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Abstract—Synchronization of the behavior of residential con-
sumers, for example during crises, can lead to overloads in electric
power grids. This holds especially for distribution grids, where
the electrical infrastructure is not designed for the simultaneous
high consumption of all households. Therefore, the monitoring
and detection of (upcoming) synchronization trends is important.
It is the basis for any countermeasures. We propose to model the
dependency structure of consumer demands with a Gaussian
copula using its correlation parameter as an indicator for
synchronization. We then analyze the probability distribution of
the aggregated load depending on the synchronization indicator.
This allows us to infer the synchronization parameter from
load measurements in real-time using a Bayesian approach. In
simulation experiments with realistic household consumption
distributions, we show how increased synchronization can be
detected.

Index Terms—Synchronization, Copulas, Electricity demand,
Resilience

I. INTRODUCTION

Electrical power grids need to supply consumers with electric
power at all times. The aggregated demand of many consumers
typically stays within a narrow band because short-term demand
peaks of individual consumers typically balance each other
out. However, during crises such as extreme weather events,
pandemics, or social conflicts this may no longer be the case.
Crises often lead to the synchronization of people’s behavior
which also affects the power demand. While the average energy
consumption pattern over a longer horizon may not change
significantly, since the connected devices and human needs
remain similar overall, the timing of the individual demands
might change severely – and thus the aggregated peak load.

A temporarily high aggregated power demand can lead
to local power outages, even if it can be served by the
transmission grid. This is because local grid capacity limits
of transformers and power lines might be exceeded. Various
household devices produce short and high power peaks, e. g.,
electric kettles, stoves, or tankless water heaters. This explains
the high maximum power ratings for individual residential
buildings, e. g., 14.5 kVA without electric heating in Germany
[1]. If the temporal usage of these devices synchronizes, the
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grid’s power limits may be reached very quickly. Electric
vehicle (EV) charging is another important factor to consider
as it features comparably large loads for minutes to hours. If
charging does not occur equally distributed over the day but
concentrated in a short time window, low-voltage (LV) grids
might become overloaded already for a low number of EVs
[2].

Power grids are socio-technical systems since the behavior of
people has a major influence on the state of the grid. If unusual
events lead to spontaneous synchronization of people’s behavior,
the typical assumption of (almost) independent consumers
becomes invalid. For example, in the United Kingdom, the
TV program sometimes causes such a synchronization event,
when at the end of one show, many viewers use an electric
kettle. This can result in a rise of the total power demand
of up to 2800 MW in only a few minutes [3]. During crises,
people often change their behavior and therefore possibly their
use of electrical power. These changes tend to happen in a
synchronized fashion when people are affected by the same
causes or supply situations. For example, in the corona crisis,
a self-reinforcing increase in demand for toilet paper could
be observed [4]. Another scenario is a chemical accident or
a war that forces people to flee and potentially charge their
electric vehicles shortly before. Further, in today’s digital world,
the spreading of information over social networks could lead
to a synchronization of people and affect the power grid in
timescales of minutes. Note that crises can lead to critical
effects in power grids, even if the infrastructure itself is fully
intact.

The early detection of these synchronization events and a
short-term forecast of their strength would be beneficial for grid
operators as it would allow them to counteract, e. g., by sending
price signals [5] or regulating individual loads via smart meters
[6]. This requires a model and an estimation framework that
is capable of representing (time-)variable synchronization.

In this paper, we propose an electricity demand model
that allows to represent the individual demands of different
prosumers and a time-variable dependence structure between
them. To this end, we use a Gaussian copula and define
its correlation parameter as our synchronization indicator.
We explore the resulting distribution of the aggregated load
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and show how Bayesian inference can be used to determine
the posterior probability distribution of the synchronization
indicator given real-time measurements of the aggregated load.

The presented framework can be used as a basis for real-
time monitoring of demand synchronization. Grid operators
can then be warned about upcoming critical load situations and
counteract before blackouts happen. Thus, our approach is an
important tool to increase disaster preparedness and resilience
of power systems.

Section II reviews existing methods for electricity demand
modeling. In Section III our demand synchronization model is
introduced. A simulation study of our approach is presented
in Section IV. We conclude in Section V.

