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Abstract—Scalable planning and control of individual devices
within multi-energy systems is important to support the energy
transition. However, multi-energy systems are complex due to
relations between different energy carriers on different levels.
This paper extends the Profile Steering algorithm with support
for such multi-energy systems using distributed optimization,
in which individual components can be added. As concrete
application, a method to perform load shedding and curtailment,
to balance a local district heating network, is presented. Our
evaluation shows that a multi-energy system, consisting of a
buffer, a CHP, and a heat pump can be optimized within
reasonable time and leads to a reduction in export of 51.4%.

Index Terms—demand side management, multi-energy sys-
tems, optimization, smart grids

I. INTRODUCTION

Many countries are currently developing roadmaps to create
a fully sustainable energy supply chain. Next to increasing the
share of renewable energy sources (RES), this also requires
energy storage. Hereby, seasonal storage is required to supply
heat during the colder months. For this often large heat
storage vessels are used. The combination of electricity and
heat results in a so-called multi-energy system (MES) [1].
Exploiting synergies between different energy carriers results
in benefits for the energy system as a whole. As an example,
[2] and [3] found significant economic savings when optimal
control is used within a MES. These solutions use generic,
centralized, solvers to optimally schedule the operation of
devices within a MES. The current trend suggests that more
complex and intertwined MES will emerge. However, with
increasing number of converters, a scalable approach to control
such a MES is required as centralized optimization approaches
do not scale well. One solution is a double-sided auction to
control two energy carriers [4].

In previous work [5], we investigated the use of Profile
Steering (PS) [6] to control a MES. In contrast to [4], PS
uses model predictive control in a rolling horizon approach.
This way, the use of solar PV, small scale battery storage and
a combined heat and power (CHP) system, resulted in very
little import of electric energy from the main grid. However,
the proposed system still exported significant amounts of
electricity, which may be resolved by including heat pumps
(HPs). The Profile Steering (PS) optimization algorithm as
used in [5] does not support this as it can only steer towards
energy balance, but not guarantee it.

This paper presents an extension to the scalable Profile
Steering (PS) algorithm [6] that allows the integration of mul-
tiple converters in a MES. This is done on basis of the coordi-
nation algorithm only, in which we focus on efficiently finding
a feasible planning rather than overall system efficiency. First
we briefly explain the original algorithm and related extensions
in Section II. Subsequently, a new scheduling stage is added to
the algorithm in Section III to ensure that a feasible solution
is found for MES with local only networks that need to be
balanced. To do so, load shedding or curtailment may be
required, but discomfort is minimized using a new fitness
metric. Furthermore, this paper also discusses how the stages
of the PS algorithm align with the USEF [7] market model.
The proposed solution is evaluated in Section V by revisiting
the case from [5], but now with HPs included (shown in Fig.
1). Conclusions and directions for future work are presented
in Section VI.

The main contributions of this paper are as follows:
• a scalable framework for MES optimization,
• support for load shedding and curtailment.

II. PROFILE STEERING ALGORITHM

This section gives an overview of the PS algorithm [6] and
previously published extensions to PS.

A. Algorithm
The PS algorithm [6] is a heuristic to schedule a cluster

of M devices for an upcoming period of N time intervals. It
does so by iteratively reducing the Euclidean distance between
desired power profile ~p and aggregated power profile ~x, i.e.,
minimize ||~x−~p||2. The zero vector is used for ~p to expresses
that energy balance is desired.
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Fig. 1. DEMKit model of the MES with devices and controllers.
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Initially, each device m ∈ M receives ~p and optimizes
its own power profile ~xm = [xm,1, . . . , xm,N ]T to minimize
||~xm − ~p||2. The PS controller receives a power profile from
each connected device, resulting in ~x =

∑
m∈M ~xm. Then, in

an iterative process, the PS controller sends out a difference
profile ~d = ~p − ~x. Each device obtains a local desired
profile ~pm = ~d + ~xm and optimizes its schedule to find a
new optimized candidate power profile ~̂xm that minimizes
||~̂xm − ~pm||2. Each device calculates the improvement em
that is achieved by replacing ~xm by ~̂xm: em = ||~xm−~pm||2−
||~̂xm−~pm||2, and communicates em back to the PS controller.
The PS controller selects the device with the largest em. The
corresponding device m commits its own candidate profile
(i.e., ~xm := ~̂xm) and PS updates ~x accordingly. Subsequently,
a new difference profile ~d is obtained to repeat the process
until no significant improvement is made or the maximum
number of iterations is reached. The result of the algorithm is
a schedule ~xm for each device m. Device specific optimization
algorithms are presented in [8].

