code coverage-based TCP strategies were shown to 
improve the rate of fault detection, allowing the testing team 
to start debugging activities earlier in the software process 
and resulting in faster software release than otherwise 
possible [24].  

 If all faults are not equally severe, severity-neutral TCP 
strategies and associated APFD metric can provide 
misleading information [11]. As a result, Elbaum et al. [10, 
24] incorporated fault severity in a TCP strategy [11]. Instead 
of representing Test Suite Fraction in the horizontal axis (as 
done for APFD), Percentage of Total Test Case Cost 
Incurred (as done for APFDc) is represented. Additionally, 
instead of representing Percent Faults Detected on the 
vertical axis (as for APFD), Percentage Total Fault Severity 
Detected (as done for APFDc) is represented. The APFDc 
measures the unit-of-fault-severity-detected-per-unit-test-cost 
[11]. The use of APFDc is primarily done for assessing the 
prioritization orders post hoc, i.e. when the severity and cost 
values are known. Elbaum et al. use six levels of fault 
severity where they use a linear approach as one of the ways 
to assign fault severity values. Linear approach involves 
assigning a severity value ranging from 1 to 6 to the faults. 
Another approach, exponential, involves assigning severity 
values from 20 through 25. We follow a similar approach of 
measuring the Total Severity of Faults Detected for an 
ordered test suite. We apply four levels of severity and use a 
10-point scale to assign severity values to faults as discussed 
in Section 4. 

 

3. Prioritizations of Requirements for 
Testing 
 



Building on this work, we propose a multi-faceted, 
system-level prioritization technique called PORT.  In this 
section, we explain the current set of PORT prioritization 
factors, the PORT prioritization factor collection process, and 
the algorithm underlying PORT.    

3.1 Prioritization Factors 
  

The algorithm underlying PORT Version 1.1 prioritizes 
based upon four factors: (1) customer-assigned priority on 
requirements, (2) requirement volatility, (3) developer-
perceived implementation complexity, and (4) fault 
proneness of requirements. We discuss below these four 
factors, the reasoning of why they were chosen in our 
prioritization technique, and their importance to software 
testing.  

• Customer-assigned priority (CP) is a measure of the 
importance of a requirement to the customer. The customer 
assigns a value for each requirement ranging from 1 to 10 
where 10 is the requirement with the highest customer 
priority.   

Reasoning: Approximately 45% of the software 
functions are never used, 19% are rarely used, and only 36% 
of the software functions are sometimes or always used [19]. 
A fault that lies along the path of normal execution results in 
frequent failures, and the majority of the effort should be 
spent in finding these faults [20, 21]. A focus on customer 
requirements for development has been shown to improve 
customer-perceived value and satisfaction [5, 6, 16]. By 
identifying and thoroughly testing the fraction of 
requirements that would be of highest importance to the 
customer, we aim to increase the business value generated to 
the customer. Additionally, if the testing efforts were stopped 
abruptly due to schedule pressures, the requirements of 
highest value to the customer would have been tested early 
and thoroughly.  

• Requirements volatility (RV) is based on the number 
of times a requirement has been changed during the 
development cycle. If a requirement has changed more than 
ten times, the volatility values for all requirements are 
quantified on a 10-point scale. Requirements volatility is an 
assessment of the requirements change once the 
implementation begins [17]. 

Reasoning: Roughly 50% of all faults identified in a 
project are errors introduced in the requirements phase [18]. 
Studies conducted by the Standish Group report that 30% of 
all projects are cancelled before completion, and 70% of the 
remaining projects fail to deliver the required system 
functionality.  The most significant factor to cause these 
project failures were attributed to changing requirements 
[30]. The biggest cause for project failures happens to be lack 
of user input, and changing or incomplete requirements [15, 
18, 22]. Roughly 25% of the requirements for an average 
project change before project completion [22], and volatile 
requirements tend to make the testing activities difficult and 
cause the software to contain high defect density [17]. 
Changing requirements result in re-design, the addition or 
deletion of existing functions, and often an increase in the 
fault density in the program [17]. Severe defects that escape 
into the field can cost 100 times more to fix after delivery 
than correcting the problem in the requirements phase [26]. 

