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Abstract—Towards transitioning to a carbon-free power 

system, new dynamic phenomena and interactions involving grid-

forming converters (GFMs) will become important as their 

proliferation occurs to support this transition. The multi-loop 

control incorporating inner cascaded voltage and current 

controllers (VC and CC) often utilised within GFMs are generally 

expected to cause interactions in higher frequency ranges than the 

(well-studied) dynamics of interest associated with a purely 

synchronous machine-based system. However, the restricted 

control bandwidth associated with low switching frequency of 

large power rated VSCs results in the need for much slower 

control time constants, causing potentially destabilizing, lower-

frequency (or even non-oscillatory) interactions. This paper 

offers an extensive insight into the small-signal, multi-machine 

interactions involving large power rated GFMs in a transmission 

network: the IEEE 39-bus New-England test system (NETS). 

Furthering the contribution of this paper, multi-loop controllers 

are employed within the GFMs, offering an insight into their 

interactions with other power system elements to help aid the 

ongoing discussions on model appropriateness and direct AC 

voltage control versus multi-loop control. Finally, parametric 

sweep sensitivity analyses are performed for the GFMs which are 

implemented as virtual synchronous machines (VSMs). 

Index Terms—Grid-forming converters, small signal, 

stability, power system, dynamics. 

I. INTRODUCTION

Grid-forming converters (GFMs) are one of the promising 
solutions for enabling ever increasing penetrations of 
converter-interfaced generation (CIG), primarily in the form of 
wind and solar energy resources. In the transitionary period 
before synchronous generators (SGs) are fully phased out, a 
combination of SGs, GFMs and grid-following converters 
(GFLs) are expected to be present in power systems. The 
interactions among such devices with each other and existing 
power system elements are of significant interest [1], especially 
in terms of small-signal behaviour. As of yet, the GFM concept, 
despite being utilised for microgrid applications [2][3] , has not 
been fully explored from a small-signal perspective, especially 
in the context of large, interconnected power systems. 

The literature pertaining to GFMs in larger power systems 
in previous years has been restricted to defining general 
penetration level limits [4]. More recently, the impact of GFMs 
on power system stability has been an increasing topic of 
interest. [5] produced an extensive small signal analysis of CIG 
from a small, two-machine with infinite bus system, up to a 

large-scale system in the form of the 59-bus South-East 
Australian network. This work offers invaluable insights into 
the nature of the most influential interactions between SGs, 
GFMs and GFLs, albeit with limited discussion into the nature 
of the specific modes when in the large system due to a focus 
on CIG penetration limits. There remains scope to describe 
extensively the small signal interactions seen in a large-scale 
power system with GFMs, especially since the most influential 
interactions can easily change depending on a multitude of 
factors including operating points as [5] highlights. In terms of 
GFMs in single machine infinite bus (SMIB) systems, [6][7] 
and [8] investigate the small signal behaviour of different GFM 
control schemes with the last of which focusing on tuning 
through eigenvalue analysis before validation with a modified 
IEEE 39-bus New-England test system (NETS). 

A large proportion of research into GFMs has been focused 
on the important issue of current limitation [9][10]. Two 
promising approaches are direct AC voltage control with 
threshold-induced virtual impedance (TIVI) [9][11] and the use 
of multi-loop control [12]. The latter constitutes inner cascaded 
voltage and current controllers (VC and CC), allowing for a 
limitation to be applied to the current reference generated by the 
former and applied to the latter. The idea of direct AC voltage 
control refers to the creation of a voltage phasor from the GFM 
control section and bypassing inner controllers by applying the 
reference directly to the AC voltage modulation of the converter 
terminals. This approach can also incorporate virtual 
impedance [5] or alternative control such as LQR regulators [9]. 

 Traditionally, inner VCs and CCs are much faster than that 
of the outer active and reactive power (or voltage magnitude) 
control. This allows sufficient timescale separation from the 
inner loops to the outer loop and electromechanical (EMc) 
dynamics that dominate power systems [5]. In GFMs, the 
tuning of the inner cascaded controllers has been discussed in 
[12] and [13], both of which find conventional tuning methods
insufficient due to low switching frequencies of voltage source
converters (VSCs) at large power ratings. This is due to limited
bandwidth of the inner controllers resulting in increased
potential for instability. Therefore, through different tuning
procedures, [12] and [13] find new parameters which suffice.
They are of much higher time constants, and from [13] are the
values adopted for the small signal analysis described earlier
[5]. Although [12] and [13] displayed the nature of the small
signal interactions at conventional tuning, they did not show
how this changes after re-tuning.

