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Abstract—A modelling framework was developed for charac-
terising the impacts of variability and uncertainty of renewable
generation and load on a multi-vector and multi-scale energy sys-
tem. A time series synthesis algorithm was proposed to produce a
large number of daily profiles for wind, PV and load, representing
possible variation features. Based on the synthetic time series,
four models with different uncertainty characteristics were built
and applied to generate forecast scenarios for wind and PV. Using
the generated scenarios, the operation of a combined gas and
electricity system was formulated as a two-stage stochastic mixed-
integer linear optimisation problem. A simplified Great Britain’s
energy system was investigated under different flexibility options
and uncertainty characterisations. Results indicate that electricity
storage was the most effective measure to reduce operation
cost. The impacts of uncertainty characterisation methods were
significant only when system flexibility was insufficient.

Index Terms—integrated energy system, multi-scale, optimisa-
tion, variability, uncertainty

I. INTRODUCTION

The energy system in the UK is undergoing radical changes
to achieve the renewable targets as well as the newly proposed
net-zero goal [1]. A range of future scenarios have been
envisaged to describe possible pathways to a low carbon
energy system [2]. These scenarios are characterised by high
integration levels of renewable energy and electrification.
Therefore, the variability and uncertainty from renewable
energy supply and demand will pose challenges to the safe
and economic operation of power systems [3].

Meanwhile, it is widely recognised that these challenges
can be effectively handled through coupling between power
systems and other energy sectors (e.g. gas and heat) which can
provide sufficient flexibility (i.e. the capability of a system to
allocate its resources to compensate its net load variability) to
support power system operation [4]. Flexibility technologies
vary depending on sectors and scales [5], including line-pack
of gas pipelines [6], batteries [7], demand response [§], etc .

Different optimisation models have been proposed to exploit
flexibility under uncertainty [9]. Among them, stochastic op-
timisation [10] and robust optimisation [11] are most typical.
To design appropriate optimisation models making the most of
the flexibility from an integrated energy system, it is essential
to understand the impact of variability and uncertainty on
the operation of electricity systems and the efficacy of novel
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strategies and flexible technologies to mitigate the impacts
[3]. The impacts of variable generation and transmission
constraints on power system flexibility were assessed [12]
[13]. In [14], the impact of large-scale wind integration on
the operation of integrated electricity and gas system in Great
Britain (GB) was studied. The impact of spatio-temporal and
inter-annual variability of weather was studied to design low-
carbon power systems for GB in 2050 [15]. However, previous
studies were in a deterministic optimisation framework or
didn’t consider multiple scales of a energy system. Therefore,
it is important to investigate how different sectors at different
scales interact within the stochastic optimisation framework
by using different uncertainty characterisation models.

The contributions of this paper are: 1) A complete mod-
elling framework was presented to investigate the impact of
variability and uncertainty on the future energy system oper-
ation; 2) A method for variability characterisation and time
series synthesis was proposed to generate a large number of
daily profiles for uncertainty sources; 3) Different uncertainty
characterisation models were applied to generate forecast
scenarios for a two-stage stochastic dispatch optimisation; 4)
The framework was exemplified by a simplified representation
of a GB multi-vector and multi-scale (MVMS) energy system,
considering available flexibility for different scales and sectors
(e.g. gas-fired generation, storage, demand response).

II. MODELLING FRAMEWORK

Variability sources considered include wind, PV and elec-
trical load at different scales. In addition, the wind and PV
also have forecasting uncertainties. The complete framework is
illustrated in Fig. 1, which includes the following procedures.

1) Specific probability distributions were created for vari-
ability sources at different scales using historical data.

2) A low carbon scenario representing a plausible future of
the GB energy system was defined.

3) A large number of daily profiles with hourly resolution
were produced, based on the probability distributions
and temporal characteristics.

4) For each daily profile of wind and PV power, forecast
scenarios were generated by using four different uncer-
tainty characterisation models.