For non-severe defects, the ratio is 2:1 for fixing the defect in 
the field as opposed to pre-delivery [26].  

• Implementation complexity (IC) is a subjective 
measure of how difficult the development team perceives the 
implementation of requirement to be. Each requirement is 
analyzed to assess the anticipated implementation complexity 
and is assigned a value ranging from 1 to 10; the larger value 
indicates higher complexity. IC is a prioritization factor for 
requirements being implemented for the first time or for all 
requirements in the first release.       

Reasoning: Requirements with high implementation 
complexity tend to have a higher number of faults [1].  
Amland [1] conducted a case study to find that the functions 
with high number of faults were the functions with higher 
McCabe Complexity [1]. Twenty percent of the modules 
result in 80% of the faults [26, 32], and roughly 50% of the 
modules are defect free [26].  

• Fault proneness of requirements (FP) allows the 
development team to identify the requirements which have 
had customer-reported failures. As the system evolves into 
several versions, the developers can use the data collected 
from prior versions to identify requirements that are likely to 
be error prone. FP is based on the number of field failures 
and in-house system test failures found in the code that 
implements a requirement. FP is not considered for new 
requirements, only for those requirements that have already 
been in a released product.    

Reasoning: Research has shown that fault-prone 
modules are more likely to cause field failures than the 
modules, which are not fault prone [20].   

Through our research, we will examine and refine the 
set of PORT prioritization factors.  Our goal is to identify the 
minimum set of factors which can be used to effectively 
prioritize system-level test cases. 

3.2 PORT Prioritization Factor Collection 
Process 
 

The process for collection and updating the PORT 
factors is shown in Figure 1. There are five stakeholders in 
the process and a system for providing automatic updates.  
(An open source tool is available for automatic updates).  
The roles of each of these stakeholders are defined below: 

The customer states the system requirements, the 
priority of the each requirement, and any additions or 
changes to the requirements throughout development. The 
customer also reports field failures when the product has 
been delivered. 

The requirements analyst records the requirements and 
associated priorities and any changes to requirements.  

The maintenance engineer fixes defects when field 
failures are reported and maps the failure back to the 
requirement(s) that were impacted by the failure.   

The developer provides a subjective assessment of how 
complex a requirement is to implement.   

The tester writes test cases for each requirement, 
mapping the requirement to its test case(s), and runs the test 
cases.  Test case failures are reported, mapping the test case 
failure to the test case that revealed the failure.    



The PORT tool increments requirements volatility when 
a requirement is changed or added late and increments fault 

proneness when a test failure or field failure is reported.  In 
the absence of a tool, these values can be tracked manually.  

 
Figure 1:  PORT Prioritization Factor Collection Process 

 

3.3 PORT Algorithm 
 

Factor values are assigned during the design analysis 
phase, and evolve continually during the software 
development process as the project evolves. Based on the 
project and customer needs, the development team assigns 
weight to the prioritization factor such that the assigned total 
weight (1.0) is divided amongst the four factors. Factor 
weight, which is unique for each project, allows the PORT 
user to customize the priority of each factor for a particular 
project. For example, if the requirements for a project have 
been very stable, then the development team might assign 
RV a relatively smaller portion of the total weight.  A default 
value can be assigned, giving each factor equal weight.    

For every requirement, Equation 1 is used to calculate a 
Prioritization Factor Value (PFV).    
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PFVi represents prioritization factor value for 

requirement i, which is the summation of the product of 
factor value and the assigned factor weight for each of the 
factors. FactorValueij represents the value for factor j for 
requirement i, and FactorWeightj represents the factor weight 
for jth factor for a particular product. PFV is a measure of the 
importance of testing a requirement.  

