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Abstract— This paper proposes algorithms for short-term 

over- and under-voltage prediction in distribution grids. The 

proposed algorithms are developed using time-series of voltage 

and current measurements, which does not require the 

knowledge of distribution grid model (topology and parameters 

of the components). Various algorithms based on random forest 

classifier (RFC) and random forest regressor (RFR) methods, 

two prominent machine learning methods, are developed 

regarding different feature selection possibilities. The developed 

algorithms are tested and validated on two real datasets (grid 

measurement data from GridEye devices in two low voltage 

grids in Switzerland). An algorithm based on RFR method, with 

recent information including the measurement data of the last 

week at the same time of prediction, outperforms other 

algorithms. The proposed algorithm can predict over- and 

under-voltage events with 85% accuracy four hours ahead of the 

real time. 

Keywords— Distribution grid, machine learning, random 

forest classifier (RFC), random forest regressor (RFR), voltage 

events prediction. 

I. INTRODUCTION 

A. Context and Motivation

To achieve the goals of the energy transition toward a low-
carbon future, Distribution System Operators (DSOs) must 
take an active role in the future of electrical grids to 
accommodate distributed resources. In particular, the 
penetration of photovoltaic (PV) systems and charging 
stations for electric vehicles (EVs) is expected to grow at a 
rapid pace in the next few years. In this context, distribution 
grids’ observability and controllability have become 
increasingly valuable to ensure a secure and efficient 
operation of the grid in the presence of such resources. 

Many new technologies have recently been developed to 
improve the observability of electrical distribution grids in a 
cost-effective manner. Refs. [1–3] have investigated the 
advantages and applications of micro-phasor measurement 
units (u-PMUs) in distribution grids. Nevertheless, medium 
and low voltage distribution grids are composed by a larger 
number of nodes and lines compared to the transmission 

networks. Hence, for economic and technical reasons, the 
DSOs are looking for affordable and scalable solutions for the 
network supervision with limited number of measurement 
devices [4]. As an example, GridEye devices and monitoring 
system [5] have been developed for the same purpose to: (i) 
measure voltage, current, active power, and reactive power, 
and (ii) collect large datasets in distribution grids and make it 
possible to execute data-driven algorithms. 

The controllability of distribution grids, on the other hand, 
does not become completely automatic yet as it is less cost-
justifiable. Most of the time, DSOs control the state of 
switches, tap positions of transformers, and, if possible, shed 
the loads in an offline manner [6]. Face the fact that as the 
penetration of PV systems in distribution grids increases, 
over- and under-voltage events become more frequent. If the 
DSOs could predict such events, say, a few hours in advance, 
they would take the necessary corrective actions to prevent the 
grid operational limit violations. 

By taking advantage of increased observability and 
collecting data at various measuring points, we could now 
consider implementing a data-driven algorithm based on 
machine learning or deep learning for the detection of over- 
and under-voltage events in distribution grids. We have 
historical data on voltage, current, active power, and reactive 
power at various points on a low voltage distribution grid and 
are attempting to build a short-term predictive model for over- 
and under-voltage events. The main challenge here is 
identifying relevant features from the collected data to use in 
the model. In order to find a concise set of features, we must 
conduct exploratory data analysis to determine the 
correlations between variables. Prior to that, we must run a 
data cleaning pipeline to deal with missing data. 

In this paper, we address the aforementioned problem by 
proposing a pipeline that includes data preparation, missing 
value and outlier removal, exploratory data analysis, machine 
learning model implementation, and post-modeling analysis. 
Finally, short-term prediction models based on machine 
learning, i.e., random forest classifier (RFC) and random 
forest regressor (RFR), and deep learning are compared. 
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B. Literature Review 

We survey previous studies on short-term over- and under-
voltage event prediction, from two perspectives: (i) the power 
system point of view, and (ii) the machine learning point of 
view.  

