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Abstract—The rapid development and expansion of the In-
ternet of Things (IoT) paradigm has drastically increased the
collection and exchange of data between sensors and systems,
a phenomenon that raises serious privacy concerns in some
domains. In particular, Smart Meters (SMs) share fine-grained
electricity consumption of households with utility providers that
can potentially violate users’ privacy as sensitive information is
leaked through the data. In order to enhance privacy, the elec-
tricity consumers can exploit the availability of physical resources
such as a rechargeable battery (RB) to shape their power demand
as dictated by a Privacy-Cost Management Unit (PCMU). In
this paper, we present a novel method to learn the PCMU
policy using Deep Reinforcement Learning (DRL). We adopt the
mutual information (MI) between the user’s demand load and
the masked load seen by the power grid as a reliable and general
privacy measure. Unlike previous studies, we model the whole
temporal correlation in the data to learn the MI in its general
form and use a neural network to estimate the MI-based reward
signal to guide the PCMU learning process. This approach is
combined with a model-free DRL algorithm known as the Deep
Double Q-Learning (DDQL) method. The performance of the
complete DDQL-MI algorithm is assessed empirically using an
actual SMs dataset and compared with simpler privacy measures.
Our results show significant improvements over state-of-the-art
privacy-aware demand shaping methods.

Index Terms—Internet of Things, Cyber-Physical System,
Smart meters privacy, Mutual information, Deep reinforcement
learning, Deep double Q-learning.

I. INTRODUCTION

With recent developments in computation, communication,
and control technologies, the prevalent Internet of Things (IoT)
facilitated the connection of billions of smart devices and
sensors which can collect and exchange data in real-time [1].
This has raised a lot of interest in Cyber-Physical Systems
(CPS) for different applications such as Smart Grids (SGs)
[2]. Smart Meters (SMs) are a key component of the so-
called advanced metering infrastructure (AMI), which is a
critical subsystem of SGs [3]. SMs are capable of measuring
electricity consumption of users at a fine-grained level and
share it with the Utility Provider (UP) in almost real-time.
This large amount of data provides immense opportunities for
both customers and operators, leading to the emergence of
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the new field of SMs data analytics [4]. However, SMs data
also contain sensitive information about users which could
easily be inferred by malicious third-parties or attackers if no
preventive measures are taken. For instance, an eavesdropper
can apply non-intrusive load monitoring (NILM) methods
and deep learning approaches to infer the user’s presence at
home [5], [6] and even the types of appliances being used
at a specific time [7]. Therefore, the massive deployment
and adoption of SMs necessitate the development of efficient
privacy-aware strategies for real-time data sharing in order to
keep the users’ sensitive information private against potential
attackers. It should be noted that the privacy issue regarding
the SMs data sharing is distinct from SMs data security
in terms of the legitimate users and the adversaries. Unlike
the data security using encryption methods, in the SM data
privacy any legitimate receiver of the data including utility
provider can be considered at the same time as a potential
malicious attacker. Therefore, the traditional encryption tech-
niques would be ineffective in providing privacy against utility
provider [5]. Recently, reinforcement learning has been used
in designing models for preserving privacy in SM data sharing
where physical resources at the users’ end are used to prevent
exposing consumers’ privacy and behaviour to the UP [8]–
[10]. The main idea of reinforcement learning is based on the
interaction between an agent (here a privacy-cost management
unit) and the environment (which includes user and physical
resources). More specifically, at each state imposed by the
environment, the agent would take an action for the sake of
receiving a maximum (future) reward and then being placed
in the next state by the environment. These interactions can be
used by the agent to learn the optimal policy which maximized
the total reward [11]. More details on the reinforcement
learning and its formulation will be discussed in the Section II.
Still a framework incorporates a generic privacy metric such
as mutual information, is missing since it can add several
challenges which requires some amendments in the traditional
algorithms.