II. RELATED WORK

To describe synchronization effects caused by households,
a bottom-up model [7] for power consumption/generation is
needed to be able to simulate the individual behavior of
prosumers. Electricity demand is often modeled with probability
distributions to represent uncertainty in the individual demand
behavior. For residential households, typical distributions used
are Beta, Weibull, Log-normal or Log-logistic distributions
[8]–[10]. Human time use is the most important variable
for explaining the temporal variations of energy demand of
households [11] and can be the cause of synchronization. Time-
dependence of human practices can be analyzed with activity-
based models [11], [12].

When analyzing the distribution of the aggregated load, the
relative standard deviation typically reduces for a greater num-
ber of households [13]. The aggregated load is therefore often
assumed as the sum of independent random variables [9]. The
resulting distribution then tends towards a normal distribution
according to the central limit theorem. However, analysis of
aggregated residential load shows that it is not represented
satisfactorily by a normal distribution [13], indicating that
consumers cannot be assumed to be independent.

In the design of LV grids, diversity factors are commonly
used to describe the simultaneousness of power demand. The
diversity factor is defined as the ratio of the sum of the
individual peak loads and the maximum of the aggregated
load [14], [15]. They can be estimated for different types of
devices and are typically derived from empirical knowledge.

Various models consider the influence of day time, weekday
and season on demand. These variations are commonly captured
in standard load profiles (SLPs) and describe an ”external syn-
chronization” that leads to a partial dependence of consumers
(e. g., at night, all consumers tend to have a lower demand).
For every hour of the day, day of the week and month of
the year, a different distribution of individual demand can be
assumed [9]. Despite this temporal interdependence, individual
consumers are often assumed independent from each other.

In the field of load forecasting, the timeframe ”very short
term” (less than an hour) is rarely investigated [16]. Little is
known about high load peaks in LV grids in intervals shorter
than 15 minutes [10], [15]. Energy demand models are often
fitted with real-time data from smart meters [9]–[11]. In order

to assess the temporal variance of power consumption, the
considered timescale is crucial. Existing models often use data
with hourly intervals which is able to reflect the rough daily
variations, but minute resolution is needed to capture peaks
created by devices that require high power only for a short
time.

Copulas have recently been investigated for EV charging
models [17] as well as short-term load forecasting regarding
external dependencies of power load on electricity price
and temperature [18]. However, a (time-)variable internal
dependence between individual consumers and its real-time
monitoring are not examined.

III. DEMAND SYNCHRONIZATION MODEL

Our prosumer synchronization model consists of two parts.
First, a demand model for the individual households is needed.
Second, a dependence model based on copulas describes the
(partial) synchronization between prosumers.

A. Individual Demand Model

We model the individual power demand of household i
as a random variable Xi with a corresponding distribution
that has a probability density function (PDF) fi(x) and
cumulative distribution function (CDF) Fi(x). As we consider
only consumers without local generation, the distribution is 0
for x < 0. The shape of the distribution and its parameters are
deduced from empirical household data in Section IV-A.

We use one fixed distribution for the individual demand.
Daily or seasonal variations could be incorporated by adjusting
the mean (and variance) of known SLPs to the distribution.

B. Dependence Modeling with Copulas

Copulas provide a way of modeling the dependency structure
between random variables in a unit space. The advantage of
copulas for the modeling of multivariate distributions is that
the dependency structure can be modeled separately from the
marginal distributions (which can be continuous or discrete).
There are several variants of copulas, e.g. Gaussian copulas,
Archimedean copulas or t-copulas [19].

Let unit variables Ui with uniform marginals be defined as

Ui = Fi(Xi). (1)

Then, the copula is the multivariate joint CDF of these unit
variables, i.e.,

C(u1, . . . , un) = P (U1 ≤ u1, . . . , Un ≤ un). (2)

It captures the dependency structure between the Xi in a
normalized way (here, P denotes the joint probability).

The Gaussian copula is a widely used choice in many
applications. Its copula function

CGauss
R (u) = ΦR

(
Φ−1(u1), . . . ,Φ

−1(un)
)

(3)

is defined by the CDF ΦR of a multivariate normal random
variable with mean zero and correlation matrix R ∈ [−1, 1]n×n

and Φ−1 the inverse CDF of the univariate standard normal
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Fig. 1. Two-dimensional Gaussian copula density function with r = 0.5

distribution. A correlation between all variables can be modeled
with a single parameter r by setting

R =


1 r · · · r
r 1 r
...

. . .
...

r r · · · 1

 . (4)

A value of r = 0 means all random variables are independent
from each other. The other extreme case r = 1 indicates a
maximal dependence of all variables, i. e. u1 = · · · = un . The
density function of a two-dimensional Gaussian copula with
correlation r = 0.5 is shown in Fig. 1.

