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Abstract—The prediction of power system cascading failures
is a challenging task, especially with increasing uncertainty and
complexity in power system dynamics due to integration of
renewable energy sources (RES). Given the spatio-temporal and
combinatorial nature of the problem, physics based approaches
for characterizing cascading failures are often limited by their
scope and/or speed, thereby prompting the use of a spatio-
temporal learning technique. This paper proposes prediction of
cascading failures using a spatio-temporal Graph Convolution
Network (GCN) based machine learning (ML) framework. Ad-
ditionally, the model also learns an importance matrix to reveal
power system interconnections (graph nodes/edges) which are
crucial to the prediction. The elements of learnt importance
matrix are further projected as power system functional connec-
tivities. Using these connectivities, insights on vulnerable power
system interconnections may be derived for enhanced situational
awareness. The proposed method has been tested on a modified
IEEE 10 machine 39 bus test system, with RES and action of
protection devices.

Index Terms—Graph theory, machine learning, phasor mea-
surement units, power system failures, power system dynamics.

I. INTRODUCTION

The rising integration of RES into the present day power
system adds uncertainty (due to their intermittent nature) and
complexity (due to power electronic interfaced devices with
faster dynamic response and commensurately fast control)
in its dynamic behaviour. Of particular concern for system
operators and power system security is the possibility of
cascading failures – a quick succession of multiple component
failures usually triggered by one or more disturbance events
such as extreme weather, equipment failure, or operational
errors, and might also lead to a blackout [1]. Early detection
and containment of such failures is critical to secure and
reliable operation of power systems and minimize economic
and social costs.

Conventional approaches for studying cascading failures in
power systems are mostly physics based [2]. Previous studies
in literature are mainly focused on modelling such failures
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using steady state approaches or simulating a dynamic model
for a set of credible contingencies [2]. In [3], [4] different
approaches are proposed using influence graphs to represent
how these failures evolve in a specific network topology. In [5],
statistical method based on Random Chemistry is used to sam-
ple most-likely set of failures. However, dynamic modelling
of power system cascading failures has also gained interest, as
these simulations can capture dynamic phenomena related to
voltage, frequency and transient instability. In [6] [7] compar-
isons between static and dynamic time domain simulations are
presented. The results in these studies highlight that the initial
cascading events can be captured by both models, but dynamic
phenomena occurring towards the later stage of cascading
sequences cannot be represented adequately by static models.
Dynamic probabilistic risk assessment of cascading failures
has been reported in [8], [9]. The proposed method is applied
to a realistic network model with protection devices and the
uncertainty due to renewables is simulated by a probabilistic
model. Recent literature also consists of few studies utilizing
machine learning techniques for the assessment of voltage
and transient stability of power systems [10], [11]. The use
of machine learning/deep learning techniques for predicting
cascading failures has shown to offer computational savings
[12], [13]. However, learning based models for predicting
cascading failures, trained using dynamic model of the power
system components along with associated protection devices,
has been scarcely represented in literature. Also, while black-
box machine learning algorithms have shown promising results
in power system stability/security assessment problems, they
lack interpretability. As a result, explainable artificial intel-
ligence, has become an emerging research direction, which
addresses this problem and helps understanding why and how
these models make predictions [14]. Thus, there are two key
challenges to investigating the occurrence of cascading failures
in power system. The size of the contingency set to be tested
and the level of detail of the power system model used,
which is often constrained by computational power. Secondly,
such failures in power systems exhibit non-local propagation
patterns which make the purely topological analysis of failures
unrealistic [3].

Key Contributions: In the above context, the current work
seeks to explore the efficacy of spatio-temporal GCN, to978-1-6654-8032-1/22/$31.00 ©2022 IEEE
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Fig. 1: Spatio-temporal GCN framework for predicting cascading failure

detect the early onset of such failures. In addition to the
temporal evolution of failures, the proposed framework also
takes into account the spatial connectivity of the network
for the prediction task. A salient feature of the proposed
framework is that the a spatial attention based importance
mask is also learnt as an additional trainable parameter. In ad-
dition to improving model performance, the learnt importance
matrix allows us to identify the importance of power system
interconnections significantly contributing to the prediction
of cascading failures. The trained importance matrix thus
represents an improved graph connectivity obtained in a data-
driven manner and thus could be helpful in the absence of
accurate knowledge of power system topological parameters.
Such a connectivity could offer interpretable insights that can
support informed decisions for the system operators. It has also
been found that GCNs require fewer parameters than time-
series based learning methods [15], thus prompting the usage
of the current framework for real-time operations. Simulation
studies are conducted using data generated from dynamic
simulation of cascading failures, along with the action of
protection devices, on a modified IEEE 39 bus 10 machine
test system.