A value-matrix representation of PFV for requirements 
is shown in Equation 2 below where PFV (P) is the product 
of value (V) and weight (w).  
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The computation of PFVi for a requirement is used in 

computing the Weighted Priority (WP) of its associated test 
cases. WP of the test case is the product of two elements: (1) 
the average PFV of the requirement(s) the test case maps to 
and (2) the requirements-coverage a test case provides. 
Requirements coverage is the fraction of the total project 
requirements exercised by a test case. Let there be n total 
requirements for a product/release, and test case j maps to i 
requirements. WPj is an indication of the priority of running 
a particular test case. WPj is represented by the Equation 3.     
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The test cases are ordered for execution based on the 
descending order of WP values such that the test case with 
the highest WP value is run first and so on.    

4. Validation Algorithm 
 

Refinement and validation of PORT will proceed via the 
analysis of the severity of faults detected for a product. For 
analysis purposes, each failure is assigned a severity value 
(SV) on a 10-point scale as shown below:   
• Highly severe (Severity 1):  SV value of 10; 

• Medium severe (Severity 2), SV of 6; 

• Less severe (Severity 3), SV of 4; and 

• Least severe (Severity 4), SV of 2. 

Total Severity of Faults Detected (TSFD) is the 
summation of severity values of all faults identified for a 
release. Equation 4 shows TSFD for a product/release, where 
t represents total number of faults identified for the 
product/release.     

∑
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The Average Severity of Faults Detected (ASFD) is 
computed for each requirement to analyze if the requirement 
with a higher computed PFV actually had higher average 
severe faults when the product was system tested or used by 
the customer. The ASFD for requirement i (ASFDi) is the 
ratio of the summation of severity values of faults identified 
for that requirement divided by the TSFD. The computation 
of ASFD is shown in Equation 5, where m is the number of 
faults mapped to requirement i. 
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ASFD is used to analyze the effectiveness of PORT 
technique by mapping the total percentage of severe faults 
identified for a requirement to the PFV for that requirement. 
The case study showing the use of ASFD is discussed in 
Section 5. 

 
 

5. PORT Feasibility Study 
 

To measure the effectiveness of PORT (Version 1.0), 
four similar projects with average size of approximately 2500 
lines of Java code (LOC) were analyzed. The projects were 
developed by students in an advanced graduate-level 

software testing class at North Carolina State University. The 
class was divided into four pairs of students, and each team 
was given the same 19 requirements to develop a TCP tool. 
For each project, the students assigned values for RV and IC. 
The research team (who acted as the customer) assigned 
values for customer priority (CP). The factor weights were 
assigned based on discussion between the customer and 
students.  

The student projects were analyzed in two phases.  In 
the first phase we evaluate the faults identified by external 
testers and map the ASFD for requirement to their respective 
PFV. The results are presented in Section 5.1.  In the second 
phase, the research team tested the four systems by applying 
PORT technique and via a random prioritization strategy to 
measure the effectiveness of PORT technique. The results of 
this phase are discussed in Section 5.2.    

5.1 Phase I 

At the completion of the project, each student group 
tested two other student projects by using their own black 
box system tests.  Each group acted as an external, objective 
test team, thus improving the objectivity of the results. When 
the testers identified a failure, they assigned a severity level 
to the failure. On average, 15 faults were identified for each 
project. These defects were analyzed to determine which 
requirement/s the defects mapped to. The PFV and ASFD for 
each of the 19 requirements and the TSFD was computed for 
each project.    

The requirements were grouped into one of five 
categories based on the range of PFV for that requirement 
where a lower PFV range indicates a lower priority for this 
requirement to be tested. For each PFV range, the mean 
ASFD values for requirements in that range were computed 
for each project. Figure 2 shows the results for the four 
projects. The curves indicate that for all four team projects, 
as the PFV range increases, the ASFD values increase as 
well.   