From the standpoint of power systems, many studies, for 
example, [7–8], have investigated automatic voltage control 
in distribution grids to avoid over- and under-voltage events. 
The majority of algorithms that have been developed are based 
on decentralized control. The cost justification for such 
systems in distribution grids, however, has been overlooked. 
The short-term over- and under-voltage event prediction is 
required for DSOs to implement an offline control mechanism 
by taking preventive actions. In [9], an algorithm for 
calculating voltage sensitivity factors to active or reactive 
power production and consumption of distribution grid nodes 
was proposed. An indirect approach was used to first predict 
related variables such as active and reactive power of nodes 
(production and consumption). The voltages were then 
calculated as a function of the active and reactive power of the 
nodes based on the sensitivity coefficients. In [10], nodal 
voltages are controlled in distribution grids with high PV 
system penetration using historical active and reactive power 
measured at different nodes and sensitivity factors. 

From the standpoint of machine learning, short-term over- 
and under-voltage event prediction is a time-series 
classification problem. To solve the time-series prediction 
problems such as weather forecasting, future traffic 
prediction, stock market price trend prediction, and so on, 
various machine learning and artificial intelligence algorithms 
are typically used. For short-term and long-term prediction in 
various time-series problems, methods based on K-nearest 
neighbors [11], support vector machine (SVM) [12], decision 
tree [11], random forest [11], and deep learning models such 
as convolutional neural networks (CNN) [13] and long short-
term memory (LSTM) [14] have been proposed in the 
literature. Another aspect of the problem we face is the 
importance of feature selection. Feature selection is an 
effective step before applying machine learning models, 
which reduce the computation time, improve learning 
accuracy, and facilitate a better understanding of the learning 
model or data by removing irrelevant and redundant features 
[15]. 

C. Contribution and Novelty 

In this paper, over- and under-voltage events are directly 
predicted using the historical measurement data. After 
collecting measurement data in distribution grids using cost-
effective technologies, we developed a data-driven algorithm 
based on RFC and RFR for direct shot-term prediction of 
over- and under-voltage events. It should be noted that short-
term prediction of active and reactive power at each node of 
the distribution grid with high accuracy is difficult due to the 
variability and heterogeneous nature of nodal load profiles. 
Overall, the direct short-term voltage prediction compared to 
the indirect one outperforms because the voltage variations are 
less than the active, reactive power, and current variations in 
distribution grids. 

The followings are the study's main contributions: 

 A pipeline is formed for developing a machine learning 
model that predicts over- and under-voltage events 
four hours in advance. 

 A feature selection strategy is proposed for training the 
proposed machine learning algorithm. 

D. Paper Organization 

In Section II of this paper, we briefly describe the available 
datasets. Section III describes the proposed algorithms, which 
are based on the RFC and RFR methods. The numerical 
results and related discussions are presented in Section IV.  
Finally, Section V concludes the paper. 

II. DATA 

Two datasets are used in this paper, collecting by a DSO 
in Switzerland with GridEye devices. The datasets are for two 
different distribution grids located in the western Switzerland. 
Due to confidentiality concerns, the entire datasets cannot be 
shared. Here, we present the test on one of the dataset. 

The considered dataset is composed of 64 nodes, where 
the data of 49 different nodes are analyzed and cleaned they 
do not have any non-systematic noises. For each node 𝑛, the 
values of voltage (𝑉𝑛), active power (𝑃𝑛), reactive power (𝑄𝑛), 
and the values of current (𝐼𝑙), active power (𝑃𝑙), and reactive 
power (𝑄𝑙) of its upward line 𝑙 for three different phases are 
available every 10 minutes for a maximum of one year.  

Non-systematic components such as noise are not 
predictable in this paper because we are attempting to solve a 
short-term time-series prediction problem. Following that, the 
data from a node (i.e., node 36) with the least noisy voltage 
time-series is chosen for further investigation. The proposed 
algorithms are then tested on other nodes. 

III. PROPOSED ALGORITHM 

In the following, we present our algorithm for predicting 
over- and under-voltage events four hours ahead based on 
machine learning models tested on node 36 of the considered 
distribution grid. To solve this classification problem, we 
followed a pipeline from (A) data preparation; (B) missing 
values removal; (C) outliers removal; (D) exploratory data 
analysis; (E) machine learning model implementation; and 
finally (F) post-modeling analysis. In the following, we will 
explain steps (A)-(E) in more detail. The post-modeling 
analysis, i.e., step (F) is explained in the next section. 