B. Profile Steering with Bounds
Certain bottlenecks in the grid, referred to as congestion

points, limit the possible flow of energy and therefore also the
utilization of flexibility. Van der Klauw et al. [9] have extended
PS to include bounds in the steering signals. Vectors ~bmax and
~bmin indicate respectively upper and lower bounds.

After creating the initial planning, the algorithm verifies if
these bounds are respected. If not, the desired profile is altered
to maximize the distance to either bound, i.e. pi = (bmin,i -
bmax,i)/2 and the bounds are communicated together with the
desired profile in the process. The devices use this information
to create feasible schedules within their comfort constraints
using their flexibility, i.e. load shedding or curtailment is not
applied. Subsection III-A discusses the situation in which no
feasible solution is found.

C. Profile Steering with Multiple Commits
Basic PS only selects one profile per iteration to ensure

convergence, however, this hinders its scalability. This was
evaluated in [10] and a method to reduce the computation time
with many devices has been proposed. To lift this issue, only
a fraction of the desired profile ( ~pµ ) is communicated to all
devices, and also allowing µ candidate profiles to be accepted
in each iteration. In subsequent iterations µ may be reduced,
until µ = 1, resulting in the original PS algorithm.

D. Profile Steering with Multiple Energy Carriers
Schoot Uiterkamp et al. [11] extended PS by replacing

the steering vectors with matrices, e.g., ~x becomes ~X . Each
column ~Xc represents an energy carrier c ∈ C, and the
desired profiles for multiple energy carriers are sent to a
device at once. The advantage of this approach is that de-
vices, especially converters, can optimize their operation for
multiple energy carriers simultaneously. In practice, the energy
consumption/generation of one energy carrier depends on the
consumption/generation of another energy carrier for these
devices. In [11] a weight wc for each carrier is chosen, such
that em becomes a weighted sum.

III. SUPPORTING MULTI-ENERGY SYSTEMS

To allow the joint optimization of multiple energy carriers,
matrices have been used. However, the approach presented in
[11] only minimizes the (weighted) Euclidean distance to the
desired profile. This is no problem when all energy carriers
have a connection to the main grid. This way, a shortage
of energy can be supplied, or a surplus can be exported
to the main grid. In practice, a MES often incorporates a
local energy system that is not connected to a main grid. A
common example is the inclusion of a district heating network.
In essence, such a heat network can be considered as an
islanded grid that requires balance between consumption and
production at all times. This section presents the inclusion of
load shedding and curtailment in PS to guarantee such balance.

A. Adding Forced QoS Degradation
Islanded networks should achieve energy balance using

producers (sources), consumers (sinks), and storages (buffers).
Insufficient flexibility is provided to reach balance if, after
applying aforementioned bounds (Subsection II-B), the profile
is still not within limits. To resolve this, a third stage is added,
right after the extension presented by [9], that forces devices
to perform load shedding or curtailment. We implement this
by supplying an additional parameter with the steering sig-
nals: forceBalance = True. However, load shedding should
be limited to strictly the amount necessary to minimize the
discomfort.

The comfort degradation should be spread fairly among all
consumers, producers and converters. To achieve fairness, the
multiple commits approach (Subsection II-C, [10]) is applied
in this stage with µ = M . The upper and lower bounds are
also divided by µ to avoid overshoots in aggregated profile.
For local only energy carriers, the bounds can be set to zero
(with an ε margin) to indicate that there is no other grid with
which energy can be exchanged.

Furthermore, device level optimization algorithms have their
own objectives to maximize their comfort within the given
bounds. If such comfort objectives are not in place, device
optimization algorithms may (under certain conditions) pro-
pose a candidate profile that maximizes the improvement value
by applying full load shedding or curtailment, which often
results in minimum comfort. This is also the reason why the
approach of [9] is applied first to initially avoid discomfort.
Forced discomfort stage is therefore only used as a last resort
to guarantee balance.

B. Different Improvement Metric
Considering the MES as a whole, the aforementioned pro-

ducers and consumers may become converters. This is the
case where at least two involved energy carriers are optimized
using PS. Examples are HPs (converting electricity into heat),
CHPs (converting gas into heat and electricity).

