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Abstract—This paper considers imbalance problems arising
in Energy Management in Smart Grids (SG) as discrete-time
stochastic linear systems subject to chance constraints, and
proposes a Model Predictive Control (MPC) approach to solve
them. It is well-known that handling the closed-loop constraint
feasibility of such systems is in general difficult due to the
presence of a potentially unbounded uncertainty source. To
overcome such a difficulty, we propose two new ideas. We first
reformulate the chance constraint using the so-called Conditional
Value at Risk (CVaR), which is known to be the tightest convex
approximation for chance constraints. We then relax the CVaR
constraint using a penalty function depending on a coefficient
parameter. An optimal solution is therefore obtained by solving
a single unconstrained problem which, intuitively, takes into
consideration a risk of the system trajectories in an undesirable
state. A case study using an academic example is presented to
estimate the a-posteriori probability of the coefficient parameter
in order to show when such a penalty function is exact by means
of probabilistic constraint fulfillment.

I. INTRODUCTION

In Smart Grid (SG) applications, the best performance that
satisfies constraints is usually achieved near the boundary of
the feasible set, and thus, potential constraint violation due
to uncertainty, e.g., photovoltaics, wind power, is unavoid-
able. By adding an extra cost (penalty) on the SG system
during constraint violation [1], [2], this can be represented
as performance degradation. Penalty methods are pervasive
in the optimization literature to approximate a constrained
problem as an unconstrained problem [3], [4]. In the context
of deterministic Model Predictive Control (MPC), a penalty
term for state constraint violations was introduced in [5]–
[7]. Another interesting work [1], proposes MPC with a
penalty method for stochastic linear systems and provides a
theoretical guarantee on the solvability of the optimization
problem, however, this method fails in the case of unbounded
uncertainty.
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MPC using heuristic Monte Carlo sampling for uncertain
SG systems has been presented in [8]. Stochastic MPC with
a probabilistic view on SG systems with uncertainty was
developed in [9]. In this paper, we present a Stochastic MPC
strategy with probabilistic (chance) constraint for uncertain
SG systems. We then formulate a penalty function using
Conditional Value at Risk (CVaR) which is widely known as
the tightest convex approximation of the chance constraint.
Using a weighted penalty function of CVaR to account for
performance degradation and to take appropriate measures to
allow only a certain admissible level of constraint violation,
we finally provide an extensive study on the a-posteriori prob-
ability estimation of the coefficient parameter of the penalty
function for an academic example SG system.

II. PRELIMINARIES

Consider the following stochastic linear time-invariant sys-
tem model: {

xk+1 = Axk +Buk + Ewk

zk = Cxk +Duk
, (1)

where xk ∈ Rnx is the state, uk ∈ Rnu is the control input
and zk ∈ Rnz is the output at time k. The disturbance input
wk ∈ Rnw is an exogenous disturbance with unknown current
and future values with probability distribution Pw and support
W ⊂ Rnw . The system matrices A, B, E, C and D are of
suitable dimensions with real elements.

The system (1) is subject to constraints on the state and
control input. Consider constraints of the form,

X := {x ∈ Rnx : g(x,w) ≤ 0},
U := {u ∈ Rnu : h(u) ≤ 0},

where g : Rnx × Rnw → Rm1 and h : Rnu → Rm2 . The
constraints on the state x define a closed convex set X ⊂ Rnx .
The constraints on the control input u define a non-empty
measurable compact convex control set U ⊂ Rnu . Let N be a
positive integer number that represents the length of prediction
horizon. Retaining the state within the feasible set X for the

2020 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe)
Virtual, October 26-28, 2020

978-1-7281-7100-5/20/$31.00 ©2020 IEEE 309

Authorized licensed use limited to: TU Delft Library. Downloaded on January 12,2022 at 13:23:56 UTC from IEEE Xplore.  Restrictions apply. 



entire prediction horizon requires the initial state to belong to
a set of feasible initial states given as,

XN = {xk : ∃uk s.t. xi|k ∈ X and
ui|k ∈ U ∀k ≥ 0 , i = 0, 1, ..., N − 1 } .