A. Related work

A substantial amount of studies on SMs privacy were
conducted, which can be classified in two main families: (i)
SMs data manipulation techniques [12]–[19]; and (ii) user’s
demand load shaping approaches [8]–[10], [20]–[27]. On the
one hand, in the first family of methods, the consumers’ load
data are manipulated by a noisy transformation before sharing
it to the UP. In this setting, there is a natural trade-off between
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the distortion or utility of the data and privacy guarantees.
On the other hand, in the second family of privacy-aware
techniques, the actual electricity consumption of the users, as
seen by the grid (i.e., the grid load), are shaped using a com-
bination of different physical resources such as Rechargeable
Batteries (RBs), Electric Vehicles (EVs), Heating, Ventilation,
and Air Conditioning (HVAC) units, and Renewable Energy
Sources (RES). Note that, in this scenario, the consumer load
is different than the grid load (e.g., the grid load can be
higher than the consumer load provided that an RB is being
charged by the user). The goal of these methods is to mask the
consumer load but, at the same time, efficiently make use of
the available resources considering their physical constraints
and wear and tear, as well as a possibly time-varying electricity
rate. In this framework, there is generally a trade-off between
the overall electricity expenses and privacy guarantees.

In some recent studies, physical resources are employed to
minimize the average relative difference between the grid load
and a constant target load [8], [10], [27], i.e., to flatten the
electricity consumption reported by the SMs. In [8], following
the formulation in [10], the SMs privacy problem is cast as
a Markov Decision Process (MDP) and a model-free (i.e.,
not assuming full knowledge of the environment dynamics
of the MDP) Deep Reinforcement Learning (DRL) algorithm
known as the Deep Double Q-Learning (DDQL) method is
used to tackle the problem. Even though this framework has
been shown to be useful in limiting the leakage of sensitive
information, the effectiveness of the flatness-based privacy
measure remains unclear.

A formal privacy measure from information theory known
as the mutual information (MI), between the user’s demand
and reported grid load, was proposed in [13] and has since
been adopted in several works [9], [22], [23], [25], [28]. In [9],
the SMs information-theoretic privacy problem is formulated
as an MDP and the optimum policy is obtained numerically
using dynamic programming, assuming full knowledge of the
MDP. For a simplified scenario in which the demand load
is assumed to be known and independent and identically
distributed (i.i.d.), a single-letter expression for the average
information leakage was characterized. However, these meth-
ods may not be directly applicable in practice since the MDP
is generally not fully-known due to the unknown dynamics of
the demand load. Furthermore, the electricity cost is not part
of the formulation and thus, the cost-privacy trade-off is not
taken into account.

B. Contributions

In this paper, we adopt a demand load shaping privacy-
preserving strategy. As can be seen from the previous discus-
sion, there is a clear gap between the DRL line of research and
the information-theoretic work on this framework. As a matter
of fact, the DRL methods rely on weak privacy measures,
such as the flatness measure, which offer no statistical privacy
guarantees (see Section III-A for further discussion). Whereas,
information-theoretic approaches suggest the use of formal
privacy measures, such as MI, with strong statistical privacy
guarantees (see Section III-B for further details). The main

goal of this paper, which further extends [8], is to develop a
new DRL algorithm with the advantage of being model-free
but also incorporating a strong information-theoretic privacy
measure. Concretely, the main contribution is to incorporate
the MI between the user’s demand and grid load as a privacy
measure within the DDQL algorithm framework. As will be
shown, this introduces the challenge of estimating the privacy
signal to feed into the DRL agent during the training phase,
which is overcome by adding a new neural network (referred
to as the H-network). Interestingly, based on the structure
of this network, we can either use a general MI privacy
measure or a simplified MI privacy measure based on a strong
i.i.d. assumption. The latter case is an important benchmark
as it allows us to quantify the importance of considering
time correlation within the privacy measure. We then study
the empirical information-leakage rate versus electricity cost
trade-off on a real SMs dataset, and compare the MI-based
and flatness-based privacy measures, showing the advantages
of our approach. Finally, the performance of the DDQL-MI
algorithm is assessed in two practical scenarios: (a) an attacker
aiming to infer the actual consumer load; and (b) an attacker
trying to infer the house occupancy status.

Organization of the paper. The rest of the paper is organized
as follows. In Section II, we review the MDP formulation of
the privacy-aware demand shaping problem. Then, in Section
III, we review two commonly used privacy measures and
discuss how to use MI as a privacy measure in the MDP
framework. We also discuss why MI is a superior privacy
measure as compared with the flatness-based one. The novel
DDQL-MI algorithm is then presented in Section IV. The
numerical performance of the DDQL-MI algorithm using
actual SMs data is studied in Section V, where we show the
impact of the privacy measure choice on the results. Some
concluding remarks close the paper in Section VI.