 
For Team 2, the average severity was highest for the 

PFV range of 8-10. For the other three teams (1, 3, and 4), 
the average severity was highest for the PFV range of 6-7.99. 
For these three teams, there were not any requirements that 
mapped to the PFV range of 8-10. This change in PFV for 
the requirements among teams is a result of the different 
value-set assigned for IC and RV factors. So the highest 
possible range for these three teams (1, 3 and 4) was 6-7.99 
because of the lower values of IC and RV assigned by the 
students. The results, as depicted in Figure 2, show that 
requirements with higher PFV range have higher ASFD 
values, and vice versa [28, 29].  
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Figure 2:  Comparison of ASFD and PFV Range 
 

5.2 Phase II 

In the second phase of the study, we compared the 
PORT technique with a random prioritization strategy 
towards testing student projects. As an extra credit 
assignment, the students were asked to create a faulty version 
of their project by injecting 20 faults. The students were 
instructed that for each project, at least 50% of the faults to 
be of Severity 1 and 2, and the other 50% comprised of 
Severity 3 faults.  

To test these four student projects, approximately 50 
system test cases were written for the student projects by the 
lead researcher. The test cases were written to test at least 
one success condition and one failure condition for each 
requirement. At least one fourth of the test cases mapped to 
multiple requirements. The test cases were run and the test 
failures were recorded. The test results were then analyzed 
considering if the test cases were run in the order prescribed 
by PORT and if they were run in random order.  The goal 
was to identify the effectiveness of PORT in improving the 
rate of detection of severe faults when compared with 
random prioritization approach. For each of the four projects, 
the following two factors were determined for both 
prioritization approaches: 

• Rate of detection of severe faults. 
• Contribution of prioritization factors towards the 

effectiveness of PORT. 
The experimental setup and the results for each of these 

two factors are discussed below.  
5.2.1. Rate of Detection of Severe Faults 

Goal: This section involves identifying the 
effectiveness of PORT technique in improving the rate of 
detection of severe faults by testing four faulty applications.  

Setup: Using the values and weights for the 
prioritization factors provided by students and the research 

team, the PFV for the 19 requirements was computed. Based 
on the PFV of the requirements and the requirements 
coverage provided by the system test cases, WP value was 
computed for each test case. The PORT technique calls for 
execution of the test cases in the descending order of the WP 
value. The random strategy involved a random permutation 
of test cases for execution.  

The four faulty applications were tested by running the 
system test cases to find the induced faults in the application. 
The faults found were mapped to their respective 
requirements. The TSFD was computed for all four projects. 
After executing each case, the test case status was noted: 
Pass/Fail. If a test case failed, the SV of the fault identified 
was noted. After all test cases were executed and all the 
induced faults were identified and their SV noted, analysis 
was done to measure the rate of fault detection. A graph was 
plotted with fraction of test suite executed on x-axis, and 
percentage of TSFD on y-axis. The rate of detection of faults 
is computed using a metric called Weighted Percentage of 
Faults Detected (WPFD), which is the area under the curve 
when plotting a graph with percentage of TSFD on the y-axis 
and fraction of test suite executed on the x-axis. Twenty 
unique random prioritization sets for each of the four projects 
were generated to allow for statistical comparison. The mean 
WPFD values for the 20 random different orderings are 
compared against the WPFD achieved for the PORT 
technique. We applied statistical analysis to determine the 
effectiveness of PORT in comparison to 20 different sets of 
randomly prioritized test cases.    