A. Data Preparation 

1) Input features:  

 The input features are several time-series of a specific 
node and flowing active and reactive power of its upward line 
every 10 minutes for three different phases during the one-
year period from September 3, 2018, to August 31, 2019. The 
size of the data is around 52 Kbytes. For the sake of simplicity 
in this paper, we treated phases independently. Therefore, 
among 18 different time-series available for the node under 
study, four time-series, i.e., the voltage values in V for phase 
A of the node under study, the current values in kA, the active 
power in kW, and the reactive power in kVAR for phase A of 
its upward line, are selected for further usage. 

2) Target value:  

 To predict over- and under-voltage events, we defined two 
different voltage states: 0 (normal) and 1 (undesired). If the 
voltage value 𝑉𝑛 is in an undesirable state, 𝑉𝑛 > 230 + 5% ⋅
𝐸𝑡{𝑉𝑛} or 𝑉𝑛 < 230 − 5% ⋅ 𝐸𝑡{𝑉𝑛}. The voltage state in the 
next four hours is defined as the output feature (target value). 
We can define the target value in timestamp 𝑡 as the voltage 
state in timestamp 𝑡 + 24  because the voltage values are 
available every 10 minutes. Exploring the voltage time-series, 
we discovered that the voltage values are in an undesirable 
state 20% of the time. 



B. Missing Values Removal 

 We explored the dataset for missing values and 
discovered that the measurement device was interrupted once 
for one hour (on March 31, 2019, at 2:00 AM), once for 30 
minutes (on November 30, 2018, at 10:30 AM), and three 
times for 10 minutes (on April 11 at 9:50 PM, April 12 at 5:50 
AM, and July 10 at 2:00 PM). To fill in such gaps, the 
backward propagation technique is used. The next available 
value is propagated backward to fill the gap in this technique. 

C. Outliers Removal 

The voltage values less than 200V or more than 300V are 
assumed as outliers. We discovered that the voltage time-
series contains no outliers. 

D. Expolatory Data Analysis  

We conducted an exploratory data analysis to become 
more acquainted with the structure of the data under 
consideration. The scatter plot with the regression line is 
shown in Fig. 2 to investigate the relationship between the 
original features. The plot clearly shows a linear correlation 
between two time-series of the node under study, namely the 
current (𝐼) and the active power (𝑃). 

Next, we did hourly, weekly, and monthly explorations of 
the current time-series. In our hourly exploration of the current 
values (Fig. 3), we discovered that the consumption is higher 
from 8:00 AM to 8:00 PM, resulting in more current flowing 
than during the night hours, given that this node is located in 
a commercial building. As a result, a new feature named 
"hour" is added to the input features to show the dependency 
of the data on the hour values. 

In our weekly exploration of the current time-series, we 
discovered that the profiles of time-series on working days are 
not similar to the profiles on weekend days (Fig. 4). On 
Sundays, the flowing current and active/reactive power are 
less than on other days. On the other hand, as electricity 
consumption is higher on working days, the flowing current 
and active/reactive power are greater. To deal with these 
differences in the profiles, three Boolean features, named 
"isWorkingDay", "isSaturday", and "isSunday", are added to 
the input features for distinguishing the working days from the 
weekend days. 

Finally, monthly exploration of the current values shows 
the dependency of flowing current and active/reactive power 
profiles on the months of the year. As shown in Fig. 5, the 
flowing current is greater in February, whereas the flowing 
current and active/reactive power are less in September. As a 
result, a new variable, named as "month", is added to the input 
features to emphasize the dependency of the voltage profile on 
the month of the year. 

Further investigation revealed that the time-series profiles 
of public holidays differ from the time-series profiles of 
normal working days. To distinguish public holidays from the 
normal working days, an additional feature, named 
"isHoliday", has been added to the input features, which 
shows the public holidays in the canton of Vaud, Switzerland. 