5) A two-stage stochastic optimisation model was devel-
oped for a simplified representation of the GB energy
system in 2030. Selected results were used to analyse
the impacts of variability and uncertainty.
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III. VARIABILITY AND UNCERTAINTY CHARACTERISATION
A. Variability characterisation of wind and PV

Wind and PV power generation are stochastic and intermit-
tent and are driven by natural characteristics.

Normalised historical wind power data was transformed
to Gaussian data to deal with the double-bounded feature
of wind power [16]. Then a Gaussian distribution model
Y'(y'spu,0) ~ N(u,0?) was built to generate samples 3’
which were transformed back to normalised wind power x,,
using the inverse Logit transformation. The Beta distribution
function [17] was used to model the PV power generation
during daytime, i.e., X (zp; @, 8) ~ Be(a, B).

In addition to the probability distributions, a novel adaptive
Markov chain approximation (AMCA) was used to retain the
intrinsic temporal characteristics during the random sampling
procedure. Firstly, the Markov state transition probability
matrix was trained by historical data and expressed by:

T
A"] = ()\”’b)(a,bzl,Z,...,n) M

where n is the total number of equally partitioned states of
historical normalised data, A, is the probability of transition
from state a to state b. To force the random samples to follow
the matrix A, an adaptive approximation transition matrix Q)
initialised with zeros was set for the generated samples:

o) = [¢1 Py ---¢n]T = (1#,(;2

A=A A ...

) @)
(a,b=1,2,...,n)

The matrix ¥® was updated at each time ¢ by the new
sample and then was used along with the matrix A to generate
the next sample. The ) asymptotically approximates to the
A with increasing number of generated samples. The detailed
rules of AMCA are given in Algorithm 1.

According to the diurnal pattern of PV power, samples for
night time were set to zero, otherwise the Beta distribution
and AMCA were used to generate samples. Additionally, two
separate Markov chain models were trained for ramp-up in the
morning and ramp-down in the afternoon.

Algorithm 1 Sampling algorithm of the AMCA

1: Initialise: ¥ (Y = 0; Get first sample () € [0, 1] from PDF F.
2: fort =210 teng do
: Calculate the integer state S®=1) of the sample 2=,
Locate the S~ Dth row vectors of A and ¥ (=1,
Calculate the difference A1) = Agt—1) — (1#;(1,71) =1

4
S:

6: Find the index 7% = arg min{A,|A,; € AC~D 7 ¢ [1,n]};
; r

8

9

while 1 do
Obtain a random sample z from PDF F;
Calculate the state S(z) of z;

10: if S(z) = 7* then

11: z® =z

12: Update (1/;:;(,571) )® based on the new transition S~ — S(z);
13: break;

14: else

15: continue;

16: end if

17: end while

18: end for

Furthermore, to account for seasonal patterns of wind power
and PV power [18] [19], the following models were applied.

z,, = (1 — 2¢)z,, + €(cos(2mt/8760) + 1) (3)
x;v = (1 — 2¢)xpy + €(sin(27t /8760 — 7/2) 4 1) 4)

where € is a very small positive constant number (e.g., 0.05).
Finally the normalised sample data in the interval [0, 1] were
converted to values according to their assumed capacity.

B. Variability characterisation of electrical load

The electrical load profiles have strong daily, weekly and
seasonal patterns. To generate load profiles, a standard daily
load profile was obtained by averaging all daily load profiles
of a historical year. Random load samples were generated
from the Gamma distribution function [20]. The samples were
retained if they were within a predefined deviation from the
standard profile and followed the varying trend of the standard
profile. The seasonal effect was modelled as

z; = (1 — 2€)x; + €(cos(2mt/8760) + 1), 3)

If a sample was within weekends, it was down by a ratio,
e.g. 0.8. The samples were finally scaled by peak load.