(2)

where uk = {u0|k, ..., uN−1|k}, the sequence of control inputs,
is the decision vector in the optimization problem in MPC.
This requirement is often too conservative and results in poor
performance. In such cases, chance constraints can be viewed
as a compromise on the requirement to enforce hard con-
straints in an uncertain system which may be very expensive
or even impossible. Consider now the chance constraint on the
state trajectories as,

P(ḡ(x,w) ≤ 0) ≥ 1− α (3)

where ḡ(x,w) = max{g1(x,w), ..., gm1(x,w)} and is inter-
preted as the requirement of the probability of any predicted
state x not belonging to X to be less than α.

The optimal control problem is defined in terms of a
performance index JN (xk,uk,wk) that is evaluated over the
horizon of N steps and is solved at each time step, where
wk = {w0|k, ..., wN−1|k}. The predicted cost is given by

Jk(xk,uk,wk) = p(xN |k) +

N−1∑
i=0

q(xi|k, ui|k) (4)

where the function q : Rnx ×Rnu → R+ gives the stage cost
and the function p : Rnx → R+ is the terminal cost. To ensure
that the optimal value of the cost is well defined, we have the
following assumption. The matrix pair (A,B) is stabilizable,
the matrix pair (A,C) is observable, and all eigenvalues of
the system matrix A lie on or inside the unit circle.

To account for the stochasticity of wk, it is appropriate to
use the expectation of the predicted cost Jk(xk,uk,wk), which
is given by

J̄k(xk,uk) = E

[(
p(xN |k) +

N−1∑
i=0

q(xi|k, ui|k)
)∣∣∣x0|k

]
(5)

where x0|k = xk is the initial state measured at time k. The
terminal cost ensures that the system is closed-loop stable and
the controller found is stabilizing.

The functions p(·) and q(·) are assumed to be convex
functions.

Given the performance index and constraints, we are now
able to formulate the following chance constrained optimiza-
tion as the stochastic control problem,

J∗k (xk) = min
uk

J̄k(xk,uk) ,

s.t. xi+1|k = Axi|k +Bui|k + Ewi|k ,

P(ḡ(x,w) ≤ 0) ≥ 1− α
ui|k ∈ U , i = 0, · · · , N − 1 ,

x0|k = xk .

(6)

J∗k (xk) is the optimal value function. The optimal control
sequence u∗k is applied to the system following the receding

horizon principle [10]. However, there are a few significant
difficulties with this optimization to handle chance constraints
[11]. Monte-Carlo simulations and its related methods lead to
heavy computational costs, and the risk of an initial infeasible
state and thereby an unsolvable problem. This motivates the
perspective of approximating chance constraints using CVaR
and implementing them as a penalty function, leading to the
main contribution of this paper.

III. MEASURING CONDITIONAL VALUE AT RISK

Consider the Value at Risk (VaR) of the function ḡ(x,w)
defined in chance constraint (3) as follows:

VaR1−α(ḡ(x,w)) := min
η∈R
{η : P(ḡ(x,w) ≤ η) ≥ 1− α} (7)

While VaR represents the worst-case loss with a probability
[11], [12], CVaR represents the expected loss if the worst-
case threshold (VaR) is crossed. The CVaR is defined as the
conditional expectation of ḡ(x,w) exceeding VaR using the
following relation:

CVaR1−α(ḡ(x,w)) := E[ḡ(x,w)|ḡ(x,w) ≥ VaR1−α(ḡ(x,w))],

which can also be formulated as,

CVaR1−α(ḡ(x,w)) = min
η∈R

(
η +

1

α
E[(ḡ(x,w)− η)+]

)
,

where (ν)+ is nonzero when ν > 0. The formulated chance
constraint in (3) can be then replaced by the CVaR constraint
as,

CVaR1−α(ḡ(x,w)) ≤ 0 (8)

As required in CVaR, an exact evaluation of the expected
value of a random function ḡ(x,w) is expensive and hence
a sampled-average approximation is used [13].

