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Abstract—The growing fleet of electric vehicles (EVs) in the 

low-voltage (LV) networks is an essential concern for the 

Distribution System Operator as it represents a significant 

increase in consumption thus potentially leading to costly grid 

expansions to prevent congestion. However, grid expansion can 

be postponed or even avoided if ‘smart’ solutions like load 

shifting are put in place. In this paper, we propose a 

methodology which simulates the EV daily trip- and charging 

profile with the consequent power flows in the electrical 

network. The smart-charging algorithm enables shifting the EV 

charging load in case of detected congestion. The algorithm is 

tested in an LV grid of a mountainous region in Slovenia. The 

algorithm is run for a typical week, with a 15-min resolution, 

with a Monte Carlo simulation performed to study the worst-

case scenario. Finally, we analyse the results on the robustness 

of the grid and the benefits of the studied smart-charging 

algorithm. 
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I. INTRODUCTION 

The current global challenge is the energy transition, 
which necessitates the drastic reduction of greenhouse gas 
emissions and the rapid electrification of essential industries. 
In 2018, the transport sector was responsible for 8.2 Gt CO2 
emissions, or 24 % of direct CO2 emissions from fossil fuel 
combustion [1]. Passenger road vehicles are responsible for 
3.6 Gt CO2 of this total. 

In this regard, the European Union set the goal of replacing 
a portion of the current combustion engine fleet with electric 
vehicles (EVs). In 2020, they announced a goal of 30 million 
EVs in the European fleet by 2030 [2]. In the same vein, 
Slovenia aims for ambitious objectives for the electrification 
of its transportation sector. In its last report on the 
development of the transport sector [3], the Slovenian 
government proposed that only cars emitting less than 50 
gCO2/km will be sold on the market, i.e., given the current 
state of technology, only electric and hybrid vehicles will be 
manufactured. The Slovene government estimates that up to 
20 % of its vehicle fleet, or approximately 200,000 vehicles, 
will be electric by 2030. 

These measures could help alleviate the impact of our 
mobility on the global climate, however, the introduction of 
new electrical loads into the electrical network must be 
carefully analysed to ensure grid reliability and security of 
supply, and thus prevent grid congestions [4]. Indeed, if the 
uptake of EVs is strong and the grid is too weak, the 
simultaneous charging of EVs could become unsustainable 
and require excessively expensive grid reinforcement. 

While the scope of this analysis is bounded to the study of 
EV uptake, the necessity for the Distribution System 
Operators (DSOs) to upgrade their grid for the future 
technological and social transformations is part of a broader 
context. It features the general trends toward more locally 
produced energy from renewable energy sources (RES), the 
democratisation of electricity, and the widespread deployment 
of advanced metering infrastructure. 

The document’s structure is as follows: Section II 
examines the state of the art of simulation of EV charging and 
its effect on the electrical network, as well as the techniques 
for EV load shifting. Section III describes the method 
proposed in this paper and the architecture of the algorithms. 
The application of this method to a low-voltage (LV) network 
in Slovenia is described in Section IV, while the results are 
presented in Section V. The concluding remarks comprise the 
final section of the paper. 

 

II. LITERATURE REVIEW 

The research is based on three research questions, namely: 
What are the best practices for predicting EV charging 
profiles? How does the charging of electric vehicles affect the 
electrical network? How can the adverse effects be avoided 
and mitigated? 

A. Predicting EV charging profile 

The EV charging load depends on several factors, such as 
the user’s driving and travel habits. This renders the charging 
load for a single EV user stochastic [5]. In order to implement 
this stochasticity and eliminate the random error from the 
forecasts, Monte Carlo simulations are widely used in the 
literature [6], [7], [8], [9], [10].  

The authors in [7] and [8] used trip chains based on the 
Mark chain model to predict where, when and for how long 
an EV drives every day, with probabilities varying by day and 
hour. In contrast, [10] proposes three distinct stochastic 
methods which use separate independent variables to define 
the daily EV trip. It was demonstrated that the iterative method 
with dependency between the three variables produced the 
most accurate forecasts, particularly during peak hours. 