Converters have a special role, as they affect the profiles of
multiple energy carriers simultaneously. Only implementing
load shedding and curtailment is insufficient as the resulting
profile, that obeys the limits for one energy carrier (e.g., to
balance a heat network), may result in a negative overall im-
provement (e.g. a larger electricity peak with higher weight).
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Therefore, such a feasible candidate profile is never selected
in the PS algorithm and hence the infeasible schedule remains.

To avoid such behaviour, a new improvement metric is
introduced for the load shedding and curtailment phase of PS.
Instead of the Euclidean distance from the desired profile, we
use the euclidean distance from either bound. For this, we
first obtain the penalty matrices O and Ô, which indicate the
violation of either bound (bcmax and bcmin), for both the current
profile Xm and candidate profile X̂m respectively. An element
of the penalty for device m, time interval i, and energy carrier
c, is defined as:

ocm,i =


bcmin,i − xcm,i if xcm,i < bcmin,i

xcm,i − bcmax,i if xcm,i > bcmax,i

0 otherwise.
(1)

The penalty elements for the candidate profile Ô are ob-
tained likewise. The resulting improvement e′m is obtained by
calculating the improvement in Euclidean distance, similarly
to the method described in [11]:

e′m =
∑
c∈C

wc· (||~ocm||2 − ||~̂ocm||2). (2)

This means that, if a profile fits within bounds, its improve-
ment is maximized and no further incentive is given to reach
the desired profile (which would lead to more discomfort than
strictly necessary as mentioned before). However, depending
on the reaction of other devices, it may still occur that a device
is able to propose a positive improvement em, whilst e′m ≥ 0
(i.e. a feasible solution). Therefore, the best improvement
metric êm is communicated, as long as e′m ≥ 0:

êm =

{
em if em ≥ 0 ∧ e′m ≥ 0

e′m otherwise.
(3)

If no more improvement is provided, the profile is either
within bounds or PS cannot find a feasible solution.

C. Extended Heuristic

This subsection presents an overview of the PS algorithm
which includes aforementioned extension, summarized in Alg.
1, which is based on the work presented in [6], [9]–[11]. Refer
to aforementioned literature for more in depth details.

The heuristic initially starts by requesting an initial power
profile (line 24), for which minimizing the Euclidean distance
to the desired profile ~P is the objective. However, this initial
plan may as well be the result of other market models. This
phase can be seen as the green phase in USEF [7] (e.g. free
market), where the result is the so-called A-plan, which is used
for validation by distribution service operators (DSOs).

Similarly to Van der Klauw et al. [9], we check this initial
profile for feasibility with given bounds (line 26). If it is
not, we adapt the desired profile to maximize the distance to
either bound and run the PS algorithm again with the adapted
desired profile ~P ′ (lines 27-28). This phase is similar to the
yellow phase in USEF, in which congestion points are declared
and the market is requested to stay within these limits. From

this point on, the resulting profile is again validated with set
bounds. If the initial profile is feasible (line 30), the heuristic
proceeds with a regular PS as presented in [6], [11] (line 33).

However, if the planning is not feasible, the algorithm
cannot find one that fits within given comfort constraints.
The PS algorithm is executed one more time, but now with
forceBalance = True to find a feasible solution (line 31).
Each device m needs to adhere to local bounds Bmax,m and
Bmin,m (see also [9]). In this stage, the adaptions to PS as
presented in this Section are in place. The forced QoS aligns
with the orange phase of USEF, in which the DSO is allowed
to directly control devices.

Algorithm 1 Overview of stages in the PS algorithm.

1: function PS( ~X , ~P , M , ~Bmin, ~Bmax, forceBalance)
2: µ :=M,k := 1
3: repeat
4: ~X :=

∑M
m=1

~Xm

5: for m ∈ {1, . . . ,M} do
6: ~Pm = ~Xm − ( ~X − ~P )

7: Find a planning ~̂
Xm for m that minimizes∑

c∈C wc · ||~̂xcm − ~pc||2
8: if forceBalance = True then
9: subject to ~bcmin,m ≤ ~̂xcm ≤ ~bcmax,m∀c ∈ C

10: end if
11: em =∑

c∈C wc

(
||~xcm − ~pcm||2 − ||~̂xcm − ~pcm||2

)
12: if forceBalance = True then
13: em = êm (see (3))
14: end if
15: end for
16: Sort devices M non-increasingly based on em
17: for m ∈ {1, . . . , µ} do . Subset of devices in M
18: ~Xm :=