C. Uncertainty characterisation

Using the generated data, forecasts and forecast errors were
obtained by Extreme Learning Machine [21] for wind power
and PV power for each time horizon of 24 hours. The method
in [22] was used to generate forecast scenarios.

Four uncertainty characterisation models were considered,
i.e., Multivariate Empirical (ME) Distribution and Multivariate
Normal (MN) Distribution considering temporal correlation
of errors at different horizons, and Univariate Empirical
(UE) Distribution and Univariate Normal (UN) Distribution
assuming no correlation. For the ME and MN, the Pearson
correlation matrix of errors was used as co-variance matrix.

1000 daily scenarios of wind power and PV power were
generated for each of 365 days. The number of scenarios for
each source was reduced to 4 using a clustering method. Note
that the actual number of scenarios for each day was 4* = 256
by combining the scenarios of 4 different uncertainty sources,
i.e., wind and PV at different scales.



IV. OPERATION MODEL OF ENERGY SYSTEM

The operation model was formulated as a two-stage stochas-
tic optimisation problem which takes forecast scenarios as
inputs. The scheduling horizon is 24 hours with hourly time
resolution. The model was run for 365 consecutive days. The
energy system model doesn’t consider network constraints.

A. Objective Function

The two-stage least-cost objective function [10] [23] is :

min7C = Y1, { )% (CE Py + CSVRY, + CSPRE,)
LOIMPpIM | Ef]\iil CCQyir + Zgl\;isl <CIQ§S¢ n COQSLJ)M>}
e LS ()
+ 30 (COMQQ 1+ CTHQIY, L, ) + €O XNE PES,

s (OB - CBORm) + O SRS 2}

where Pg,thgt and Rgt are power generation, spinning-up
and -down reserve capacity of unit g at time ¢t; P/™ is im-
ported power; (g ¢ is gas supply from terminal gt; Qés,t and

O are injection and withdrawal flow rates of gas storage
gs; T, is the probability of scenario m; ry, . and 7P,
are spinning-up and -down reserve activation for power units;
Q-‘Zt;f””’ and Q%f’m are up and (‘lown regulation Of. gaic sCupply;

o1.m and Qg¢, ,, are regulation of gas storage; P, and
Lli’m are curtailment of wind/PV and load. Ng, N¢g, Ngs,
Ng, Nr and Nj; are number of thermal generators, gas
terminals, gas storage, wind/PV plants, loads and scenarios.
The coefficient C' is cost per unit. Reserve cost C’gCU and
CgC D were set higher than power generation cost C’f . Reserve
activation cost C;J and CgD were set as same as C’f . The
activation of downward reserve of power or down regulation
of gas supply implies cost saving. However, regulation of gas
storage capacity always induces more operation cost.

gs,t

B. First-stage constraints

Binary variables u,y and z are defined in (7) to indicate
the on/off states, start-up and shut-down of units. (8)-(10) are
limits for power generation and ramps [11]. (11) limits the up
and down reserve capacity. The state-of-charge of electricity
storage is determined by (12). (13) imposes maximum limits
of charging and discharging for battery storage. (14) limits
the schedule of wind and PV power below their day-ahead
forecasts. (15)-(18) are constraints of gas supply and storage.
(19) is gas consumed by power generation. (20) and (21) are
balance equations for electricity and gas. The constraints of
min-up/down time for generators can be found in [24].

Ygit — Zgit = Ugt — Ugt—1,Ygt + Zgt < 1 @)
g Py < Pgy < g, Py (3
Pyt — Pya—1 < RUG(1 = yg.) + SUgygoe )
Pyi1— Py <RDy(1—2g4) + SDgzg s (10)
R, < Py~ Pyt R}y < Pyt —ug P, (In

Sf,ig = S(fig—l + Pftcﬁc - Pq}:;tD/nli (12)
0< PEC <P 0<PEP <P (13)
0< PR < PRA (14)
0< Qgir < Qy (15)
Sy < SRl < 8y (16)
St = S + Qe — Qs (I
0<QL, <@y 0<Q%, <Q, (18)
Poi= ¢HQ;E¢ (19)
Z{/V:El Py + Zf\]:Rl Prl?t +PM P, =