The remainder of paper is structured as follows: Section II
introduces the methodology of the proposed ML framework,
Section III discusses the case studies and results, while Section
IV enumerates the key conclusions of the current work.

II. METHODOLOGY

This paper explores the use of spatio-temporal GCN based
machine learning framework (as shown in Fig. 1) to predict the
occurrence of cascading failures, using binary classification.
The proposed work also attempts to interpret the predictions
of the ML model as opposed to black box machine learning
models, using a spatial attention based importance mask,
which is further projected as dynamic functional connectivity
of the power system. Intuitively, the spatio-temporal GCN
model trained along with the importance matrix is expected
to perform better than its vanilla counterpart.

A. Background of Graph Signal Processing and Machine
Learning Framework

Let the power system network be represented by an undi-
rected weighted graph, G = (V, E) where V (card[|V|] = n) is

the set of vertices represented by buses and E (card[|E|] = l)
is the set of edges, represented by transmission lines and
transformers. Let n ∈ (ng, nl) be the number of buses
equipped with generator and load respectively. The spatial
connectivity between different power system buses (nodes)
is represented by the weighted adjacency matrix, Ã [16]. In
line with previous works related to graph based power system
stability assessment, we utilize the bus admittance matrix,
Y n×n
bus as the weighted normalised adjacency matrix [17],

[18]. For the weighted adjacency matrix Ã, the symmetrically
normalised graph Laplacian matrix can be defined as

L = D−1/2ÃD1/2 (1)

where D is the degree matrix of the graph (diagonal matrix
with nodal degree on the diagonal).

Spatial Convolution: : The normalized Laplacian matrix is
a symmetric semi-definite matrix, which can be decomposed
as a product of Fourier basis V = [v1, v2, ...vn] and diagonal
matrix of eigenvalues, ∆ = [λ1, λ2....λn] as

L = V∆V T (2)

The Convolution Theorem defines convolution as linear oper-
ators that diagonalize in the Fourier basis (represented by the
eigenvectors of the Laplacian operator). In order to calculate
the Graph Fourier Transform of a signal on non-Euclidean
spaces like irregular graphs (e.g., the power system network),
efficient spectral filter based discretization proposed in [16]
is utilized. The graph convolution of the input signal xin

(which represents the set of power system input features), with
spectral filter Gg is defined as

xin ∗Gg = V (V Txin ⊙ V TGg) (3)

where ⊙ denotes the Hadamard product. The current frame-
work also shares similarities with [15] for implementation of
a spatio-temporal module.

Temporal Convolution: : After the extraction of spatial fea-
tures, one dimensional convolution is adopted to incorporate
temporal information. Gated Linear Unit (GLU) based activa-
tion function is utilized to model the time-varying non-linear
characteristics. Then, a Normalization layer and a Dropout
layer is added to prevent over-fitting. The output of the last
spatio-temporal GCN layer is fed to a global average pooling
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and its output vector is transformed to class probabilities by a
fully connected layer Softmax layer. Output 1 represents that
a cascading failure is about to happen and 0 represents no
cascade. The structure of input data and the proposed spatio-
temporal GCN pipeline is represented in Fig. 1(a) and 1(b)
respectively.

B. Importance Matrix and Power System Functional Connec-
tivity

The spatio-temporal GCN output features, xout are calcu-
lated as,

xout = G
− 1

2
g

(
Ã
)
G

− 1
2

g xinW (4)

where W is the weights matrix and Gg is the kernel obtained
from graph convolution in spatial domain as discussed in
Section II-A. To determine the importance of spatial graph
edges in defining class probabilities, a spatial attention mask
in the form of importance matrix, Mn×n may be integrated
into the model. This matrix is shared across all spatio-temporal
GCN layers by replacing Ã in (4) with Ã × M (element-
wise multiplication). As such, while performing spatial graph
convolution on a node, the contribution from its neighbouring
nodes, will be re-scaled according to the importance weights
learnt in the ith row of M . Thus, the diagonal entries of M
(self-connectivity) quantify importance for each node, while
off-diagonal entries do so for each edge.