Notation and conventions. We use capital letter to denote
random variables and lowercase to denote specific values.
P (y) is the probability distribution of random variable Y ;
E[·] is expectation with respect to the joint distribution of
all random variables involved, E[X|Y ] is the conditional
expectation of X given Y , Eπ[·] is the expectation for a given
agent’s policy π (see [11] for details); H(Y ) is the entropy
of Y and I(X;Y ) = H(X)−H(X|Y ) is the MI between X
and Y , where H(X|Y ) is the conditional entropy of X given
Y (see [29] for details).

II. PROBLEM FORMULATION

A. Demand shaping using physical resources

Consider the smart metering system represented in Fig. 1
where an intelligent agent, named as Privacy-Cost Manage-
ment Unit (PCMU), is used to hide the household demand
load using an RB while keeping the total electricity cost
minimum. It should be noted that other physical resources
can also be readily incorporated in our framework, as shown
in other works [10], [26].

Let Yt be the random variable denoting the consumer’s
demand load/power, i.e., the total power demanded by the
appliances at time t, and let Zt be the load received from the
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Fig. 1. Privacy-aware demand shaping framework for smart meters based on
a rechargeable battery [8].

grid, and Lt ∈ [0, 1] the level of charge of battery (normalized
by the capacity of the battery), where t ∈ T = {1, . . . , T}.
Given the demand load Yt and the level of charge available
in the battery Lt at time t, the PCMU needs to determine
the optimal charging/discharging rate of the battery Bt to
physically distort the actual demand load, so that the grid load
Zt, given by Zt = Yt +Bt does not reveal information about
the user’s demand load Yt. The goal of the PCMU is to limit
the performance of a potential attacker trying to violate the
user’s privacy by inferring sensitive information (which could
be either the actual demand load Yt or a correlated variable
of interest to the attacker) from Zt. To make this precise, we
first introduce the MDP formulation of the problem.

B. Markov Decision Process (MDP) model

Following previous studies [9], [10], [26], the problem
of finding the optimal policy for the PCMU is formulated
as a Markov Decision Process (MDP) to capture the agent-
environment interaction (see Fig. 2). An MDP is determined
[11] by the tuple

(
S,A(s), P (st+1|st, at), r(st, at), γ

)
:

• State space S, which determines all the possible states
that the agent could be in;

• Action space A(s), which determines the feasible actions
the agent can take at state s ∈ S;

• Environment dynamics P (st+1|st, at), which gives the
probability of the state evolving to St+1 = st+1 when
the current state is St = st and the agent takes the action
At = at;

• Reward function r(st, at), which is the immediate reward
obtained due to taking action At = at at state St = st;

• Discount factor γ ∈ [0, 1], which is the decay constant of
future rewards and therefore determines their importance
to the agent. In our setting, we assume a fixed finite
horizon, i.e., T < ∞ is a constant. Therefore, the
discount factor can be considered as γ = 1 without
any convergence issues [11]. Moreover, as it will become
apparent in Section III-B, this is the most natural choice
for our problem.

In general, the PCMU starts from an initial state S1, and by
following a policy π(a|s) = P (a|s), takes the first action A1.

As a consequence of the action A1, the PCMU receives the
reward R1 from its (artificial) environment and transitions to
the state S2 (see Fig. 2). Thereby, this gives rise to a trajectory
of states, actions and rewards [S1, A1, R1, . . . , ST , AT , RT ],
which is referred to as an episode.

Fig. 2. Agent-Environment interaction in an MDP [11].

One general approach to find the optimum policy is via the
action-value function Q : S × A → R, which is defined as
follows [11]:

Q(s, a) = Eπ

 T∑
t=1

γt−1r (St, At)

∣∣∣∣∣∣ S1 = s,A1 = a

 , (1)

where the subscript in the expectation emphasizes that it is a
function of the policy π chosen by the agent. The action-value
function represents the expected cumulative reward received
by the agent when it starts at some state s ∈ S , takes an
action a ∈ A(s), and then follows the policy π. Therefore,
an optimal policy π∗ can be obtained by maximizing Q(s, a)
over all possible policies for all pairs (s, a) ∈ S × A(s). We
use Q∗ to denote the optimal state-action value function, that
is, Q∗(s, a) = maxπ Q(s, a). It is well-known that, for any
MDP, there always exists at least one optimal policy which is
deterministic. Assuming uniqueness for the sake of simplicity
of presentation, we can write the optimal policy simply as
π∗(a|s) = 1 if a = arg maxa′∈A(s) Q

∗(s, a′) and π∗(a|s) = 0
otherwise.