14 L + 20055 PEC = 323 PEP (20)
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where P, and P, are lower and upper limits of power
generation units; RU, and RD, are ramp rates; SU, and
SDy are start-up and shut-down rates; S fts , Pftc and PftD
are state of charge (SOC), charging and discharging power
of electricity storage g; 1. and ng are efficiency of charging
and discharging; Pq and ?q are limits for charging and
discharging; Pfi and PT%A are day-ahead schedule and point
forecast of wind/PV power; @gt is upper limit of gas supply
from terminal gt; S, S, and Sy, are working capacity of
gas storage and its limits; Qfmt and Qg&t are injection and
. I —=0 ..
withdrawal rates of gas storage; @ , and @, are upper limits
for injection and withdrawal rates of gas storage; ¢ and H are
thermal efficiency and heating value of gas turbines; Qit is
gas consumption of power generation; P,.. is renewable power
generation except wind and PV; L;; and szt are electrical
load and gas demand; Q5V and Q57 are gas consumption by

start-up and shut-down of thermal units.

C. Second-stage constraints

(22) sets limits for reserve activation. (23) defines load
shifting and load shedding. (24) and (25) are constraints of
electricity storage. (26) limits wind/PV curtailment. (27)-(29)
are regulations of gas supply and gas storage. (30) is increased
gas consumption by power generation. (31) and (32) are
balance equations for electricity and gas.

Yy <RV, 1D, < RD, (22)
Sy L= LPE 0<LFS <LPE (23)
Sgtim = Sfig + Pfﬁnnc — PPY /na (24)
0<PCY, <Py~ PEC.0< PPV, <P, — PEP (25)
PEC < PES. (26)
0< Qﬁ{t,t,m < th — Qgt,4,0 < Qth,t,m < Qe (27)
Stotal = Stotal 1 QI — Q9% (28)
0< QI <Qye— Q1 0< Q9 < Ty — QS (29)
T_[dt,,m - T_qD,tJn = ¢HQyE,t,m (30)
TN (PES, — PR, — PRC) + 05 (0 = 7 m)

+ Y Nes(PRY, - PEY,) = S5 (LER, — Ly — LES,) (31)
S0 QY = QB ) + L Q0 1 — Qb ) = 05 QF 0 (32)



where LPR is shifted electrical load; Sy, is second-stage
SOC of electricity storage; Pfg{m and P’?tUm are up regulation
is curtailment of

of charging and discharging power; P

rt,m

wind/PV; PES s the mth forecast scenario of wind/PV
T Sé(;fglm is second-stage working capacity of gas storage;

Qf +.m 18 the increment of gas consumed by power generation.

V. CASE STUDY
A. Input data and assumptions

The studied system is depicted in Fig. 2. Under the Commu-
nity Renewables 2030 scenario [1], the total power generation
capacity is 153.4GW. The wind capacity at transmission and
distribution levels are 42.1GW and 11.2GW, and the PV capac-
ity at distribution and building levels are 20GW and 9.5GW.
The capacity of various generating technologies are: gas-fired
22.5 GW, nuclear 4.6 GW, hydro 2.1 GW, electricity storage
12.9 GW, inter-connectors 16.5 GW and other renewable
generation 12GW. The capacity of each gas-fired generator
is 5S00MW. The nuclear and hydro are must-run generators.
Renewable generation except wind/PV were assumed to be
fixed according to an capacity factor. The peak electric demand
is 57.4GW. The annual gas demand is 55bcm and supplied by
four gas terminals with maximum capacity of 90 mcm/day
each. The capacity of two gas storage facilities are 34 mcm
and 37.3 mcm. They were used to simulate the transmission
line-pack and short-term gas storage at distribution level. Other
parameters can be found in [14] and [25].
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Fig. 2. The representation of the studied multi-scale energy system

B. Cases

Stochastic dispatching under different uncertainty models
was studied in three cases with different flexibility options:

o GasOnly: Gas-fired generators and gas storage.

o GasStor: GasOnly with electricity storage.

e GasStorDR: GasStor with 10% shiftable electrical load .