Conceptual proof for importance matrix, M as scaled dy-
namic functional connectivity of power system: The generator
and network dynamics of power system are given by

ẋ = f(x, u)
0 = g(x, u)

(5)

where, x are the states of the power system and u is the
external input. The algebraic equations, g(.) indicating ac-
tive/reactive power injections, Pi/Qi at bus i are given by

Pi = Vi

n∑
k=1

Vk (Gik cos (θik) +Bik sin (θik))

Qi = Vi

n∑
k=1

Vk (Gik sin (θik)−Bik cos (θik))
(6)

where, Gik and Bik are the real and imaginary parts of Ybus

respectively, for a power system consisting of n buses. For
high voltage transmission lines, the line conductances, Gik are
usually neglected, thus Ybus is assumed to consist of only bus
susceptances, Bik. For the power system graph as described
in Section II-A, the weighted graph Laplacian is given as [19],

Lij =


−wi,j , for i ̸= j& i j ∈ E

n∑
k=1

wij , for i = j &k ̸= i

(7)

where wij represents the connectivity between the elements of
the graph, usually given by Bik. For assessing vulnerability to
cascading failures the underlying electrical network encoded
in Bik may not be sufficient and an auxiliary re-weighted
network with the same topology as the physical network, but

with new edge weights encoding generator voltage levels, the
topology and strength of connections between loads and gen-
erators may be useful. We thus refer to [20] for creation of a
re-weighted power system graph Laplacian with dimensionless
voltage magnitude deviations to reactive power demand as
the new edge weights and assumed to represent the dynamic
functional connection between nodes.

Concurrently, the proposed spatio-temporal GCN frame-
work achieves prediction of class probabilities (using nor-
malised Vmag based features) through key signal processing
operations on the graph Laplacian like spectral filtering, graph
coarsening and pooling [16]. Additionally, there is simulta-
neous learning of importance matrix based spatial attention
mask. This importance matrix (see (4)) can thus be projected
as a scaled version of the dynamic functional connectivity of
the power system learnt using Vmag features (thus creating a
re-weighted power system graph as explained above). Graph
signal processing based theoretical underpinnings of spatio-
temporal GCN with importance are the basis for this analogy.

III. CASE STUDIES & RESULTS

A. Description of Dataset

In order to predict cascading failure events in a comprehen-
sive manner there is a need for detailed modelling of power
system dynamics. It is also imperative to consider dynamics
in both fast as well as slow time scales, the operation of
protection devices, initial operating conditions governed by
dispatch of generators, appropriate representation of system
load and renewable generation. In this work, a dynamic root
mean square (RMS) model of a modified IEEE 39 bus 10
machine New England system with high penetration of wind
and protection devices is used to generate power system
features. The power system features assumed to be measurable
in field by Phasor Measurement Units (PMU) are suitably pre-
processed and resampled to the PMU sampling rate of 10
milli-sec [21]. Automatic voltage regulators, over-excitation
limiters, power system stabilizers, detailed controllers for wind
generators, tap changer actions and governors are also modeled
to capture voltage related phenomena and primary frequency
response actions. In addition to this, a basic load shedding
scheme to arrest significant frequency drops after loss of
generation is modelled. The details related to modelling of
dynamic components and their protection devices is present
in [22].
Simulations are performed for different operating conditions
which include changes in load (in the range of 0.7 - 1.2 p.u.
in steps of 0.1) and wind power (in the range of 0-1 p.u. in
steps of 0.2). After taking into account these initial operating
conditions and dispatch of conventional generators, three phase
faults on transmission lines are introduced into the system as
initiating events at 1.0 second and removed at 1.07 seconds.
The faults get cleared by the protection devices included
in the model, and in some cases lead to cascading events
involving multiple failures. The cascading events are caused
by tripping of components, due to intentional interventions
of the protection devices after the relevant limits are violated
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Fig. 2: Training performance for the st−GCN+Imp classifier
averaged over validation folds

(e.g. under-/over- voltage or frequency). Time series data of
power system bus voltages until t = 2 minutes for each
simulation case are recorded. However, post-fault data up to
a time window, Tw = 0.1 sec = 10 time-steps is utilized
for the spatio-temporal GCN prediction. This optimal window
has been pre-determined, by studying the time of occurrence
of first cascading events. This is done to investigate the
performance of the current technique in detecting cascading
failures before their onset. We consider here that a cascading
event has happened if any protection devices are activated,
following the initial fault and disconnection of faulted line.
It should be noted that the focus of this study is to capture
the evolution of the cascading events related to the detailed
dynamic response of the system and their protection devices,
following an initial disturbance.

B. Results for spatio-temporal GCN based prediction

For the modified IEEE 10 machine 39 bus New England
power system, voltage magnitude, Vmag (in p.u.) at all the
buses, are utilized in this study. Initiating faults on all 34
lines and incremental loads and wind power leads to 44064
independent scenarios. It is found that cascading failures occur
in 5500 scenarios (unsafe cases). Thus, a balanced dataset
consisting of an equal number of safe-unsafe cases is created
for the ML model. The input weighted adjacency matrix, Ã
for n = 39 nodes is constructed using the power system bus
admittance matrix, Ybus matrix (neglecting line resistances).
The input dataset (as shown in Fig. 1(a)) is a tensor of order
(X × n× Tw) = (11000× 39× 10), where Vmag recorded at
all 39 buses for 11000 cases and for 10 time-steps is used.The
output is a vector of size (Y ) = (11000×1). Stratified K-fold
cross validation for k = 5 splits is used for different training
and testing data splits. With the prepared database and filter
parameters as present in Table I, the spatio-temporal GCN
model with importance is trained for the binary classification
problem. Standard libraries in Pytorch are used to implement
the proposed spatio-temporal GCN pipeline.