In this paper, the interaction of these slower inner controller 
dynamics of multiple, distant GFMs, as well as with the EMc 
and power system stabiliser (PSS) dynamics of SGs is 
observed. The main contribution of this paper is a 
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comprehensive break down of the small signal interactions 
which have participation from the virtual synchronous machine 
(VSM) GFMs [14] found at transmission-scale. Specifically, 
for the modified NETS network being studied. This is 
completed for the GFMs utilising direct AC voltage control but 
also when using multi-loop control. Finally, parametric sweep 
sensitivity analyses of relevant GFM parameters are performed.  

II. MODELLING AND ANALYSIS METHODOLOGY 

A.  Modelling 

The small signal models are developed in state-space 
representation in accordance with [15]. All modelling has been 
implemented in MATLAB 2020a, utilising a modular, 
adaptable coding framework which allows for any power 
system model to be easily developed provided the parameters 
of each element and the MATPOWER load flow case file [16] 
are available. An optimal power flow (OPF) will be performed 
using MATPOWER, enabling the extraction of initial states for 
use when setting up the modules along with the dynamic 
parameter information. Additionally, the small-signal model 
has been validated using time-domain comparison with a 
nonlinear model of the system in Simulink. 

 

Fig. 1. GFM converter control structure. 

SG model: is of the balanced, 8th order machine as in [17]. The 
SG is also fitted with an AVR/exciter combination of type 
EXCST1. Additionally, there is a PSS of type PSS1A and 
finally, there is a governor/turbine combination of type 
IEEEG1. Implementation of all controllers is found in [18]. 

GFM model: can be split into four modules and is displayed in 
Fig. 1. The first is the electrical circuit comprising an output 
RLC filter. Next is the signal processing whereby the current 
and voltage measurements are filtered and transformed into the 
machine’s local rotating reference frame (RRF) with signals 
represented in dq coordinates [19]. This section also includes 
the calculation of the active and reactive power. Following this, 
there is the outer loop controls which include the active power 
controller (APC) implemented as a VSM as in [12]. There is the 
voltage magnitude controller (VMC), in this case utilising a 
reactive power-voltage droop as in [12]. Thirdly the inner VC 
and CC are modelled as in [12]. The output of the inner controls 
is the voltage modulation signal 𝑣𝑐𝑣𝑑𝑞

∗  which is applied to the 

fourth and final section, the averaged model converter [19] 
through a pulse width modulation (PWM) stage approximated 
by a first-order time delay [12]. 

Network model: incorporates dynamic PI circuit 
representations of the transmission lines and dynamic RL 
circuits for both the transformers and the loads. The network 
itself is implemented in the RRF of the chosen reference 
machine meaning the transformation between local and global 
(system) reference frames require only a geometrical 
transformation [15]. Additionally, Kirchhoff’s current law is 
applied for the interconnection of all the modules at each bus. 

B. IEEE 39-Bus NETS Network 

The parameters of the NETS network and the SGs within 

are adopted from [18]. From the base case presented there, 600 

MVA rated GFMs were added at bus locations 5, 16 and 26 as 

in Fig. 2: each set to output 300 MVA at a power factor of 0.95. 

Parameters related to GFMs are presented in Table I. 

TABLE I.  GFM INITIAL PARAMETERS 

Parameter Value Parameter Value 

Inertia constant 𝐻𝑎𝑝𝑐 4 s 𝑅𝑓  .03 pu 

APC damping 𝐷𝑎𝑝𝑐 10 pu 𝐿𝑓  .08 pu 

Voltage droop 𝑚𝑞 .001 pu 𝐶𝑓  .074 pu 

Inner VC damping 

factor 𝜁 
25 

Measurement filter 

cut-off 𝑓𝑐 
100 Hz 

Switching frequency 

𝑓𝑠  
2 kHz 

CC time constant 

𝜏𝐶𝐶  
10×(1/𝑓𝑠) 

CC 𝑃⋆ gain 𝐾𝑃
𝑖   .0424 pu VC 𝑃⋆ gain 𝐾𝑃

𝑣 .1406 pu 

CC 𝐼⋆ gain 𝐾𝐼
𝑖 6 pu VC 𝐼⋆ gain 𝐾𝐼

𝑣 .0108 pu 

CC 𝐹⋆ gain 𝐹𝐹𝑖 0 VC 𝐹⋆ gain 𝐹𝐹𝑣  1 
𝐼⋆=integral, 𝑃⋆=proportional and 𝐹⋆=feedforward.