The sample-average approximation of CVaR is now given
by

CVaR1−α(ḡ(x,w)) = min
η∈R

(
η+

1

αNs

Ns∑
j=1

((ḡ(x,wj)−η)+)

)
,

where Ns represents a number of independent and identically
distributed (i.i.d.) samples w1, ..., wNs , called ‘scenarios’. The
CVaR constraint is now reduced to a combination of multiple
affine constraints.

IV. PENALIZING CVAR

The expected cost including the penalty function for the
CVaR constraint violation is of the following form

Jp,k(xk,uk) = J̄k(xk,uk) + λ
N−1∑
i=0

pX (xi|k) (9)

where pX : Rnx → R is the penalty function and λ is the
coefficient parameter of the penalty function. The penalty on
a feasible state which does not violate constraints is set to
zero, i.e., pX (x) = 0, x ∈ X and for an infeasible state that
violates constraints, pX (x) > 0, x /∈ X . However, the penalty
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on the infeasible state cannot be arbitrarily high as a choice of
infinite penalty will make the optimization problem unsolvable
as the cost is infinite at the infeasible states [1].

The simplest form of a penalty function that quantifies
constraint violation is as follows:

pX (x) := max{0,CVaR1−α(ḡ(x,w))} . (10)

Note that using the Ns number of scenarios, we also ap-
proximate (sampled average approximation) empirically the
expected stage costs and terminal cost along with CVaR as
follows:

Jp,k(xk,uk,η) =
1

Ns

Ns∑
j=1

(
p(xjN |k) +

N−1∑
i=0

q(xji|k, ui|k)
)

+λmax
{

0,

N−1∑
i=0

[
ηi +

1

αNs

Ns∑
j=1

([g(xji|k, w
j
i|k)− ηi]+)

]}
,

where x0|k = xk and η = {η1, ..., ηN}. Note that if λ takes
higher values, then, the approximate unconstrained problem
becomes increasingly accurate and closer to the original con-
strained problem.

The reformulated problem using CVaR as a penalty function
is now given as,

J∗p,k(xk) = min
ũk

Jp,k(xk,uk,η) ,

s.t. xi+1|k = Axi|k +Bui|k + Ewi|k ,

ui|k ∈ U , i = 0, · · · , N − 1 ,

x0|k = xk , w ∈ W .

(11)

The above optimization problem is solved at each time step
k and the first element of the optimal control input sequence,
u∗0|k, is applied to the system. The horizon is then shifted ac-
cording to the receding horizon principle and the optimization
problem is solved again.

V. ILLUSTRATIVE EXAMPLE

In this section, we provide a case study similar to [1] to
demonstrate the functionality of our proposed stochastic MPC
using CVaR as a penalty function. Such a case study can rep-
resent an energy management framework for an interconnected
network of buildings in the SG settings proposed in [14],
where a large-scale stochastic dynamical model is developed
to predict the thermal energy imbalance in a smart thermal
grid in the following form:

xk+1 =

(
1 0

1 1

)
xk +

(
1

0

)
u(k) +

(
1

0

)
wk

zk =

 0 0

0.7 0

0 0.7

xk +

0.33

0

0

uk

. (12)

The input is constrained as,

−0.5 ≤ uk ≤ 0.5, uk ∈ R, k ∈ N . (13)

The disturbance is assumed to be a Gaussian distributed
random variable with zero mean and variance 0.2 in the
following form:

wk ∈ G(0, 0.2), wk ∈ R . (14)

The state is x = [x1 , x2]> and the constraint on the state is
given as x2 ≥ 0 . The initial system state is x0 = [0 , 10]>.
In the presence of uncertainty, the task of the controller is to
steer the state to the origin while satisfying the constraints on
the system. The cost function used is of the form,