The training performance (the highest training accuracy
= 95.31%) is shown in Fig. 2. Our preliminary findings
reported in Table II, show that the model achieves an accuracy
of 96.83 ± 4.61% at the 95% confidence level, assuming
independent trials. The F1 score (weighted harmonic average
of precision and recall) is used as an additional model perfor-
mance metric. The Recall score is also important for the power
system cascading failures problem because the implications
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Fig. 3: Comparison of sparsity structure (a) bus admittance
matrix, Ybus (b) trained importance matrix, M

of a false negative could result in cascading failures going
undetected and possibly manifesting into a blackout. The
Recall score for the model is 96.36% which signifies that the
technique correctly predicts the occurrence of cascade most
of the times. In Table II, we also test the improvement in
performance of the model from the case when no importance
matrix is included while training the model which is referred
to as the vanilla st-GCN. It is clear that the st−GCN + Imp
based training performs better in terms of all the performance
metrics.

TABLE I: Model Parameters

Hyperparameter Description
Initial learning rate 0.001

Weight decay 0.001
Batch size 64

Dropout probability 0.5
Kernel size of spatio-temporal filter (39,11)

Window Size 0.1 sec

TABLE II: Classification Performance

Classifier Performance (seed = 17)
Accuracy Precision Recall F1 score

vanilla st-GCN 92.56± 2.94 % 84% 93.22% 88.36%
st-GCN+Imp 96.83± 4.61 % 96.45% 96.36% 96.41%

C. Model Interpretability in Terms of Functional Connectivity

In addition to post-hoc interpretability methods, model
based interpretability may be used to explain the predictions
of black-box NNs. In this work, we aim to interpret the pre-
dictions of the graph NN, by learning the dynamic functional
connections significantly contributing to the prediction of a
cascade. As mentioned earlier, the current work introduces,
importance matrix, M as an additional trainable parameter
inside the spatio-temporal GCN to reveal the influence of a set
of nodes and edges in model prediction. For the current 39 bus
test system, the sparsity structure of M and Ybus, in the form
of heatmaps is shown in the Fig. 3. In context of the power
systems, the diagonal elements of the importance matrix depict
the relative importance of various power system buses (graph
nodes) , while the off diagonal elements depict the importance
of power system lines (graph edges) in the prediction of
cascades. It is anticipated that the matrix M offers insights
into the connectivity structure of a power system graph, as

Prediction of cascading failures and simultaneous learning of functional connectivity in power system
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Ybus weighted adjacency matrix, as discussed in Section II-
B. However, it is also important to note that the functional
connectivity given by M also take into account the spatio-
temporal dynamics of power system trajectories and is learnt
within the spatio-temporal GCN for a given time window.
From the sparsity patterns of matrices Ybus and M (as shown
in Fig. 3) , it can be inferred that lighter the colour gradient,
closer are the buses/lines in their admittance based electrical
connectivity and functional connectivity respectively.

It should be noted that benchmarking the accuracy of
learnt functional connectivity makes little sense as the its true
value is unknown and dynamic. Thus, correlation between the
functional and electrical connectivity is observed to establish
the validity of the current framework. The correlation between
elements of Ybus and M is shown in Fig. 4. The scatter plot
in Fig. 4 shows that elements of Ybus and M are positively
correlated (Pearson correlation = 0.41). However there are few
cases when, tightly coupled nodes in electrical structure (larger
value in Ybus) are loosely coupled in flow (lower value of
M ) as shown by encircled region in Fig. 4. This counter-
intuitive observation demonstrates that any two close nodes in
structure may have very little or weak impact on function. This
is also verified in literature, through non-local propagation of
cascades [3], [23].

IV. CONCLUSION

This work illustrates the potential of an interpretable, spatio-
temporal graph learning framework to predict the occurrence
of cascading failures in a hybrid power system (i.e including
power system dynamics and discrete actions of protection
devices). The spatio-temporal GCN model achieves improved
performance when trained along with importance matrix based
spatial attention. The importance matrix indicates the impor-
tance of various buses and transmission lines in the prediction
of failures and is projected to represent the dynamic functional
connectivity of the power system network. Future works
include mining the spectral properties of the importance based
functional connectivity to reinforce informed control actions.
The authors also seek to explore the possibility of importance
matrix as an improved data-driven adjacency matrix to enhance
the performance of graph based learning methods in the
absence of accurate knowledge of power system topology.
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