In our framework, the state at time t is defined as
St = [Lt, Yt]

T , and the action is defined as the charg-
ing/discharging rate of the battery, i.e. At = Bt, where
a positive Bt indicates that the RB is charging and a
negative Bt means discharging of RB. For this MDP,
the environment transition probability is P (st+1|st, at) =
P
(
lt+1|lt, bt

)
P
(
yt+1|yt

)
, since we assume that the con-

sumer’s demand load is independent of the action and level of
charge of battery. The factor P

(
lt+1|lt, bt

)
is determined by

the dynamics and physical constraints of the battery [10]:

Lt+1 = Lt +
Bt ∆t η

C
, (2)

where Bt ∈ [bmin, bmax] (bmin and bmax are the mini-
mum and maximum charging/discharging rate of the RB),
Lt ∈ [lmin, lmax] (lmin and lmax are the minimum and max-
imum level of charge of the RB), ∆t is the load sampling
rate, η is the charging/discharging efficiency factor of the
RB, and C is the capacity of the RB. It should be noted
that P

(
yt+1|yt

)
is unknown and, in general, it is difficult
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to estimate accurately [10]. To get rid of this issue, the focus
of this study is on model-free DRL algorithms which do not
require full knowledge of the environment dynamics.

Finally, we need to define the reward function, which will
guide the agent to learn an optimal policy. For our purposes, it
should be an appropriate combination of the privacy leakage
and the associated electricity cost. Following [10], the reward
function is inversely interpreted as a loss function: ℓ (st, at) =
−r (st, at). Assuming a privacy leakage signal f(st, at) and
an electricity cost signal g(st, at), which will be defined later,
the one-step loss function can be defined as follows:

ℓ (st, at) = −r (st, at) = λg(st, at) + (1− λ)f(st, at), (3)

where λ ∈ [0, 1] controls the privacy-cost trade-off. Con-
cretely, for λ = 0 the goal of the agent will be to minimize the
expected cumulative privacy leakage signal, while for λ = 1
it will be to minimize the expected cumulative energy cost.
As λ is reduced, the PCMU should be able to provide the
consumer a higher privacy level but at the expense of an
increase in the energy cost. Studying this trade-off and its
practical implications is of fundamental importance to properly
design the PCMU. Notice that, using (1) and (3), we can
decompose the action-value function as follows:

Q(s, a) = λQc(s, a) + (1− λ)Qp(s, a), (4)

where Qc(s, a) = −Eπ[
∑T

t=1 γ
t−1g(St, At) |S1 = s,A1 = a]

and Qp(s, a) = −Eπ[
∑T

t=1 γ
t−1f(St, At) |S1 = s,A1 = a]

are the cost and privacy action-value functions, respectively.
Therefore, the objective of the PCMU, considering the
aforementioned constraints on the capacity of the battery and
its charging/discharging rate, is to find an optimal policy π∗

that maximizes the expected total reward in equation (4).
It should also be noted that the problem constraints are
incorporated in the definitions of the state and action spaces.

The total cost associated with this privacy-aware framework
can be due to the electricity cost and also to the cost related to
the battery wear and tear. Considering for simplicity that no
energy can be sold to the grid by the users, the electricity cost
at time t can be computed as Ct = ∆t ht [Zt]

+ where ht is
the price of purchasing 1 kWh of energy from the grid at time t
and [Zt]

+ = max(Zt, 0). Since [Zt]
+ ≤ |Zt| ≤ Yt+ |Bt| , and

Yt is not controlled by the PCMU, we consider the following
electricity cost signal:

g(St, At) = ∆t ht |Bt|. (5)

Notice that Ct ≤ ∆t ht (Yt + |Bt|), so this electricity cost
signal effectively limits the actual electricity cost. In addition,
this definition of g(St, At) incidentally takes into account the
battery wear and tear cost, since it grows as the battery use
increases. The design of the privacy leakage signal is discussed
in detail in the next section.