J̄k(xk,uk) = E

[
||xN |k||2P +

N−1∑
i=0

(||xi|k||2Q + ||ui|k||2R)

]
,

where the approximate matrices for the stage costs are,

Q =

(
0.72 0

0 0.72

)
, R =

(
0.332

)
, (15)

and the weighting matrix for the terminal cost, by solving the
discrete-time Riccati equation, is given as,

P =

(
1.5534 0.9025
0.9025 1.3334

)
. (16)

We then solve the proposed formulation in (11) by selecting
the prediction horizon N = 5 and the expected average-over-
time constraint violation level ε = 0.05.

Two sets of simulation results, one for deterministic MPC
and one for stochastic MPC (11), are presented with 100 trials
in each set. The design of the controller for deterministic
MPC is elaborated in [15]. In both deterministic MPC and
stochastic MPC, the hard state constraint is implemented using
the proposed penalty function. However, in deterministic MPC
the uncertain variable is fixed to its mean value, zero, over the
control horizon.

Fig. 1 shows the trajectory of x2 using deterministic MPC
and the proposed stochastic MPC. When the state of the
system is ‘far’ from the constraint boundary, both standard
deterministic MPC and stochastic MPC perform similarly.
However, the controller in deterministic MPC does not predict
the possibility of a constraint violation when the system is
close to the constraint boundary. The stochastic MPC, on the
other hand, takes into account the possibility of constraint
violation due to disturbance by using a number of sample
disturbance values and hence, provides more realistic control
input.

Fig. 2 presents the estimation of the probability density
of the state x2 using both controllers, stochastic MPC and
deterministic MPC. The probability of constraint violation at
all times is significantly lower while applying stochastic MPC
as shown in Fig. 2. Furthermore, since the performance of
stochastic MPC is determined by the penalty function, the
performance must improve with an increase in the penalty
parameter as the ‘weight’ of the ‘risk’ will increase in case of
constraint violation.

When the penalty function is exact [4], and the penalty pa-
rameter chosen is greater in value than the Lagrange multiplier
associated to the problem, a single unconstrained minimization
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Fig. 1: Trajectory of state x2, Constraint: x2 ≥ 0.

(a) (b) (c)

Fig. 2: An estimate of the probability density of x2. (2a) over 40 time instants, (2b) at time instant k = 11 (overshoot region)
and (2c) at time instant k = 40 (steady state region)

of the cost yields the same optimal solution as the original
problem. A lower bound on the Lagrange multiplier can be
obtained as in [16], however this method uses the optimal
value of the dual function of the cost which is not readily
available. A heuristic approach is therefore applied to compute
a suitable bound on the penalty parameter. Fig. 3 shows
a gradual increase in the mean of x2 with increase in the
penalty parameter. Further, from data, it can be observed
that the median vlaue of x2 gradually increases indicating
higher likelihood of constraint satisfaction. Fig. 4a shows the
a-posteriori probability of achieving the optimal median value
of x2 with different penalty parameters, and Fig. 4b presents
the trajectory of x2 using different penalty parameters. As ex-
pected, performance increases with an increase in the penalty
parameter. As the a-posteriori probability of the parameter
does not increase drastically beyond a parameter value of 100,
it can be inferred that the exact penalty parameter value is
close to 100. A parameter beyond this value will yield similar
system behaviour.

VI. CONCLUSIONS

In this paper, we account for the performance degradation,
due to constraint violation, by adding a penalty into the cost
function of the system at the infeasible states to give rise
to a penalty method for optimization. A suitable choice of
a penalty function is the CVaR function which determines
the risk faced by the system at an infeasible state. Using the
CVaR constraint, we accommodate the expected performance
loss when the worst-case threshold for constraint violation is
crossed. A coefficient parameter is used to weigh the penalty
function. We then provide a heuristic study by varying such a
parameter to demonstrate its effects on performance.
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