By adding these six features, the number of input features 
is increased from 4 to 10. In addition, we can add extra 
temporal features like recent values of voltage, current, and 
active/reactive power in the last hour, two hours, or last week 
at the same time. We add them as hyper-parameters to the 
dataset to analyze and evaluate their impacts on the 
performance of the proposed machine learning models. 

E. Machine learning Model Implementation 

Before applying machine learning models, the dataset is 
divided into a training set (80%), validation set (10%), and test 
set (10%). The training set is used to fit and train the machine 
learning models, the validation set is used to tune the 
algorithm’s hyper-parameters, and finally, the test set is used 
to test and evaluate the trained models. The test set should 

Fig. 2. Correlation between the four original features (V, I, P and Q). 

 

Fig. 3. Hourly expolation of the current time-series. 

 

 

Fig. 1. Voltage values of the first phase in a sepcific node located in the considerd distribution grid. 

 



never be used to fit the models and remain unseen before the 
evaluation. 

Two different algorithms are used to solve this 
classification problem. In the first approach, we looked at the 
problem as a time-series classification problem, while in the 
second approach, we looked at this problem as a time-series 
regression problem. A baseline (based on the first approach) 
and two machine learning models, i.e., RFC [16] and RFR 
[17] (based on the first and second approaches, respectively), 
are fitted on training/validation sets to solve this time-series 
classification problem. These models are explained in more 
detail in the following. 

1) Baseline (Naïve predictor):  

A baseline is a simple algorithm used to create 

predictions for a dataset. We then compare the performance 

of any machine learning model with that of the baseline. In 

the classification problems, the most-frequent category is 

predicted and used as the baseline. The performance of the 

most-frequent baseline in this dataset is shown in the 

following section. 

2) Random Forest Classifier (RFC):  

A random forest, also known as a random decision forest, 
is an ensemble algorithm made up of several decision trees 
that is used to solve classification or regression problems. The 
random forest is an example of bagging, in which we try to 
reduce the variance of an estimator, a decision tree in this 
case, by averaging the predictions from several instances of 
trained models on different samples of the train set. The 
random forest is usually used to solve the overfitting problem 
of the decision tree estimators. 

 

 

The grid search is used to the tune hyper-parameters of 
the random forest classifier, i.e., the number of trees 
(n_estimators) and the maximum depth of each tree 
(max_depth). Five different values for each hyper-parameter 
are considered, resulting in 25 different combinations of these 
parameters, in which we evaluate them in a grid search. Then, 
a random forest classifier is built based on the best value of 
hyper-parameters to be used for predicting on the test set. 

As explained before, we aim to evaluate the impacts of 
different combinations of extra temporal features on the 
performance of the adopted machine learning algorithms. 
The whole process of building and training the model is 
repeated for each dataset with corresponding input features. 

3) Random Forest Regressor (RFR):  

The RFR is a random forest estimator used to solve 
regression problems. This algorithm is composed of two 
phases: the first is a time-series prediction problem, in which 
we predict the voltage values in the next four hours using the 
RFR model. In the second phase, we detect the over- and 
under-voltage events that will happen in the next four hours. 

Like the previous model, we used grid search to tune the 
hyper-parameters of the estimator, i.e., the number of trees 
(n_estimators) and the maximum depth of each tree 
(max_depth). Three different values for the parameter 
n_estimators and six different values for the parameter 
max_depth are considered, resulting in 18 different 
combinations passed to the grid search for evaluation. The 
best hyper-parameter values are then used to construct a RFR, 
which is used to predict the test set. The whole process is 
repeated for different combinations of extra temporal 
features, which are added to the input features. 

IV. NUMERICAL RESULTS AND DISCUSSION 

As an example, the results of voltage magnitude and over 
voltage prediction of the proposed RFR algorithm for one 
node during one week with 10-minutes resolution is depicted 
in Fig. 6. As can be seen, the green circles represent the 
moment when the over-voltage was appropriately identified 
four hours ahead. The red circles, on the other hand, depict the 
time when the over-voltage event occurred, but the algorithm 
was unable to detect it four hours ahead.  