Departure time, travelled distance, and arrival time are 
required variables for EV charging profile forecasting, but 
other variables can be valuable as well. For the creation of a 
trip chain, driving time and the parking duration are essential 
[8]. The definition of destinations is also important. In most 
cases, three destinations are defined: home, work, and the 
third destination which can encompass remaining activities 
such as shopping, leisure activity, or meal. Alternatively, if 



statistical data on travel patterns are sufficient [8], each of 
these activities can be analysed separately. 

Distributions for characteristic variables are typically 
normal, or in the case of multipeak distributions, Gaussian 
mixture models and copula functions can be used [8], [10]. 

EV charging predictions and observable data show clear 
charging peaks: if private and public charging procedures are 
considered, a morning work charging and afternoon home 
charging can be observed [7]. If only private charging is 
assumed, the charging peak occurs from late afternoon to 1 
am, with a relatively wide spread of the arrival time [6], [10]. 
Uncertainty is much higher during peak periods and is 
exacerbated by the inclusion of higher charging powers [7], 
[10]. 

B. Effects of EV charging on the network loading 

Four different aspects of the grid can be analysed when 
performing an impact assessment of EV penetration in the 
distribution system: the voltage stability, the power quality, 
the peak load and the transformer performance [11], [12]. Our 
study primarily focuses on the peak load aspect. 
Researchers in [13] tested a set of 12,700 plug-in and hybrid 
slow-charge EVs and showed that a maximum of 10% of EVs 
can be safely integrated into the grid without the use of a 
control strategy. Scientists in [14] analysed a fleet of similar 
EVs with a charging power of 6.6 kW and connected to an 
extensive network of 12,000 nodes comprised of several low 
voltage networks connected to distribution transformers. They 
demonstrated that even with low EV penetration, the 
transformer was experiencing load surge. In addition, it was 
demonstrated that a high penetration rate (70 %) reached as 
much as 131 % of the transformer’s nominal maximum load. 
Literature also shows that the impact of EVs is not necessarily 
proportional to the penetration rate increase, in terms of 
transformer load [14] or power quality indexes evolution, such 
as SAIFI [15]. 

C.  Algorithms for smart charging 

As demonstrated above, failing to implement a control 
strategy for EV charging immediately places a strain on the 
distribution networks, and the greater the adoption of EVs, the 
greater the burden. Two common approaches tackle this issue: 
decentralised and centralised scheduling [5], [16]. 

1) Decentralised scheduling 
Decentralised scheduling involves economic incentives, 

such as lower electricity costs during off-peak hours, which 
can persuade EV owners to delay their charging time. These 
types of incentives, which are static tariffs, can result in two 
distinct outcomes. Authors in [14] demonstrated that charging 
EVs between 5 pm and 1 am was more beneficial to the grid 
than charging every EV owner upon their return home. 
Alternatively, such an incentive may significantly increase the 
peak load during certain early evening hours, as observed in 
[17]. The methodology of decentralised scheduling introduces 
gradient projection technique [18], non-cooperative game 
strategy solutions [19], multi-stage optimization or multi-
agent methods [5]. The peak load can be reduced while using 
coupled multi-agent methods, particularly in wintertime [16]. 
In general, the decentralised approaches aim to minimise the 
individual EV owner costs for charging, thus filling the valley 
periods [19], [20], [21], and this is their main benefit. 
However, grid-level issues cannot be addressed 
simultaneously [16]. And optimal solutions for a decentralised 
approach required high-resolution knowledge of the grid and 

EV status, necessitating a huge amount of data and 
communication that is, in most cases, not feasible [5]. 

2) Centralised scheduling 
Centralised scheduling involves one central operator 

determining the charging time for each EV in a fleet. Required 
information includes charging times, charging rates and grid 
capacity. The main advantage of centralized scheduling is the 
guarantee of power reliability and quality. Combining EV 
charging schedules with RES production or vehicle-to-grid 
(V2G) mechanisms can be very promising [16]. However, the 
optimisation burden increases as the number of EVS on the 
grid increases. In case of excessive EV penetration, this can 
become computationally expensive very quickly [5]. Last but 
not least, [5] recommended a hybrid approach combining both 
centralised and decentralised control strategies. The 
recommended system is a two-level system, with the first level 
being centralised and the second level being decentralised. 

