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Abstract—Microgrid sizing optimization is often formulated
as a black-box optimization problem. This allows modeling the
microgrid with a realistic temporal simulation of the energy
flows between components. Such models are usually optimized
with gradient-free methods, because no analytical expression for
gradient is available. However, the development of new Automatic
Differentiation (AD) packages allows the efficient and exact
computation of the gradient of black-box models. Thus, this work
proposes to solve the optimal microgrid sizing using gradient-
based algorithms with AD packages. However, physical realism
of the model makes the objective function discontinuous which
hinders the optimization convergence. After an appropriate
smoothing, the objective is still nonconvex, but convergence is
achieved for more that 90 % of the starting points. This suggest
that a multi-start gradient-based algorithm can improve the state-
of-the-art sizing methodologies.

Index Terms—Automatic differentiation, gradient-based opti-
mization, microgrid, optimal sizing

I. INTRODUCTION

Microgrid sizing is an optimization problem whose ob-
jective is to find the optimal values of the sizing variables,
which are the capacities of the power and energy storage
resources (see Fig. 1). Optimality is expressed with at least
one objective function and often extra objectives or constraints
which are built from performance indices related to microgrid
costs, environmental impact, load serving or penetration of
renewable sources. All these factors must be evaluated on the
project lifecycle to include the maintenance and replacements
of components. The microgrid sizing problem has been stud-
ied for some decades and several classical approaches have
been consolidated into convenient software packages such as
HOMER [1] or DER-CAM [2]. This means that the simplest
microgrid design tasks can be considered as solved problems
(i.e. optimized in seconds to minutes with HOMER). By “sim-
ple task” we mean optimizing a few components using a 1-
year long hourly simulation of power balance on a single bus.
Still, there is an interest in finding ever more performant sizing
methods in order to tackle more complex cases. Complexity
comes when optimizing more than a handful of components, or
components with several parameters (e.g. the orientation of PV
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Fig. 1. Islanded microgrid architecture considered in this work. The microgrid
sizing problem is about finding the optimal ratings of all its components.

panels which is generally considered as fixed), but also when
the sizing optimization is formulated as a multistage stochastic
problem to mitigate long-term uncertainty (like fuel price over
25 years) as in Fioriti et al. [3]. This latter work, which is
very interesting from a theoretical point of view, has a limited
applicability due to the reported solving time of 70 hours.
Finally, the closed-source nature of programs like HOMER
prevent reusing and expanding its existing parts to adapt to
new design settings. Accelerating the pace of progress in the
domain calls for more open source tools.

A. Optimization approaches

There are many approaches to solve the sizing optimization
problem, but they can be divided into mathematical pro-
gramming (MP) and black-box optimization (BB)'. The MP
approach consists in formulating the microgrid sizing problem
algebraically, e.g., with a Mixed Integer Linear Program
(MILP) model. In the BB approach, the microgrid behavior
is described inside a simulator that receives as inputs the
sizing variables and returns as outputs the performance indices
which are used as objective and constraints functions of the
optimization problem. DER-CAM [2] is a good representative
of the MP approach while HOMER [1] is perhaps the most
famous simulation-based, i.e. BB, sizing tool.

U1t is a black-box optimization from the point of view of the optimization
algorithm, although the cost function can be fully open source.



MP is generally formulated with modeling languages ded-
icated to mathematical optimization, e.g. AMPL or GAMS,
or dedicated libraries, e.g. YALMIP, JuMP, Pyomo. One of
the MP advantages is that the problem can be passed to
reliable optimization solvers, often with fast and guaranteed
convergence properties. Nevertheless, it is necessary to make
several simplifications in the models of power sources and
energy storage systems, e.g. linearizations, to stay in the
scope of the dedicated language/library and to get the best
convergence. Also, the daily operation is often optimized in
an anticipative manner, i.e., disregarding the uncertainty of
hourly inputs such as load or solar production, because the
optimizer has access to the entire time series at once. All this
can lead to a sizing that does not meet the requirements of a
microgrid in practice.

The BB approach allows models which can be way more
physically realistic. Indeed, it uses a temporal simulation
code written with the full freedom of numerical computing
languages. Also, implementing a non-anticipative operational
control is easy, e.g. the Load Following strategy of HOMER
[1], [4]. However, the optimization must be solved by gradient-
free methods, for example Nelder-Mead or evolutionary al-
gorithms [5], which could have poor convergence speed.
Indeed, the objective and constraint functions are generally too
complex to allow deriving their gradient by hand and using a
finite difference approximation is disregarded as too slow.