Results: For each team, percentage of TSFD was 
determined at different stages of test suite execution: after 
executing one-fourth, one-half, three-fourth and all the test 
cases. For the purposes of depicting the results graphically, 
we show a sample comparison of a WPFD for a random run 
and WPFD for PORT for a team in Figure 3. For this 
comparison the WPFD for PORT is better than WPFD for 
the chosen random run.  
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Figure 3: WPFD for PORT and Random 
 
The WPFD results achieved for 20 random sets 

were used to compare the effectiveness of PORT by 
comparing the mean WPFD of 20 permutations with 
WPFD for PORT. The PORT technique involves 
generating a repeatable prioritized ordering; thus, we 
have only one set of PORT WPFD results.  The mean 
WPFD values for Random TCP (for n=20) are listed in 



Table 2. To investigate the effectiveness of PORT, the 
following null and alternative hypotheses were 
considered: 

H0: WPFD for PORT = Mean WPFD for Random 
TCP 

Ha: WPFD for PORT > Mean WPFD for Random 
TCP 

Table 2: WPFD for PORT and Random 

Random TCP 
Set # 

Team 1: 
WPFD 

Team 2: 
WPFD 

Team 3: 
WPFD 

Team 4: 
WPFD 

MEAN 
WPFD-
Random 

TCP 

43.49 51.00 51.14 49.67 

# of Times 
PORT is 

better than 
Random 

order 

18 20 20 17 

PORT TCP: 
WPFD 67.12 83.49 63.41 54.43 

Test Statistic 4.99 8.48 8.84 7.49 

P value  < 0.001 < 0.001 < 0.001 < 0.001 

Sign Statistic 18 20 20 17 

sign-test p-
value =0.0002 <0.0001 <0.0001 =0.0013 

 
We find statistically significant results in favor of 

Ha, PORT is better than random prioritization (p < 
0.001). The results indicate that PORT strategy leads to 
improved rate of severe fault detection for all four 
projects. The difference between PORT and mean for 
these twenty permutations is significant (p < 0.001). 

Alternatively, the sign test may be used to investigate 
the null hypothesis that the WPFD for is no better than that 
for a randomly chosen prioritization. The sign test is a 

nonparametric procedure that makes no assumptions about 
the distribution of WPFD. For example, in the 20 randomly 
chosen prioritizations for Team 1, PORT was observed to 
have a better WPFD 18 times. Using the binomial 
distribution, the probability of observing 18 or more 
successes under the null hypothesis of equivalence is p = 
0.0002, a highly significant result. The last row of Table 2 
gives the results for a sign-test for each of the four teams 
5.2.2. Analysis of PORT Factors 

Goal: This section involves: (1) investigating whether 
requirements with higher ASFD originate from requirements 
with higher range of PFV, and (2) identifying the mean 
contribution of the prioritization factors towards the PFV of 
the requirements. 

Setup: The ASFD for each requirement provides a 
measure of the severity of faults detected from that 
requirement. For all four projects while applying PORT, the 
faults identified were mapped back to their respective 
requirements, and the ASFD for each requirement was 
computed. For all four projects, we computed the 
contribution of each of the three prioritization factors towards 
the PFV for each of the nineteen requirements and the mean 
contribution of the over all project requirements.  

 
Table 3: ASFD and % of Total Requirements 

 
Results: This section discusses the results of the  

effectiveness of the prioritization factors in the PORT 
technique. The results are divided in two parts: (1) Table 3 
shows the mapping of ASFD values and PFV for 
requirements for all four projects, and (2) Figure 4 shows the 
contribution of the prioritization factors towards PFV of the 
requirements for all projects. The requirements are grouped 
in the PFV range as shown in Table 3.  

For each of the PFV range of requirements, the 
mean ASFD values for requirements in that range is 
computed. The results presented in Table 3 show that 
the higher percentage of ASFD originates from 
requirements with PFV range of 6 or higher. For 
example for Team 2, 100% of the ASFD originates 
from requirements with PFV range greater than 7, 
although roughly only 50% of the total requirements 
fall under the range of 7 or higher.  

The mean contribution results for all three 
prioritization factors are represented in Figure 4. The 
CP was ranked as the biggest contributor for all four 
projects, followed by IC and RV. On average customer 
priority contribution was at least 55% of the total PFV 
for all four projects. At least 22% of the total PFV 
contribution for all projects came from implementation 
complexity. 