~̂
Xm . Accept µ best profiles

19: end for
20: µ := max{1, bµ2 c}, k := k + 1
21: until e1 < emin ∨ k > kmax . Stopping conditions
22: Return ~X
23: end function

24: Request each device m ∈ {1, . . . ,M} to minimize∑
c∈C wc · ||~xm − ~pc||2

25: ~X :=
∑M
m=1

~Xm . Initial cluster consumption

26: if ¬(~bcmin ≤ ~xc ≤ ~bcmax)∀c ∈ C then . Infeasible planning
27: ~P ′ =

(
~Bmin+ ~Bmax

2

)
. Adapt desired profile (see [8])

28: ~X := PS( ~X , ~P ′, M , ~Bmin, ~Bmax, False)
29: end if
30: if ¬(~bcmin ≤ ~xc ≤ ~bcmax)∀c ∈ C then . No solution

. Run PS with adaptions presented in Section III
31: ~X := PS( ~X , ~P ′, M , ~Bmin, ~Bmax, True)
32: else . Perform standard PS (see [6], [11])
33: ~X := PS( ~X , ~P , M , ~Bmin, ~Bmax, False)
34: end if
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IV. CONVERTER DEVICE OPTIMIZATION

In addition to the coordination algorithm, we also introduce
a new device class, namely the converter. A buffer-converter
combination was used in [5], for which the buffer optimization
algorithm from [8] could be used. With separate buffers
and converters, various combinations can be modeled and an
optimization algorithm for converters (HPs, CHPs) is required.

In this work, we assume an ideal, linear converter with
constant coefficient of performance (CoP). The optimal profile
for the primary energy carrier c′ (often the input energy source)
can be determined as follows:

xc
′

m,i = max {b−,min {
∑
c∈C

wc· pcm,i
yc′c

, b+}}

where yc
′

c is the conversion rate from carrier c to c′, b−

and b+ are constraining bounds, e.g., the maximum power
input supported by the device or imposed bounds by the PS
algorithm, the strictest bounds are applied. We only impose
the PS bounds when the forceBalance option is provided in
the steering signal to perform load shedding or curtailment.

V. EVALUATION

The proposed extensions to PS are evaluated using a sim-
ulation case based on the case presented in [5]. Different
variations of this use-case are tested, e.g. we vary the number
of HPs and storage assets. The performance is evaluated in
terms of execution time and the resulting power profile.

A. Setup

The original PS algorithm, as well as the extended version,
are implemented in the DEMKit simulation software [12]. The
load and generation models, as well as the device models
and their flexibility are equal to the case as presented in
[5]. Likewise, we simulate a full year (365 days) in 15
minute intervals. Our optimization objective is to minimize
the import/export of energy, i.e., the objective desired profile
matrix is filled with zeroes. The resulting electricity import
export is quantified using the Euclidean distance from zero.

The difference in this test case is that we are only interested
in the performance of the modified PS algorithm. To avoid
further external factors, we do not use predictions. This in
contrast to [5] where prediction errors, robustness and opera-
tional control are included. Hence, the results of this work are
not directly comparable. Furthermore, we use ideal, loss-free
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Fig. 2. Load duration curves of MES power demand without battery.

devices. The simulations are performed using an Intel Core
i7-5820K @ 4.0 GHz using a single threaded implementation.

Similar to [5], we are dealing with an islanded district
heating network shared among the households. Therefore, ~bheat

min
and ~bheat

max are restricted to a small ε deviation from energy
balance. All devices are connected to one central PS controller.
The weights for the energy carriers are: welectricity = 0.5,
wheat = 0.5. One year is simulated, using time intervals of 15
minutes. A rolling horizon approach is used for the optimiza-
tion, which plans the devices two days ahead (192 intervals)
and performs a new planning every day (96 intervals).

B. Simulation Results
In total eight variations of the case, with different technolo-

gies, have been simulated as presented in Table I. Case 2 is
similar to the work presented in [5], whereas the other cases
make use of the presented PS extension by adding one or 16
HPs, a heat buffer, and battery storage. These are the flexible
devices performing local optimizations in the PS coordination
algorithm. Additionally, the static objects for each house (load,
heat demand, and PV panels) add 48 objects to the model.