From now on, we call r ∈ [0, 1] the synchronization
(indicator).

C. Aggregated Load
Next, we evaluate the aggregated load of many consumers,

Yr =

n∑
i=1

Xi (5)

and its resulting distribution. In a first step, we consider
identically distributed marginals (all Xi are distributed as X).

There are two extreme cases. If all consumers are inde-
pendent from each other, it is very unlikely that the total
consumption is very high or low. According to the central
limit theorem, the sum converges to a normal distribution for
n → ∞ for any distribution of X if the variance of X is
finite [20]. It has the following expectation value and standard
deviation:

E(Y0) = nE(X) (6a)

Std(Y0) =
√
n Std(X) (6b)

On the other hand, if all consumers are fully synchronized,
the distribution of the sum is the same as the marginal
distribution, but scaled with n

Y1 = nX . (7)

For 0 < r < 1 the distribution of Yr is somewhere between
those extreme cases. Note that Yr has the same mean regardless
of r.

D. Inference

We aim to infer the synchronization parameter r from
measured values of the aggregated load y. Such measurements
could be conducted at a (secondary) substation.

The copula model yields the probability distribution of the
aggregated load p(y|r) for a fixed value r. If a prior p(r) is
chosen, we can calculate the probability of synchronization r
for given y using Bayes’ rule as

p(r|y) ∝ p(y|r) · p(r) . (8)

IV. SIMULATION RESULTS

The presented copula model is simulated with distributions
that are derived from typical residential consumption data.
Additionally, an EV charging scenario is investigated. Before
we analyze synchronization for many consumers, the joint
distribution is visualized in a minimal example for the bivariate
case.

A. Individual Household Demand

For the derivation of a probability distribution describing
household power demand, a publicly available dataset of
residential household data [21] is investigated. This dataset
contains measured timeseries data from six residential buildings
in southern Germany. The measurements were conducted in
1-minute intervals over a period of several years ranging from
2015 to 2019.

We analyze the consumption of Residential2, according
to the description a ”residential building, located in the suburban
area”. The average consumption is 2493 kWh/year, which
corresponds to 0.285 kW on average. The standard deviation
is 0.47 kW. Because of the high temporal resolution of the
data, power peaks of up to 14 kW can be detected.

Three different distributions, fitted via maximum likelihood
estimation (MLE), were compared with the histogram of power
consumption (see Fig. 2). The Beta distribution is capable of
modeling the part at low power (0-1 kW) which entails most
of the distribution, but decreases very fast as it does not have
a fat tail and therefore cannot represent high values of power.
The Weibull distribution better represents data at high values,
however, it is not suitable for low values as it tends to infinity
for zero power. The Log-normal distribution can adapt to both
parts well and is therefore suitable to represent the power
demand of a household.

The PDF of the Log-normal distribution is defined as

fLognormal(x) =
1

xσ
√
2π

exp

(
− (ln (x)− µ)

2

2σ2

)
. (9)

To adapt the parameters of the distribution to different kinds
of consumers, the parameters are calculated such that the mean
and the variance of the data and the Log-normal distribution
match.
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Fig. 2. Histogram of power consumption of a residential household and fitted distributions. The density in logarithmic scale reveals rarely occurring high
demands.

B. Electric Vehicle Charging

In another scenario, we assume that 20 % of the households
use EV home-charging. Every owner of an EV is assumed
to charge one hour per day with a charging power of 11 kW.
This can be modeled with a discrete probability distribution:

P (X = 0kW) =
23

24
, P (X = 11 kW) =

1

24
. (10)

C. Joint Distribution for 2 Consumers

As a minimal example, the Gaussian copula described in
Section III-B is applied for n = 2 consumers. Their power
consumption X1 and X2 is assumed to be distributed according
to the described Log-normal distribution. Fig. 3 shows a
histogram of the resulting joint distribution. It can be concluded

that the probability of both power consumptions being high,
i. e., total power being unusually high, increases with higher
synchronization r.