 Team 1 Team 2 Team 3 Team 4 

PFV 
Range 

A R A R A R A R 

8-10 N N 51.7 26.3 N N 9.1 5.3 

7-7.99 43 15.8 48.3 26.3 63 36.8 46.3 36.8 

6-6.99 30.6 21 0 10.5 22.5 21 24 26.3 

5-5.99 26.4 36.9 0 15.8 14.6 26.3 8.3 10.5 

4-4.99 0 5.3 0 5.3 0 5.3 4.1 5.3 

0-3.99 0 21.1 0 15.8 0 10.5 8.3 15.8 

R – Percentage of Total Requirements in PFV Range 
A- Average Severity of Faults Detected in Percentage 
N – N/A: N represents that zero requirements mapped to that 
particular PFV range, and therefore the ASFD for that range 
is Not Available. 
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Figure 4: Contribution of Prioritization Factors 
 
The least contribution came from requirements 

volatility, which was less than 10% for all four projects. The 
RV had a lesser value, as the requirements for the project 
were very stable. Also, the project scope was limited as it 
was a part of a graduate course curriculum, and the students 
had less than 10 weeks to finish the project implementation. 
Due to the stable nature of the student projects, these results 
do not induce us to remove the RV factor from future case 
studies of PORT; RV is likely to be a significant factor in 
industrial projects. 
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7. Summary 

In this paper we propose the PORT technique for 
prioritizing system level test cases to improve the rate 
of fault detection of severe faults. We use three 
prioritization factors in our PORT (Version 1.0): 
requirements volatility, implementation complexity 
and customer priority. PORT (Version 1.0) was 
applied to four similar student team projects that were 
developed in an advanced graduate software-testing 
course. In our next version of PORT (Version 1.1), we 
will incorporate FP as the fourth factor where FP 
would apply to requirements that are currently in a 
release product. For these systems with second or 
higher release, the requirements, which were part of a 
prior release, would be analyzed for FP while the 
newly-introduced requirements for that current release 
would be evaluated for IC.  

Our initial results for PORT (Version 1.0) 
originate from a two-phase feasibility study.  The first 
phase involved analyzing faults identified from four 
systems as a result of peer testing.  The second phase 
involved executing approximately 50 system test cases 
on four faulty applications to identify rate of fault 
detection of induced faults. 

 
The Phase 1 results indicted that on average higher 

severity faults were mapped to requirements with 
higher range of PFV. The results achieved in this phase 
motivated us to apply PORT for test suite planning and 
execution of four team projects.  

In the Phase 2 of our feasibility study, we evaluate 
the effectiveness of PORT technique towards meeting 
our research goals: (1) improve the rate of detection of 
severe faults, and (2) assess the contribution of 
prioritization factors. The Phase 2 results indicate that 
PORT technique leads to improved rate of detection of 
severe faults in comparison to random ordering of test 
cases at a statistically significant level for the four 
projects. Phase 2 results also show that CP is the 
biggest contributor towards the effectiveness of PORT 
followed by IC. These results are supportive that the 
PORT technique could improve the effectiveness of 
testing activities by focusing on: (1) functionality that 
is of highest value to the customer, and (2) improving 
the rate of detection of severe faults. Rectifying severe 
faults is believed to improve customer-perceived 
software quality.  

Prioritization at the system level can also be 
beneficial because the PORT technique requires the 
team to conduct system analysis and to write concrete 
test cases. The act of writing concrete test cases 
immediately after requirements specification can lead 
to the identification of ambiguous and unclear 
requirements, allowing requirements errors to be 
identified and rectified earlier. The PORT technique 
allows the engineering team to monitor the 
requirements covered in system test; the ability to 
monitor requirements covered in system test is 
believed to be one of the challenges faced by the 
industry [13].  Future studies will be conducted on 
industrial projects.    
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