 

Fig. 2. Modified IEEE 39-bus NETS network. 

C. Small Signal Analysis Methodology 

 Small signal analysis is driven by the calculation of the 
eigenvalues of the state matrix in a linearised state-space system 
which relates the state derivatives to the system states [15]. The 
analysis of these eigenvalues allows us insight into the nature 
of individual dynamics with information on their frequency, 
damping, proximity to the unstable region, and participating 
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states. This last piece of information is extracted through the 
calculation of participation factors as in [17]: 

p
ij
=

(|ψ
ij
|× |ϕ

ij
|)

(∑ |n
i=1 ψij|× |ϕ

ij
|)

⁄ (1)  

where ψ and ϕ are the left and right eigenvectors. The subscript 

‘ 𝑖𝑗 ’ refers to the contribution of the 𝑖𝑡ℎ  state to the 𝑗𝑡ℎ 
eigenvalue and the value 𝑛 refers to the total number of states. 

To classify the GFM dominant eigenvalues, a minimum 
participation from the sum of all GFM states of 10% is required. 
Additionally, any eigenvalue that was fully damped with real 
value less than -10 was considered irrelevant. It was found that 
those eigenvalues with participation from only GFM output 
filter states and network states were extremely stable and had 
no sensitivity to any GFM control parameters. Therefore, the 
output filter states were not considered GFM states when 
determining the modes of interest. Note, this might not be true 
with higher bandwidth inner controllers. The determination of 
relevant eigenvalues was performed for the direct AC voltage 
control scenario before the inner VCs and CCs are added to the 
GFMs. The initial tuning for these inner controllers were 
determined using the modulus optimum technique for the CC 
and the symmetrical optimum approach for the VC [12]. The 
latter requires a damping factor to be chosen which is obtained 
in this case from a parametric sweep displayed in Fig. 3a. All 
further information regarding the parametric sweeps can be 
found in the Fig. 3 caption, including a zoom key to clarify 
which mode category (section IV) is being displayed. 

Knowing the eigenvalues that exist is not sufficient as we 
require an idea of how the important system parameters impact 
the stability of these eigenvalues to gain a complete picture. 
Therefore, parametric sweep based sensitivity analyses are 
performed to determine how the dynamics are impacted. This 
involves eigenvalue plots for a parameter value being 
considered across an appropriate range with all other 
parameters held constant. In this work, the sensitivity analysis 
is performed only for the multi-loop scenario. 

III. GFMS WITH DIRECT AC VOLTAGE CONTROL 

 This section regards the analysis performed on the test 
system described previously with all GFMs implemented 
without the inner controllers. That is, they employ direct AC 
voltage control. All eigenvalues of interest are shown in  
Table II along with their frequency, damping ratio and most 
dominant states, characterized by a minimum of 5% 
participation factor unless stated otherwise. Those with 
participation above 10% are presented in bold. 

 There are six modes in the range of 21.63 Hz to 21.66 Hz. 
These modes have participation purely from the input 
measurement filters of the GFMs. They are very well damped 
with damping ratio of approximately 0.869 and do not move 
throughout parametric sweeps and so have not been included in 
Table II. Similar modes were found in the multi-loop scenario 
and again have not been included in Table III or the display of 
the parametric sweeps in Fig. 3. 

 All of the eigenvalues are seen to be in the EMc range with 
frequencies between 1.1862 Hz and 1.9422 Hz. The EMc nature
 

  

 

Fig. 3. Parametric sweeps of eigenvalues with lowest values in black and highest values in red: (a) 𝜁: 1 to 50 in steps of 1  (b) 𝜏𝐶𝐶: 10 × 1/𝑓𝑠 to 100 × 1/𝑓𝑠 

in steps of 1.8 × 1/𝑓𝑠, (c) 𝐻: 2s to 50s in steps of 2s, (d) 𝐷𝑎𝑝𝑐: 10 to 100 in steps of 10 and (e) 𝑚𝑞: 0.1 % to 1 % in steps of 0.1 %.  