 

III. METHOD 

Our analysis aims to demonstrate the possibility and 
benefits of shifting the charging of EVs from congested to 
uncongested periods without compromising the local network 
while maximising the utility of the EV owners. As shown in 
Figure 1, a four-step method was followed for achieving this 
objective. 

 

Figure 1: Methodology followed in the study 

1. Placing the EVs – An algorithm defines the location of 
new EVs in the grid based on a priority list considering the 
individual household distance from the transformer, power 
connection type, and other distributed energy resources owned 
by the consumer. 

2. Simulating the daily trip and charging time of each EV. 

3. Shifting the charging schedule – in case of congestion 
occurring in the feeder or transformer, the charging of an EV 



is shifted to another timeslot during which the EV is stilled 
parked at home. 

4. Estimating the robustness of the network – after 
performing a Monte Carlo simulation of the first three steps, 
the probability of congestion for each feeder of the network 
and transformer is calculated. The final goal is to propose a 
feeder upgrade measure or transformer replacement. 

This study aims to provide credible worst-case scenarios 
to the DSO, therefore the simulation is run multiple times for 
several iterations and at different EV penetration rates – i.e., 
Monte Carlo simulation. 

Before demonstrating the setup, data has been collected to 
establish the system assumptions. Each algorithm’s 
underlying assumptions are listed in the following sections. 

A. Placing EVs 

The first algorithm aims at placing a defined number of 
EVs in the grid. The EVs could be placed randomly but this 
could significantly affect the results. To simulate as realistic 
future scenarios as possible, the priority rules are created 
based on basic topology information: 

• the presence of other flexible assets inside the 
household (PV, heat pump or battery), 

• the connection type (single-phase or three-phase), 

• the distance from the load to the medium voltage 
(MV) to low voltage (LV) transformer. 

EVs require a high charging power in comparison to the 
usual household consumption on the low voltage (around 1 or 
2 kW at peak times). In this study, the modification of the 
agreement between the DSO and the end-user for the 
connection power is not considered. Therefore, households 
connected with three-phase could be more likely to own an 
EV than single-phase connected households. It is also 
foreseen that households which currently own a battery and/or 
a PV unit could be more likely to adopt new technologies such 
as EVs. Finally, households located far from the transformer 
stations are more likely to create high deviations of voltage 
and thus generate problems in the grid [16] and are therefore 
also favoured. 

Further assumptions include the fact the charging stations 
are private and are dedicated to a single EV so households 
cannot own multiple EVs. In addition, to analyse the worst-
case scenario of EV charging, it is assumed that EVs only 
charge at home and nowhere else during their trip. 

The first algorithm therefore only requires two inputs: the 
initial grid topology and the number of EVs to place. The 
output of the function is an updated grid topology with a list 
of households that own an EV and its charging station. 

B. Simulating the daily trip and charging time of an EV 

The second algorithm aims to define the daily trip of an 
EV to define the consumption of the car and the time needed 
to fully charge for the following day. For this, a set of 
assumptions is needed: 

a. The car starts and ends its trip at Home. No trip is allowed 
from Home after 8 pm. 

b. Two other destinations are possible: Work or Other. The 
Other category includes a variety of activities, such as 
leisure, going to a restaurant, or picking up children. 

Work can be reached only once per day, no later than 
noon, and for 8 hours. The parking time in Other is 
randomly selected, with a maximum of 2.5 hours. 

c. The distance between the three destinations follows a 
gamma distribution based on statistical data [22]. 

d. The time of the first departure follows a lognormal 
distribution and is based on literature [8], [23]. 

e. The car is supposed to drive at an average speed of 60 
km/h. 

f. The average consumption of the car is set to 195 Wh/km, 
reflecting the consumption of current EVs on the market 
[24]. 

g. The EV’s battery usable is randomly selected between 40 
and 85 kW. 

h. The EV’s charging is assumed to require only active 
power. Moreover, the charging power (Pcharging) depends 
on the loads’ contracted power (Pcontracted): 

o For single-phase households: Pcharging = min (7.4 
kW, Pcontracted – 1 kW) 

o For three-phase with contracted power ≥ 23 

kW: Pcharging = 22 kW 

o For three-phase with contracted power <23kW: 
Pcharging = min (11 kW, Pcontracted – 1 kW) 

The algorithm was run separately for each EV. The three 
outcomes are a daily trip chain for each car, a schedule for 
parking (and being plugged in) at home, and a charging 
schedule. The departure time for a particular EV is assumed 
to be the same every day for a given iteration. The time 
resolution is 15 minutes, so the daily schedules consist of 96 
timeslots. 