However, it is possible to accelerate black-box design prob-
lems by using gradient-based optimization algorithms thanks
to Automatic Differentiation (AD) software packages [6]. AD
tools can compute the numerically exact gradient of computer
codes. While AD tools have been around for some decades
[7], there is a recent increase in developing high performance
AD packages, because of the growing interest in the topic of
“scientific machine learning” [8].

The promise of AD-assisted gradient-based microgrid siz-
ing optimization is to obtain both fast convergence and the
physically detailed models of the classical BB gradient-free
approaches. Still, the non-convexity and sometimes the dis-
continuity of the objective function (see §III) implies that this
promise should be carefully checked. To that end, our contribu-
tion is: 1) an open source microgrid simulator with a simplified
HOMER-like model [9], using the high-performance Julia
language [10]; 2) a gradient-based microgrid sizing tool which
uses Julia’s AD packages; and, 3) an analysis of the conver-
gence speed and reliability of this method on an exemplary
microgrid sizing problem.

Section II presents the proposed AD-based sizing method
while section III details the microgrid model. Finally, conver-
gence is assessed in section IV.

II. METHODOLOGY
A. Problem formulation and employed tools

The sizing optimization problem can be formulated as:

min f (x) (la)
st. h(x)=0 (1b)
g(x)<0 (le)

where € R" is the vector of optimization variables which are
n sizing parameters (ratings of PV panels, batteries...). f (x)
is the objective function, h (x) is the vector of equality con-
straints and g () is the vector of inequality constraints. These
functions encode the performance indicators (Net Present
Cost, environmental impact...) that should be optimized or
constrained.

To implement AD-assisted gradient-based microgrid sizing
optimization, three elements are needed:

1) a microgrid simulator

2) an Automatic Differentiation routine

3) a gradient-based optimization algorithm
Their interaction is illustrated on Fig. 2.

The microgrid simulator receives all the microgrid technical
characteristics (load demand, climatic data, unit price of
components...), including x, the sizing to be tested. Using
models presented in §11II, the simulator returns the performance
indicators associated with the evaluated sizing. The Automatic
Differentiation routine wraps around the microgrid simula-
tor to evaluate efficiently the gradients of the performance
indicators (Vf...). Finally, the gradient-based optimization
algorithm searches for the best sizing value which optimizes
the performance indicators. It does so by iteratively calling the
AD-wrapped simulator.
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Fig. 2. Relation between optimizer and simulator.

Our proposed method is implemented using the Julia lan-
guage [10] to benefit from a fast simulation speed and
a rich ecosystem of AD packages. At present, we use
ForwardDiff. jl [11] which yields fast gradients for this
application (relatively small number of optimization variables
to differentiate on). The gradient-based optimization algorithm
is SLSQP (sequential quadratic programming) from the Julia
wrapper of NLopt [12].



B. Optimization convergence assessment

Gradient-based optimization algorithms generally require
the functions of (1) to be smooth (continuously differentiable)
to get a reliable convergence. However, these functions cor-
respond to microgrid performance indicators. and we show in
$III that realistic HOMER-like models contain discontinuities
in a few indicators.

For that reason, we introduce relaxations in the model
to smooth the functions to enable good convergence. This
smoothing creates a trade-off between the optimization con-
vergence and model accuracy. The tuning of our proposed
relaxations needs a careful evaluation of both the convergence
and the accuracy of the optimization.

Our convergence & accuracy evaluation procedure is shown
in Fig. 3, where f(x) is the objective function for the original
model and f,;,(x) is the objective function for the relaxed
model. * is the optimal value of f(z) (hard to obtain) while
x;,,. is the optimal value found with the optimization of
friz(z). The optimization is repeated for many initial points
2% with both the original and the relaxed model. Also, the
relaxed optimum 7, is reinserted in the unrelaxed microgrid
simulator to evaluate its “true” performance. We collect these
data for each initial point 2° so as to see to what extent the
found optimum points vary with initialization (see results in
§IV).
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Optimization with
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Fig. 3. Methodology for optimization convergence assessment.