Zoom key: 1=electromechanical modes, 2=inner CC-related modes, 3-inner VC-related modes. 

(a) 

Zoom 3 

(b) 

(c) (d) (e) 

Zoom 2 Zoom 2 

Zoom 3 

Zoom 3 Zoom 1 

Zoom 1 

Zoom 2 Zoom 2 

Zoom 3 
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TABLE II.  EIGENVALUES OF INTEREST FOR DIRECT AC VOLTAGE CONTROL SCENARIO 

Eigenvalue Coordinates 
Frequency 

(Hz) 
Damping 

Ratio 
Dominant States Category 

𝜆1&2 −0.5879 ± 𝑗12.2031 1.9422 0.0481 𝝎𝑮𝑭𝑴𝟐
,𝜹𝑮𝑭𝑴𝟐

,𝜔𝑟4
 Electromechanical 

𝜆3&4 −1.5704 ± 𝑗11.4504 1.8224 0.1359 𝝎𝒓𝟖
,𝜹𝑮𝑭𝑴𝟑

,𝜹𝒓𝟖
, 𝜔𝐺𝐹𝑀3

 ,𝐸𝑞
′

8
 Electromechanical 

𝜆5&6 −0.7167 ± 𝑗11.2226 1.7861 0.0637 𝜹𝑮𝑭𝑴𝟏
,𝝎𝑮𝑭𝑴𝟏

,𝜔𝐺𝐹𝑀3 Electromechanical 

𝜆7&8 −1.6783 ± 𝑗10.6958 1.7023 0.1550 𝝎𝒓𝟖
,𝜹𝒓𝟖

,𝐸𝑞
′

8
,𝜔𝑟4

,𝛿𝐺𝐹𝑀3
,𝜔𝑟𝐺𝐹𝑀3

, 𝜔𝑟9
 Electromechanical 

𝜆9&10 −1.0650 ± 𝑗7.4529 1.1862 0.1415 𝜹𝒓𝟗
,𝝎𝒓𝟗

,𝛿𝐺𝐹𝑀3
, 𝜔𝑟10

 ,𝐸𝑞
′

9
 Electromechanical 

Subscript numbers refer to the machine number which can be seen in Fig. 1. 

TABLE III.  EIGENVALUES OF INTEREST FOR MULTI-LOOP CONTROL SCENARIO 

Eigenvalue Coordinates 
Frequency 

(Hz) 