By inputting the initial network power limit for each 
period of the day, the algorithm can render an updated 
calculation of the network available capacity, as expressed in 
Equation (1) for the MV/LV transformer and in Equation (2) 
for feeders. 

 

 

(1) 

 

 

(2) 

With Pavailable,EV and, Pavailable,EV,f the updated available 
capacity in the transformer and in the feeder f respectively, 
PLimit and PLimit,f the initial capacity limit of the transformer and 
of the feeder f respectively, Pcharging,i the charging power of the 
ith EV. NEV and NEV,f are the total number of EVs connected to 
the whole network and feeder f respectively. 

C. Shifting the EV charging schedule 

In case of congestion, i.e., if Pavailable,EV and/or Pavailable,EV,f 
is lower than the operational limit (as defined by the DSO), 
the third algorithm enables load shifting of the EV charging. 
In the current configuration of the algorithm, priority is given 
to EVs that are close to being fully charged. In the context of 
a local market in which EVs compete if network capacities are 
limited, nearly full EVs are supposedly willing to pay a 
premium to complete their charge. 

𝑃𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 ,𝐸𝑉 = 𝑃𝐿𝑖𝑚𝑖𝑡 − 𝑃𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔 ,𝑖

𝑁𝐸𝑉

𝑖=1

 

𝑃𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 ,𝑓 ,𝐸𝑉 = 𝑃𝐿𝑖𝑚𝑖𝑡 ,𝑓 −  𝑃𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔 ,𝑖

𝑁𝐸𝑉 ,𝑓

𝑖=1

 



The algorithm works as follows: For each timeslot t, if 
there is congestion under feeder f, connected and charging 
EVs under feeder f are considered. A Mixed Integer 
Programming algorithm (MIP) determines which EVs should 
be shifted to maximise the total state of charge of the entire 
EV fleet. If the network’s available capacity at t+x allows it, 
charging for all selected EVs parked at home and not charging 
will be shifted to a different timeslot t+x. 

The algorithm produces a new charging profile for each 
EV, called smart-charging, and an updated calculation of the 
network limits, as expressed in Equation (3) for the 
transformer and Equation (4) for the feeders: 

 

 

(3) 

 

 

(4) 

With Pavailable,smart EV and Pavailable,f,smart EV the updated 
available capacity in the transformer and in feeder f 
respectively after load shifting, NEV,shift and NEV,shift,f are the 
number of shifted EVs connected to the network and to feeder 
f respectively. 

 

IV. APPLICATION TO A REAL CASE STUDY 

The methodology presented in the section above was 
applied to an LV network in Slovenia. The network is 
representative of a rural and mountainous area. The network 
is relatively weak and is subject to several outages every year 
due to the extreme climate conditions and the high demand 
peaks from the farms connected to the grid. The part of the 
village under study comprises one MV/LV substation and the 
155 loads connected to it. The network is a 13-feeder system 
configurated in a traditional radial manner. The network 
currently includes 9 private EV chargers located in 3 different 
feeders. These chargers were installed in 2021, it is not yet 
possible to analyse data regarding the charging patterns of EV 
drivers. The homes where these EV chargers are installed are 
already connected to three phases. These homes already have 
PV systems with a capacity of approximately 10 kWp. 