Notice that this repeated procedure is only needed to eval-
uate the relaxation tuning. Once tuned, solving a microgrid
optimization problem should only require one initial point.

III. MICROGRID SIMULATOR

This section presents our new open source microgrid sim-
ulator [9], one of the three components of our sizing method
(see Fig. 2). We introduce its general principle and the key
performance indicators it generates. Due to space limits, we
only focus on the model of one of the microgrid components,
the Diesel generator, because it contains discontinuities that
made us introduce a relaxation.

A. Microgrid simulator architecture

Our microgrid simulator is a simplified HOMER-style
model [1] which evaluate key performance indicators of a
microgrid project of the type of Fig. 1. At present, the
simulator can model islanded systems with any number of

nondispatchable sources (wind, PV...), one energy storage and
one dispatchable generator. The simulator contains two stages:

1) An operation model that computes the energy exchanges
between components using a simple rule-based energy
dispatch

2) A techno-economic model that builds performance in-
dices out of the operation data

Following HOMER, the operation model simulates one year
at an hourly timestep (At = 1h, T" = 8760 instants). The
energy dispatch is a simplified Load Following [1], [4] which
feeds the load Pj,,q from the available sources with the
following descending priority: PV, storage and then Diesel
generator. As a last recourse when energy gets scarce, the
load can be partially shed with power Pspq.

The economic model extrapolates the yearly operation data
to compute a Net Present Cost (NPC) which sums, for each
component, the initial investment, operation and replacement
costs. The summation is done over the entire project lifetime
and takes into account a financial discount factor. The NPC
is normalized by the lifetime served energy to compute a
Levelized Cost of Energy (LCOE).

The techno-economic model also computes performance
indices related to the environment and the quality of service.
In particular, the shedding rate (SR) is the ratio of cumulated
load shedding to the cumulated desired load.

B. Dispatchable Diesel generator model

We focus on this component because it introduces two
discontinuities in the project cost which call for relaxations.
We implemented HOMER’s generator model [1] which has a
“fuel curve” (that is the fuel rate function of the generated
power Pp) which is affine with a discontinuity at zero. This
represents the generator efficiency which tends to zero at low
regime.

We detail the second discontinuity which is similar and
comes from the lifetime model. Indeed, the generator is limited
by a prescribed lifetime expressed as a maximum number of
operation hours ¢p¢. To compute the cost of replacements, the
lifetime is compared against a counter of effective operating
hours:

T
W5 = " hpa(t) X Loro; )
t=1
where each hour is counted whenever the generator is on:
0, Ppg(t)=0
hpa(t) = oG (t) 3)
At, PD(;(t) >0

Fig. 4 represents the DG operation hours model (3) which
shows a discontinuity at zero. This interferes with gradient-
based optimization (see IV), thus we introduce a relaxation
parametrized by € between 0 (no relaxation) and 1 (maximal
relaxation):

At Ppa(t
rlx o thfi ) ’ PDG(t) S EPBth;
hpG(t) =49 € Ppé 4)

At, ePrd < Ppg(t) < Prd
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Fig. 4. Diesel generator operation hours models.

We underline that the relaxation underestimates the number
of operation hours, and thus underestimates the replacement
cost and eventually the NPC.

C. Microgrid test case

The microgrid used for the methodology validation is
composed of a photovoltaic system, a battery and a Diesel
generator. We use real hourly load data are from Ushant Island
in 2016 [13] (2 MW peak load). We use matching solar data
(hourly capacity factor time series) from the PVGIS-SARAH
database [14], [15], for a south-oriented PV panel with 40°
slope and 14% system loss.

The financial and technical parameters for the test project
are presented in Table I. Component prices are inspired by
[16], [17].

TABLE I
PROJECT AND COMPONENTS PARAMETERS.