Damping 

Ratio 
Dominant States Category 

𝜆11&12 −0.5577 ± 𝑗12.4033 1.9740 0.0449 𝝎𝑮𝑭𝑴𝟐
,𝜹𝑮𝑭𝑴𝟐

,𝜔𝑟4
,𝛿𝐺𝐹𝑀3

,𝛿𝐺𝐹𝑀1
 Electromechanical 

𝜆13&14 −1.5240 ± 𝑗11.8298 1.8828 0.1278 𝝎𝒓𝟖
,𝜹𝑮𝑭𝑴𝟑

,𝜔𝐺𝐹𝑀3
,𝛿𝑟8

,𝐸𝑞
′

8
 Electromechanical 

𝜆15&16 −0.7015 ± 𝑗11.4685 1.8253 0.0610 𝜹𝑮𝑭𝑴𝟏
,𝝎𝑮𝑭𝑴𝟏

,𝜔𝐺𝐹𝑀3
 Electromechanical 

𝜆17&18 −1.7469 ± 𝑗10.6211 1.6904 0.1623 𝝎𝒓𝟖
,𝜹𝒓𝟖

,𝐸𝑞
′

8
,𝜔𝑟4

,𝜔𝑟9
,𝛿𝐺𝐹𝑀3

 Electromechanical 

𝜆19&20 −0.9950 ± 𝑗7.4804 1.1905 0.1319 𝜹𝒓𝟗
,𝝎𝒓𝟗

,𝜔𝑟10
,𝛿𝐺𝐹𝑀3

,𝐸𝑞
′

9
 Electromechanical 

𝜆21&22 −0.6295 ± 𝑗7.0821 1.1272 0.0885 𝜹𝒓𝟏𝟎
,𝝎𝒓𝟏𝟎

,𝜔𝑟2
,𝛿𝐺𝐹𝑀3

 Electromechanical 

𝜆23&24 −0.2350 ± 𝑗0.0770 0.0123 0.9503 𝜸𝑪𝑪𝟐𝟐
, 𝜸𝑪𝑪𝟏𝟐

,𝝎𝒓𝟏
 Inner CC-related 

𝜆25&26 −0.0526 ± 𝑗0.0541 0.0086 0.6970 𝜸𝑪𝑪𝟏𝟐
,𝛾𝑃𝑆𝑆37

, 𝛾𝐶𝐶22
,𝛾𝑃𝑆𝑆36

, 𝛾𝐶𝐶11
, 𝛾𝐶𝐶13

,𝜔𝑟1
 Inner CC-related 

𝜆27 −0.2373 0 1 𝜸𝑪𝑪𝟐𝟏
, 𝜸𝑪𝑪𝟏𝟏

, 𝛾𝐶𝐶22
 Inner CC-related 

𝜆28 −0.2131 0 1 𝜸𝑪𝑪𝟐𝟑
, 𝜸𝑪𝑪𝟐𝟐

, 𝛾𝐶𝐶13
, 𝛾𝐶𝐶21

 Inner CC-related 

𝜆29 −0.0670 0 1 𝜸𝑪𝑪𝟏𝟏
,𝜸𝑪𝑪𝟏𝟐

,𝜸𝑪𝑪𝟐𝟏
, 𝛾𝐶𝐶22

 Inner CC-related 

𝜆30 −0.0847 0 1 𝜸𝑪𝑪𝟏𝟑
,𝜸𝑪𝑪𝟏𝟏

,𝛾𝑃𝑆𝑆39
,𝛾𝐶𝐶12

,𝛾𝐶𝐶23
,𝛾𝑃𝑆𝑆37

 Inner CC-related 

𝜆31&32 −0.00000352 ± 𝑗0.000797 0.000012689 0.0044 𝜸𝑽𝑪𝟐𝟏
,𝜸𝑽𝑪𝟏𝟏

, 𝜸𝑽𝑪𝟐𝟐
, 𝜸𝑽𝑪𝟏𝟐

, 𝜸𝑽𝑪𝟐𝟑
, 𝜸𝑽𝑪𝟏𝟑

 Inner VC-related 

𝜆33&34 −0.00000773 ± 𝑗0.000801 0.000012747 0.0097 𝜸𝑽𝑪𝟏𝟑
,𝜸𝑽𝑪𝟐𝟑

,𝜸𝑽𝑪𝟏𝟏
,𝜸𝑽𝑪𝟐𝟏

 Inner VC-related 

𝜆35&36 −0.00000930 ± 𝑗0.000803 0.000012783 0.0116 𝜸𝑽𝑪𝟏𝟐
,𝜸𝑽𝑪𝟐𝟐

,𝜸𝑽𝑪𝟏𝟏
,𝜸𝑽𝑪𝟐𝟏

 Inner VC-related 

 

of these modes is also confirmed with the participation factors 
showing dominant modes associated with the rotor speed and 
angle of SGs with 𝜔𝑟 and 𝛿𝑟, as well as the GFMs with 𝜔𝐺𝐹𝑀 
and 𝛿𝐺𝐹𝑀 . There is also some small participation from states 

associated with the rotor field windings, 𝐸𝑞
′. All modes involve 

multiple generators (GFMs and/or SGs). Additionally, for this 
timescale, all modes are well damped, with the minimum being 
4.81 %. Typically, a damping ratio of above 3 % is considered 
sufficient for EMc modes. 

IV. GFMS WITH MULTI-LOOP CONTROL 

The eigenvalues and their characteristics for this set up are 
displayed in Table III. We find the same EMc modes as 
observed in Table II with small changes to the frequency and 
damping. However, there are additional modes now found to be 
of interest. All of the additional modes are in close proximity to 
the stability boundary and are related to the inner controllers of 
the GFMs. The inner CC states are denoted by 𝛾𝐶𝐶1&2

 and the 

inner VC states are denoted by 𝛾𝑉𝐶1&2
. The eigenvalues can be 

split into three main categories: EMc, inner CC-related, and 
inner VC-related. The inner CC-related modes, 𝜆23𝑡𝑜30 , are 
seen to be low frequency or non-oscillatory and may have 
participation from the PSSs of SGs, whose states are denoted 
by 𝛾𝑃𝑆𝑆1&2&3

, or even the rotor speed dynamics as in 𝜆23&24 and 

𝜆25&26 . The inner VC-related modes, 𝜆31𝑡𝑜36  are seen to be 
very close to the origin with very low frequency and close to 
the unstable region. It is important to note that all of the inner 
controller related modes except 𝜆23&24  involve the inner 
controllers of multiple (or all) GFMs throughout the system, 
proving the need to perform system-level small signal studies. 