The data collected also includes historical power data for 
more than 3 years at the connection point of each household, 
as well as at the transformer level. This length of time permits 
to define reasonable average power profiles for the network. 
For this study, the capacity limits of each feeder have been 
calculated for a typical winter week. The operational limit for 
the feeders has been set to 5 kW, while it was set to 20 kW for 
the MV/LV transformer. Figure 2 shows a typical Monday 
load for the transformer and three of the feeders: The feeders 
I02 and I06 which have the highest cumulated demand, and 
the feeder I172 which has the second-highest peak demand. 
The net demand under the feeder I172 is below 0 kW during 
daytime as several PV systems are connected to this feeder. 

A sensitivity analysis on the EV penetration rate was 
performed with a resolution of 5 %. As the current rate of EV 
chargers is around 6.4 %, the analysis is conducted from 6.4 
% to 100 % penetration rates. For each rate, the three 
algorithms are run using a Monte Carlo simulation, with 100 
iterations. 

 

Figure 2: Average load profiles in different feeders for a typical Monday in 

the winter period 

V. RESULTS 

A. Tendency to congestion 

Simulations revealed that even with 100 % penetration of 
EVs, the only feeders that could get congested are I02 and I06 
(Figure 3), which carry the most loads. For feeder I02, 
congestion occurs at 40 % EV penetration in the grid, and the 
likelihood of congestion exceeds 50 % at 55 % EV 
penetration. The feeder I06 is much less inclined to 
congestions as they never occurred with EV penetration rates 
lower than 70 %. However, between 75-100 % EV penetration 
rates, the likelihood of congestion is very low, as it has 
occurred no more than 11 % of the time. At the transformer 
level, the congestion tendency follows a similar pattern as 
feeder I02, with congestion appearing from 40% of EV-
equipped network loads. It quickly reaches 100% change in 
congestion when at least 70% of the loads are equipped with 
EVs. 

Figure 3: Congestion occurrence in feeders I02, I06 and transformer for each 
EV penetration rate 

This first observation demonstrates that, for the majority 
of the grid, an adoption rate of electrical vehicles lower than 
40% would not cause network issues. 

B. Charging profiles 

Figure 4 shows the simultaneity of EV charging. The 
profiles clearly demonstrate that EVs are more likely to be 
plugged in and charging at the end of the working day: in the 
afternoon with a high plateau starting around 5 pm for 
weekdays and 1 pm for weekends, and with a significant 
number of EVs charging until midnight. For all penetration 
rates, the maximum number of EVs charging simultaneously 
occurs between 9 pm and 10 pm, when nearly a third and a 
quarter of the EV fleet is charging on weekdays and weekends, 
respectively. Figure 4 also shows that the proportion between 
the penetration rate and the number of EV charging is quite 
consistent throughout the day, although the distinction 
becomes less evident during nighttime and early morning 
when fewer cars are charging. It is also apparent that the 
number of EVs charging on weekends is lower because cars 
are not moving for the entire day. 

𝑃𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 ,𝑠𝑚𝑎𝑟𝑡  𝐸𝑉 = 𝑃𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 ,𝐸𝑉 ±  𝑃𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔 ,𝑖

𝑁𝐸𝑉 ,𝑠ℎ𝑖𝑓𝑡

𝑖=1

 

𝑃𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 ,𝑓 ,𝑠𝑚𝑎𝑟𝑡  𝐸𝑉 = 𝑃𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 ,𝑓,𝐸𝑉 ±  𝑃𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔 ,𝑖

𝑁𝐸𝑉 ,𝑠ℎ𝑖𝑓𝑡 ,𝑓

𝑖=1

 



a)  b)  

Figure 4: Simultaneity of uncontrolled charging for each penetration rate. a) 

during weekdays, b) during the weekend 

As previously observed in Figure 3, when congestion 
occurs in two of the weak feeders or the transformer, EV 
charging is shifted to periods when the feeder has sufficient 
capacity and the vehicle remains parked at home. When 
congestions occur at the transformer level, EVs from any 
feeder can be shifted. In the worst cases, the total number of 
EVs shifted during the day is 35 on weekdays and 28 on 
weekends (100 % penetration rate) which is relatively high 
compared to the size of the EV fleet (23% and 18% 
respectively). 

C. Load impact 

The impact of EV charging on the transformer loading was 
also analysed. Figure 5 presents the average available capacity 
for one day of simulation based on 100 iterations of all loads 
(Wednesday). Above a certain EV penetration, congestions 
always appear between 5 pm and 11 pm. 