The total time of each simulation (Sim.), as well as the
total time spent for optimization using PS (Opt.) are evaluated.
Adding a single HP and/or buffer storage does not significantly
affect the total optimization time. Moving from one to 16
individual HPs (from cases 3-5 to cases 6-8) has a significant
effect, but not as pronounced as adding 16 batteries. The latter
adds significant amounts of flexibility to the system, which
results in additional iterations where the electricity and heat
systems iteratively react to each other.

The use of 16 HPs does not change the aggregated offered
flexibility, but it does change the problem presented to the
PS heuristic. It results in a larger µ = M , and therefore also
presents a smaller fraction of the desired profile initially to
the HPs. This not only results in the increase of computation
time, but also consistently results in an improved objective
value (Obj.) when comparing cases 3-5 with cases 6-8. This
objective value is defined as

∑
wc· ||~xc||2.

A load duration curve of the electricity import/export of the
MES is visualized in Fig. 2 and 3. These figures show that
the HP can reduce the excess electricity for roughly 50% of
the time, and in the best case reduces the export by 51,4%.
The addition of battery storage results in a nearly balanced
operation for 60% of the time (Case 8), Only the last 20%
shows significant overproduction, predominantly by PV, that
cannot be stored in either the battery or thermal storage.
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Fig. 3. Load duration curves of MES power demand with battery.
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TABLE I
NUMERICAL RESULTS OF DIFFERENT SIMULATION CASES

Technologies Statistics Energy per house Microgrid Energy
CHP Heatpump Buffer Battery Opt. Sim. Obj. Import Export CHP Heatpump Buffer

Case [kWe/th] [kWe/th] [kWhth] [kWhe] [s] [s] · 106 [kWhe] [kWhe] [MWhe] [MWhe] [MWhth]

1 30/60 - 250 - 256 1084 2.86 654 5639 135.0 0.0 23.4
2 30/60 - 250 16× 4 2303 3477 2.22 9 4992 135.0 0.0 25.9
3 20/40 10/40 - - 230 1047 2.33 1239 3256 71.1 63.9 0.0
4 20/40 10/40 250 - 287 1123 2.26 995 3208 75.9 59.1 22.2
5 20/40 10/40 250 16× 4 2372 3564 1.51 273 2244 70.7 64.3 20.4
6 20/40 16× .6/2.5 - - 817 1835 2.25 887 3261 79.3 55.7 0.0
7 20/40 16× .6/2.5 250 - 869 1963 2.12 1063 2780 65.3 69.7 27.7
8 20/40 16× .6/2.5 250 16× 4 3344 4793 1.39 92 2241 74.5 60.5 29.8

C. Discussion
A better balance between production and consumption is

achieved by exploiting the synergies between a HP and CHP.
Especially the exports have significantly decreased compared
to the cases without a HP. The energy passing through the
buffer increases, hence the hybrid energy system uses this
flexibility to act as a buffer. In most cases, the CHP produces
slightly more electricity than the HP consumes, which also
leads to a larger import. Although an improvement is achieved,
the comparison between 1 and 16 HPs already indicates that
different feasible solutions are found with more iterations as
µ increases. This results in more opportunities for devices to
react to each other, leading to a better solution.

However, we expect that the algorithm frequently ends up
in a local minimum. The interaction between many converters
and buffers is not trivial. Especially in a framework which uses
device agnostic steering signals, such as PS. Visual inspection
of the time series data reveal that a trivial solution with better
(lower) objective value was obtainable by only changing the
balance between CHP and the HP.

There are two possible directions to lift this issue, whilst
keeping the strengths of device agnostic steering signals.
Firstly, additional hierarchical layers can be introduced in PS,
where such devices are clustered together and are seen as a
single device, e.g., a buffer, to a higher level PS controller.
On the other hand, the number of accepted profiles may be
reduced such that it is (much) lower than µ. This increases the
number of iterations, but allows for more balancing interaction.

VI. CONCLUSION

This paper presented an extension to the PS heuristic
to support the optimization of MES using device agnostic
steering signals, such that new devices can be integrated into
the optimization framework easily. The evaluation shows that
these changes result in an improved balance (objective value)
and keep the optimization time limited in most cases. Fur-
thermore, the presented method to curtail energy production
is also applicable to single energy carrier systems.

However, the discussion in Subsection V-C also identifies
that the results obtained are not optimal. Future work in
clustering and additional parameters is advised. However, due
to the dependencies between energy carriers, this may not
be trivial. Future work should investigate whether a practical

method or algorithm can be applied to automate such clus-
tering and the selection of parameters values, which result in
(near) optimal results within reasonable computation time.
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