An additional note of interest is the lack of any important 
modes consisting of interactions between the GFM control 
states and the network dynamics. Likely due to the restricted 
control bandwidth of the GFMs, this might suggest the 
possibility of model order reduction in relation to time 
separation for an algebraic representation of the network. 

V. PARAMETRIC SENSITIVITY ANALYSIS 

Parametric sweeps are performed for the multi-loop case 
and are displayed in Fig. 3 to further the understanding of how 
the identified mode categories can be influenced. Note, the 
sweeps of any given parameter are performed on all the GFMs 
at once. From Fig. 3a we can observe that the damping factor, 
𝜁, associated with the tuning of the inner VC has a small impact 
on the inner CC-related modes and significant influence over 
the stability of the inner VC-related interactions. For the latter, 
the real-parts curve from instability into the stable region and 
then back towards the instability boundary but without reaching 
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it. The chosen parameter value for the base case investigated 
previously was 25, at approximately the maximum negative 
real part for these modes within the range investigated. Fig. 3b 
displays the influence that the inner CC time constant, 𝜏𝐶𝐶 , (and 
hence inner VC time constant) has over the inner controller 
related modes. When considering the inner VC-related modes 
specifically, the increase of 𝜏𝐶𝐶  brings the eigenvalues closer to 
the origin. 

Moving our attention to the slower outer controllers, Fig. 3c 
confirms that the inertia constant, 𝐻𝑎𝑝𝑐, has a significant impact 

on the EMc modes with the potential for instability to occur if 
the parameter is set too high. 𝐻𝑎𝑝𝑐 can also be seen to have an 

impact on the inner CC-related modes but to a lesser extent and 
causing no instability in this case. In terms of the VC-related 
interactions, 𝐻𝑎𝑝𝑐 has no impact. The damping constant, 𝐷𝑎𝑝𝑐, 

is also seen to have significant impact on the EMc modes in  
Fig. 3d. However, for the range of parameter values evaluated 
no instability is observed. Similar to 𝐻𝑎𝑝𝑐 , 𝐷𝑎𝑝𝑐  has a small 

impact on the inner CC-related modes, without causing any 
issues in this case, and has no impact at all on the inner VC-
related modes. The final parametric sweep in Fig. 3e finds that 
the reactive power droop gain, 𝑚𝑞, has negligible impact on the 

EMc modes as well as the inner CC-related modes. However, it 
does impact the inner VC-related interactions with increasing 
values bringing increased damping. 

It should be noted that the conclusions drawn from these 
results are specific to the test system utilised at the operating 
point of interest. Also, the elements connected to the system and 
their specific parameter tuning values will have significant 
impact on the small signal behaviour. This work aims to shed 
light on potential interactions that can occur in transmission 
systems containing a mix of SGs and GFMs. 

VI. CONCLUSIONS 

This paper provides a small signal analysis focusing on 

multi-machine interactions in a GFM-penetrated transmission 

network. More specifically, this work utilises a modified IEEE 

39-bus system with the addition of CIG utilising the VSM 

GFM control scheme (with and without inner loops). The 

interactions observed are split into three main categories of 

EMc, inner-VC related, and inner-CC related modes. The latter 

of which might also involve the PSSs, or even the rotor speed 

dynamics, of SGs. It was found that all types of mode typically 

involve participation from multiple machines (GFMs and/or 

SGs) within the system. 

The sensitivity of these interactions to different GFM 

parameters is also investigated for this specific system. The 

inner VC tuning damping factor is important for stabilising the 

inner VC-related multi-unit interactions. The inner controller 

time constant has influence over the inner CC-related modes. 

There is a destabilising impact on EMc modes from the virtual 

inertia constant of the VSM. The virtual damping constant and 

reactive power droop gain have less impact on the overall 

stability of the system. Although, they do have some influence 

over the EMc and inner-VC related modes, respectively. For 

this test system, it can be determined that removing the inner 

VCs would be beneficial. Maintaining the inner CCs would be 

sufficient for the current reference limitation approach and 

although inner CC-related modes are close to the stability 

boundary, they cause no stability issues (in this case). 
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