Two different evaluation metrics, i.e., accuracy and recall, 
are used to evaluate the performance of the classification 
problem in this paper. Accuracy is defined as the fraction of 
predictions that the model gets correct (either true positive 
(𝑡𝑝) or true negative (𝑡𝑛)) out of all predictions, i.e.,  

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  (𝑡𝑝 +  𝑡𝑛) / (𝑡𝑝 +  𝑡𝑛 +  𝑓𝑝 +  𝑓𝑛), 

where 𝑓𝑝 is false positive and 𝑓𝑛 is false negative.  

Recall is defined as the ratio that the model finds all the 
positive results, i.e., 𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑡𝑝/(𝑡𝑝 + 𝑓𝑛). 

The evaluation results on the test set, using the proposed 
three algorithms, are given in Table 1. Even though the 
baseline has a high accuracy (80%), it is not capable of 
finding any positive samples (recall = 0). We observed that 
all the proposed algorithms outperform the baseline one in 
terms of higher accuracy and recall. 

Among the proposed algorithms, the ones based on RFC 
achieve higher accuracy, whereas the ones based on RFR 
achieve higher recall. The highest accuracy (i.e., 86%) is 
achieved with the RFC model, where in addition to four 
original features (V, I, P, and Q) and six overall time 
information features, four extra recent temporal features, i.e., 
the values of V, I, P, and Q from yesterday at the same time, 
are also added to the input features. The recall of this 
algorithm is 53%. 

The highest recall (i.e., 84%) is achieved with RFR model, 
where in addition to 10 original/overall time information 
features, 24 extra recent temporal features, i.e., the values of 
V, I, P, and Q for the last hour (6 timestamps) are also added 
to the input features. The accuracy of this model is 80%. 

Fig. 4. Weekly expolation of the current time-series. 

 

Fig. 5. Monthly expolation of the current time-series. 

 



 

Fig. 6. Predicted and observed over-voltage events. 

TABLE I.  EVALUATION RESULTS 

Alg. Extra features a Accuracy Recall 

Baseline --- 0.80 0 

RFC 

--- 0.85 0.49 

one hour ago (6 timestamps) 0.84 0.41 

two hours ago (12 timestamps) 0.84 0.41 

yesterday at the same time 0.86 0.53 

last week at the same time 0.86 0.50 

RFR 

--- 0.82 0.77 

one hour ago (6 timestamps) 0.80 0.84 

two hours ago (12 timestamps) 0.82 0.73 

yesterday at the same time 0.83 0.79 

last week at the same time 0.85 0.66 

a. Extra features contain some recent time information. 

Among all the proposed models, the RFR model, when we 
used the data from yesterday at the same time as extra recent 
temporal features, has the best trade-off of accuracy (i.e., 
83%) and recall (i.e., 79%). 

In addition to machine learning models, two algorithms 
based on deep learning models, i.e., 1-D Convolutional Neural 
Networks (1D-CNN) [18] and a combination of 1D-CNN and 
Gated Recurrent Units (GRU), which is a variant of Recurrent 
Neural Networks (RNN) [19], are implemented to predict 
over- and under-voltage events in the next four hours in the 
time-series under study. Because the algorithms based on RFC 
and RFR have better accuracy and recall than the ones based 
on deep learning for our dataset, we do not present the details 
of the deep learning models.  

V. CONCLUSIONS 
Direct short-term prediction of over- and under-voltage 

events in distribution grids using in-field measurement 
devices is possible with data-driven machine learning 
methods such as random forest classifier (RFC) and random 
forest regressor (RFR). The best modeling method is RFR, 
which includes extra overall and recent temporal features. 
Before determining the over- and under-voltage events, the 
RFR model predicts the voltage values for the next few hours. 
We use a pipeline to implement such an algorithm, which 
includes (A) data preparation; (B) missing values removal; (C) 
outliers removal; (D) exploratory data analysis; (E) machine 
learning model implementation; and (F) post-modeling 
analysis. We predict over- and under-voltage with 83 percent 
accuracy and 79 percent recall using the proposed RFR model.  
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