Figure 5: Average transformer capacity available for each EV penetration 
rate, without controlled charging 

Table I reveals that the peak power is 188.01 kW for the 
baseline scenario with no new EVs in the network, while it 
reaches 486.75 kW when simulating a complete fleet of EVs 
without controlled charging, which is 1.2 times the feeder 
technical limit. 

In addition, the ratio between the peak demand and the 
average demand is calculated following Equation (5). 

 

 

(5) 

PAR denotes the Peak-to-Average Ratio, Pt the demand 
power at feeder level (in kW) at instant time t and T the 
number of observations. 

In the absence of a controlling system, there is a relatively 
constant increase in this ratio as the penetration rate rises. This 
indicates that the greater the EV penetration, not only does it 
add demand to the baseline power profile, but it also increases 
the power disparity between peak hours and off-peak hours, 
necessitating that the network is able to sustain high loads for 
brief periods. In contrast, when a smart charging control is 
implemented, the peak demand naturally does not exceed the 

feeder limit reduced by the operational limit. As the number 
of EVs increases, the peak-to-average ratio also increases at a 
similar rate. However, as the percentage of EVs increases 
above a certain threshold (approximately 50 %), the ratio 
decreases as average demand increases but peak power 
remains stable. 

Table I: Peak demand and Peak-to-average ratio (PAR) for each EV 

penetration rate in the transformer 

EV penetration 

rate (%) 

Peak demand (kW) PAR 

Uncontrolled Smart Uncontrolled Smart 

6.40 188.01 188.01 1.44 1.44 

10 202.47 210.40 1.42 1.48 

15 212.27 222.81 1.44 1.51 

20 226.96 238.05 1.47 1.55 

25 240.00 251.58 1.50 1.57 

30 253.61 259.88 1.53 1.57 

35 267.90 275.99 1.56 1.61 

40 286.88 286.22 1.61 1.61 

45 301.97 308.28 1.64 1.67 

50 313.68 320.10 1.66 1.68 

55 339.11 325.26 1.73 1.66 

60 348.24 335.50 1.72 1.66 

65 373.34 341.62 1.79 1.64 

70 381.65 349.81 1.78 1.64 

75 415.50 374.10 1.89 1.69 

80 424.43 372.96 1.87 1.65 

85 441.26 377.02 1.90 1.62 

90 459.10 376.82 1.92 1.57 

95 467.76 376.53 1.92 1.54 

100 486.75 375.35 1.95 1.50 

 

VI. CONCLUSION 

This paper examined and discussed the impact of charging 
privately owned electric vehicles on the low-voltage network. 
The methodology consists of three algorithms, with the first 
algorithm placing EVs in different households that make up 
the LV network, based on the connection type the houses, the 
second algorithm simulating a daily trip for each EV and a 
charging schedule, and the third algorithm shifting the 
charging periods to uncongested periods, considering the 
conditions of each feeder and transformer. The simulation 
system was implemented on a rural LV network in Slovenia 
that is prone to outages because of its isolation and cable 
length.  

The results show that the two most populated feeders are 
the only ones to be subject to congestions, even when all 
houses in the network have an EV charger. With an EV 
penetration rate of 40 percent or more, one of them is 
especially susceptible to congestion. Approximately a third of 
the EV fleet is observed to be charging between 5 pm and 
midnight on weekdays, resulting in a heavy network load 
between those hours. During the weekend, however, the 
number of EVs charging is lower, and charging sessions occur 
between 1 pm and midnight. The smart-charging scheduling 
process proved effective for ensuring the network’s safe 
operation in terms of congestion management, with 
rescheduling impossibility occurring only on rare occasions. 
This ensures a very high level of EV user satisfaction, as the 
EVs will always be fully or nearly full charged upon departure 
from the residence. Smart-charging scheduling thus enables a 
deferral of grid reinforcement, which is crucial for DSOs 
seeking to reduce their costs. Finally, the results have shown 
that smart-charging scheduling allows EVs to be charged 
outside off-peak hours, thus equalising the power profile, 
leading to more optimized utilization of the grid. 
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