Parameter Symbol Value
Project lifetime Loroj 25 yr
Discount factor d 5%l/yr
Battery investment price cinm $ 350.00 /kWh

Battery operation price C?& $ 10.00 /EWh/yr
Battery charge/discharge loss « 5%

Battery cycling lifetime 4 15 yr

Battery calendar lifetime Neyetes 3000

PV investment price C;;”}% $ 1200.00 /kW
PV operation price CgVI $ 20.00 /EW /yr
PV lifetime Lpy 25 yr

Diesel investment price Cé% $ 400.00 /kW
Diesel operation price CDczf $0.02 /kW/hoper
Diesel lifetime Ipa 15,000 hoper

Fuel price C’lf)“Gel $1.00 /1

Fuel curve slope Fi 0.24 L/h/kWoutput
Fuel curve intercept Fy 0.00 L/h/kWrated

IV. CONVERGENCE AND PERFORMANCE ASSESSMENT

To validate our sizing methodology, we need to evaluate
the convergence of the optimization. Using the optimization
formulation (1), the optimization variables for the microgrid
sizing problem are x = [Ppid Epd PBfg]T, that is the
rated power/energy of the PV, battery and Diesel generator.

NPC (x) is the objective function and we consider one in-
equality constraint, g () = SR (x) — SR™**, where SR™**
is the maximum allowed shedding rate.

For the convergence assessment two cases were studied.
First, since we introduced a relaxation parameter €, we look
at how it influences the convergence and how it biases the
result to choose a reasonable value. Second, since we suspect
that the maximum shedding rate SR™%*, which is an input
from the system designer, can also affect the convergence, we
test a wide array of values from 0 to 5 % of shedding rate.

In both cases, the assessment is done by running the opti-
mization with many starting points, as described in §11-B. For a
most exhaustive approach, we take starting points on a regular
grid in the 3D parameter space of & (min: 0, max: 10 MW(h)
for Prtd and ERE, 2MW for PR, step: S00kW(h), which
makes 21 x 21 x 5 = 2205 starting points).

Finally, the calculation time was also studied to analyze if
this methodology could be faster than the gradient-free ones.

A. Choosing the amount of relaxation

The relaxation parameter € is introduced to make the
optimization problem continuous to ease the convergence,
at the expense of biasing, i.e. underestimating, some costs,
which in turn can displace the optimal sizing x*. These two
aspects affect respectively the two stages of our proposed
sizing method (see §1I-B) and we study them separately.

1) Effect on convergence: Despite making the function
continuous, the relaxation does not make it smooth or convex.
Thus, the convergence of the optimization can only be assessed
empirically. For choosing relaxation parameter £, we run
the gridded multistart optimization for a several amounts of
relaxation between none and full (¢ from 0 to 1). We conduct
this analysis for one constraint level SR™** = 0.01 %.

For each run, we collect 2205 optimized results and we
analyze the distribution of the objective and constraint func-
tions, that are presented in Fig. 5 for ¢ = 0.1. It shows
that the objective and constraint values are tightly clustered
around best and maximum value respectively. However, there
are some strong outliers (heavy distribution tails), that fall
either in the “lower cost, unfeasible” or “higher cost, much
below constraint” categories. To quantify outliers, we define
tolerance thresholds: 105 % of SR™®* for the shedding rate
and 101 % of the best LCOE for the objective (tighter tolerance
because the LCOE varies much less). For ¢ = 0.1, there
are 0.45 % points above the objective tolerance and 1.59 %
points above the constraint tolerance. Because the two cases
are almost always exclusive, the total number of unacceptable
solutions is the sum of both, resulting in 2.04 %.

On Fig. 6, we show that the rejection rate of optimization
results generally decreases with €. It is 100 % for € = 0 (ab-
sence of convergence without relaxation) and rapidly falls to
about 2 % for € as small as 0.05. Surprisingly, the convergence
decreases (up to 5 % rejection) when the relaxation becomes
almost total (¢ — 1, which makes hps smooth, see Fig. 4).
This requires further investigation.
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2) Effect on biasing: The optimal values obtained with the
relaxed objective function are used to recomputed the original
model indicators, as shown in Fig. 3. The LCOE for the
original and relaxed models for the tested € are shown in Fig.
7, where the biasing effect of the relaxation can be observed.
As € increases, the difference between the original and relaxed
LCOE also increases. This happens because the smoothing,
due to the relaxation, in the objective function conducts the
optimal point away from the original optimum.

Therefore, the higher the relaxation, the worse the result
found for the original model. Using this conclusion with
the results presented in the previous section, a relaxation
parameter € between 0.05 and 0.1 offers the best compromise
between the effects on convergence and on biasing. For the
rest of this work, we use ¢ = 0.1.