D. Aggregated Load for n Consumers

Now we analyze the distribution of the aggregated load for
higher n. The power consumption of all n = 100 households
is assumed to be identically distributed with the Log-normal
distribution (9) with 0.5 kW mean and 0.75 kW standard
deviation. The PDF fYr of total power consumption Yr (5) is
calculated in dependence of r with Monte-Carlo-Simulations
(107 samples). Fig. 4a shows a continuous transition from
independence (r = 0), resulting in an approximate normal
distribution (mean 50 kW), to full synchronization (r = 1),
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Fig. 3. Histogram of Gaussian copula with n = 2 Log-normal distributions (1 kW mean and 1.5 kW standard deviation) as marginals. The color of the cells
represents the frequency in a logarithmic scale. (a) If X1 and X2 are independent, it can be observed that the frequency of X1 and X2 being high at the
same time is very low. (b) If there exists a synchronization between X1 and X2 with r = 0.5, the upper right area that represents total consumption being
high is more densely filled. Further, it can be seen that the occurrence of X1 being low and X2 being high at the same time (and vice versa) decreases.
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Fig. 4. Probability distribution of the aggregated load Yr with synchronization r ∈ [0, 1). The total power is normalized to the mean.
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Fig. 5. Probabilities of total power exceeding the mean by a factor of 2, 4, 8 and 16 in dependence of r

resulting in a scaled Log-normal distribution, as outlined in
Section III-C.

Next, we inquire the probability of exceeding a certain limit

P (Yr > ylimit) =

∫ ∞

ylimit

fYr
(x)dx (11)

which could represent physical power line limits or fuses in
a transformer. The probability of exceeding different limits
is shown in Fig. 5. For r = 0 the (approximate) normal
distribution tends to zero very quickly, implying that very
high values virtually never occur. The distributions for higher
r tend towards zero much more slowly because they converge
to a Log-normal distribution for r → 1 which exhibits a fat
tail. This means that unusually high loads of e. g., 4-8 times
the average load (200-400 kW) cannot be excluded. To set the
values into perspective, a probability of 10−5 corresponds to
an average of 5.3 minutes per year.

The results are compared with the EV charging scenario
(Section IV-B). Here, the mean amounts to 59.2 kW. Fig. 4b

reveals higher variances of the aggregated load for the same
values of r. It can be recognized that for e. g. 2 times the
average demand, a lower synchronization r is most likely. In
Fig. 5b it can be observed that the probabilities of exceeding
multiples of the mean are higher overall for the EV scenario.
As r is getting closer to 1, the curves are approaching each
other.

E. Inference of synchronization indicator

As outlined in Section III-D, measurements of the aggregated
load can be used for inference of the synchronization indicator.
In case of just one sample y, MLE would return the r of the
PDF of Yr with the highest value at y. As shown in Fig. 4,
a bi-modal behavior emerges: For values of y that are around
the mean, r = 0 (independence) is most likely. However, if y
exceeds this area below or above, PDFs of r > 0 are maximal
and thus more likely. At both ends of the distribution, r = 1
(full synchronization) seems most likely.
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Via Bayesian inference we can include prior knowledge,
since low synchronization is most common and high values
of r occur rarely. We therefore assume a Beta distribution
Beta(1, 5) for the prior p(r). Subsequently, we can assess the
posterior probability of all r ∈ [0, 1] for a measurement y,
namely p(r|y) (8). Fig. 6 shows the posterior probability of r
for different measurements y. The mentioned bi-modal behavior
can be detected here as well. While for y = 1 the maximum of
the posterior yields r = 0, for y < 1 and y > 1 the maximum
moves towards higher values of r. Interestingly, p(r|y) yields
about the same curve for y and 1

y .

V. CONCLUSION

In this work, a novel approach for modeling the synchro-
nization of the electricity demands of residential households
is presented. By explicitly modeling the coupling between
individual consumers via copulas, internal synchronization
effects as well as synchronization induced by external factors
can be examined. The strength of synchronization can be
encoded in only one parameter. In future, other kinds of
correlation matrices or other copulas than the Gaussian could
be analyzed.

The advantage of copulas pays off as the synchronization
model is separated from the marginal demands – the individual
demand can be replaced by any distribution, allowing to include
e. g. different types of households, a fraction of EV home-
charging, heat pumps, but also photo-voltaic as distributed
power generation.

Transferring this theoretical study into industrial tools, the
model could be parameterized from standard load profiles
(SLPs) or recorded data of the aggregated load. The resulting
distributions for the aggregated load can be precalculated in
the required resolution. The framework can then be used in a
real-time environment to provide estimates for the current state
of synchronization. The estimated synchronization indicator
could be continuously monitored and in its normalized form
serve as a simple early warning indicator.
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Planungsgrundlagen, Std.
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