A deterministic model (DM) was also considered as a
benchmark. The one-stage DM assumes the forecasts are
perfect without uncertainty and no reserve capacity is needed.

C. Results and discussions

Fig. 3 shows average daily operation cost over a year for
different cases and different models. The GasStorDR with
combined electricity storage and demand response (DR) has
the lowest cost. By using electricity storage on GasOnly,

the cost is significantly reduced. However, allowing 10%
shiftable demand can only bring a very small cost reduction.
By comparing the breakdowns of the total costs of GasOnly
and GasStor, it can be seen that the cost reduction is mainly
due to the reduction of reserve (for uncertainty models only),
power import and wind/PV curtailment.
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Fig. 3. Average daily system operation cost

By comparing the DM with uncertainty models, it is shown
that the DM costs less for GasOnly. This is mainly because
the DM assumes no reserve, but obviously it would put the
system at considerable risk in practice. Also note that the
DM consumes less gas for power generation but needs more
expensive power import, as the CCGTs and gas storage are not
flexible enough to meet the increased power requirement. For
GasStor and GasOnly, where the system is provided with more
flexibility, the cost of uncertainty models becomes lower than
the DM, as the DM has much higher renewable curtailment.

Regarding different uncertainty models, the cost for mul-
tivariate models are generally higher than that for univariate
models. The difference is much more significant for the case
GasOnly which is less flexible than GasStor and GasStorDR.
By analysing the forecast scenarios, it is found that the
scenarios generated by multivariate models are more diverse
and conforming to the temporal characteristics of practical
time series, while the scenarios generated by univariate models
are random but very close to each other. This reveals that the
univariate models could underestimate the uncertainty in the
system and thus lead to lower cost. No notable difference is
observed between empirical and normal distribution models.

The daily reserve cost is given in Fig. 4. It is shown
that a large proportion of the total reserve cost is caused
by reserve capacity which is to compensate uncertainties at
the second stage. Note that the reserve activation cost is
positive when more upward reserve than downward reserve is
activated, otherwise it is negative. For the GasOnly the system
needs higher upward reserve for multivariate models and needs
higher downward reserve for univariate models. For GasStor
and GasStorDR, the system always requires more downward
reserve and there is no significant difference between different
uncertainty models.

Fig. 5 shows the state of charge (SOC) of electricity storage
at the first stage for GasStor. The storage operation for
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multivariate models is more conservative than univariate ones,
because the multivariate models represent higher uncertainty
which makes the storage keep more regulation capacity to
compensate possible large deviations at second stage.
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Fig. 5. Load profile and first-stage SOC of eletricity storage for GasStor

VI. CONCLUSION AND FUTURE WORK

It was demonstrated that flexibility technologies are crucial
to ensure a low-carbon, economic and secure GB energy
system for the future. In the studies, along with the gas supply
system, electricity storage is the most effective option to
reduce operation cost, especially in terms of reduced reserve,
power import and renewable curtailment. However, additional
10% demand shifting has little impact at whole-system level.

The significance of uncertainty characterisation depends on
the level of system flexibility. A highly flexible system will be
insensitive to different uncertainty models, and thus can avert
the risks caused by inaccurate characterisation of uncertainty.

The proposed framework could be readily applied to study
other integrated energy systems, by adjusting parameters,
adopting different flexibility options and modifying energy
system model (e.g., considering detailed energy network con-
straints). The results will allow understanding where and how
much flexibility will be needed in stochastic energy systems,
and how these needs will best be met by a ‘flexibility mix’ of
technologies.
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