B. Robustness against the maximum shedding rate

The optimization was repeated for SR™** equal to 0%,
0.01%, 0.10%, 0.30%, 1.00%, 3.00% and 5.00%. The Pareto
front for these SR™*" is presented in Fig. 8. This figure
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Fig. 7. Effect of the relaxation on biasing the optimal sizing (case SR™%* =
0.01%). The best sizing (among all multistarts) for a given amount of
relaxation ¢ is evaluated in the unrelaxed simulator. For € > 0.25, the relaxed
optimal sizing is too far from the actual unrelaxed optimum, so that it yields
a too large unrelaxed cost.

illustrates the trade-off between cost and quality of service, i.e.
the LCOE decreases for higher S R™%*, showing the coherence
of the obtained results.
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Fig. 8. Pareto front of the relaxed problem (best of all multi-starts, € = 0.1).

For the studied range of SR™“*, the rejection rates for the
LCOE, shedding rate or the sum of both, do not exceed 5%.
The rejections for each SR™%* are presented in Fig. 9.
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Fig. 9. Rejection rate of optimization results of the relaxed problem (¢ = 0.1),
for varying levels of shedding rate constraint SR"**.

Even with the methodology presenting acceptable results for
this SR™** range, we realize that the underlying structure of
the optimization problem changes since the cause of rejection
varies with the shedding limit. For small levels of maximum



shedding rate, i.e. SR™** < 0.1%, the rejection is mainly
caused by the violation of the shedding rate tolerance. While
for large shedding rate, the tolerance of LCOE is the primary
cause of rejection.

These results suggest that using a multi-start gradient-based
algorithm may be suitable for solving the optimal microgrid
sizing with the proposed methodology.

C. Preliminary results of computational performance

The focus of this work is more the assessment of the accu-
racy (e.g. empirical convergence) of the proposed microgrid
sizing method than getting the shortest possible computation
time. Still, the primary motivation to use AD-based optimiza-
tion is indeed the promise of a shorter computational speed,
compared to gradient-free methods. So we analyze the running
time of our method keeping in mind that there may be room
for improvement. Also, the reference problem considered here
has only 3 design parameters «. The computer used for these
experiments is a notebook with an Intel Core 17-9750H CPU.

The running time for the simulator alone is 15ms on
average. Computing the gradient of either the objective or
the constraint is only slightly longer at 22ms, thanks to
the well-thought implementation of ForwardDiff. j1 [11].
Now, due to the way we have interfaced our simulator to
the optimization routine (NLopt SLSQP), each iteration calls
separately the objective, the constraint and their gradient,
which calls the simulator 4 times and makes up for 74 ms per
iteration. However, there exists a better interfacing to compute
all these values with one simulator call. This would bring this
number down to 22 ms per iteration [18].

We measured the optimization running time with one par-
ticular representative starting point which converge in 43
iterations and this took on average 2.9 s. This is coherent with
the 74 ms per iteration timing, but with the better interfacing
mentioned above, this should go down to ~ 1.0s.

Optimizing a microgrid with 3 variables, for a 1 year long
hourly simulation, in about 1 s sounds very promising, but we
cannot claim this number due to the convergence difficulties
studied here. A multi-start is needed and we need to check
exactly how many starts are needed. Still, the results from the
previous subsections suggest that only a modest number of
starts is sufficient.

Also, a comparison with state-of-the-art gradient-free
solvers is needed. However, only few of them truly support
nonlinear constraints, e.g. NOMAD [19].

V. CONCLUSIONS

This article proposes a new approach to solve the microgrid
sizing problem. We accelerate the resolution of the black-box
optimization problem with gradient-based algorithms, thanks
to the use of Automatic Differentiation routine.

Although the black-box method allows the use of more
complex models (compared to the competing MILP based
approaches), we show that some relaxations need to be im-
plemented to smooth model discontinuities and enable the
convergence of gradient-based optimization algorithms. We

show that only a small amount of relaxation is needed for good
convergence: a gradient-based optimization algorithm can find
an optimal microgrid sizing with a reasonable tolerance level
for the vast majority (95-98%) of the initial points scattered
in the search space. Also, the amount of relaxation is small
enough so that it does not affect too much the model accuracy.

After obtaining these promising results on a microgrid prob-
lem of small dimension (3 components to be sized), it becomes
worthwhile applying the proposed gradient-accelerated sizing
method more complex microgrids (more power sources and
energy storage types...).
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