III. PRIVACY MEASURES: FLATNESS AND MUTUAL
INFORMATION

In the following, two different privacy measures will be
reviewed and discussed: the flatness privacy measure and the
MI privacy measure.
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Fig. 3. Demand and grid load when zt = βyt + δc, where β = 0.2 and
δc = 0.7. Here we consider T = 96.

A. Flatness privacy measure

In [10], the privacy leakage signal received by the Rein-
forcement Learning (RL) agent when at state St and taking
action At is defined as

f (St, At) =

∣∣∣∣Zt − δc
δc

∣∣∣∣ , (6)

where δc is a constant target level. This encourages the agent
to take actions such that, on average, Zt is as close as possible
to δc. Although simple to compute and intuitively appealing,
the problem with this quantity is that it does not capture
the statistical dependence between Y T and ZT and therefore
fails to be a satisfactory privacy measure. As an example
to illustrate this fact, consider a PCMU with the following
strategy: Zt = βYt + δc for all t ∈ T , where β ∈ R is
a constant. In this case, the privacy action-value function,
defined in (4), is

Qp(s, a) = −E

 T∑
t=1

γt−1|β| |Yt|
|δc|

∣∣∣∣∣∣ s1 = s, a1 = a

 ∝ −|β|,

(7)
that is, Qp(s, a) is proportional to −|β|. If β = 0, we have
Qp(s, a) = 0 as expected. In such scenario, ZT is constant and
it does not provide any information to infer the actual value of
Y T . In other words, full privacy is achieved. However, for any
β ̸= 0, the variables Yt and Zt are maximally correlated (i.e.,
the correlation coefficient between Zt and Yt is either 1 or -1
depending on the sign of β) and the task of inferring Yt from
Zt is trivial (assuming the attacker is able to estimate only
two parameters). Therefore, all these cases can be considered
equivalent from the privacy point of view, but Qp(s, a) can
take any value in (−∞, 0) as |β| is modified. Thus, the
flatness privacy measure can be completely misleading in some
scenarios. This problem is illustrated in Fig. 3.

B. Mutual information privacy measure

1) General Case: A much stronger privacy measure, pro-
posed in [13] for the SMs privacy problem, and used since
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in several works [9], [22], [23], [25], is the MI between the
demand load and the grid load, which is defined as follows:

I(Y T ;ZT ) = E

[
log

p(Y T , ZT )

p(Y T )p(ZT )

]
. (8)

Intuitively, MI measures the degree of dependence between
ZT and Y T and is zero if and only if ZT and Y T are
statistically independent. It is also upper bounded by H(Y T ),
the entropy of Y T , and equal to that value if and only if
Y T is a deterministic function of ZT [29]. These standard
properties of MI show why this quantity is satisfactory as a
privacy measure. In fact, revisiting the previous example, in
which ZT = βY T + δc, it readily follows that

I(Y T ;ZT ) =

{
0 if β = 0,
H(Y T ) otherwise. (9)

This means that full privacy is achieved only for the case
β = 0 and other choices of β lead to a maximal information
leakage. Recall from (3) that, in order to define the loss or
the reward signal, we need to find the instantaneous (random)
privacy leakage signal received by the agent when it is at state
st and takes action at. To do so, we first define the privacy
action-value function as follows:

Qp(s, a) = −I(Y T ;ZT ) =

T∑
t=1

H(Yt|Y t−1, ZT )−H(Y T ).

(10)

It should be noted that Qp(s, a) is a function of the policy of
the agent π but not of the initial state and action. Notice that
H(Y T ) is a constant, independent of the PCMU strategy, so
the second term in (10) can be discarded. On the other hand,
using the definition of conditional entropy and the law of total
expectation, the term inside the summation of the first term
can be written as follows:

H(Yt|Y t−1, ZT ) = E[E[− logP (Yt|Y t−1, ZT )|St, At]].
(11)

Notice that the inner conditional expectation is an explicit
function of St and At, as required. Therefore, we define the
privacy leakage signal as follows:

f (st, at) = E[logP (Yt|Y t−1, ZT )|St = st, At = at]. (12)

With this definition, the (negative) expected cumulative privacy
leakage signal over an episode is equal to the MI in (10) up
to an additive constant. Notice that to recover the MI exactly
we need to set γ = 1, i.e., do not discount future rewards.
Therefore, we do not use discounting in this paper. As it was
explained in Section II-B, this choice is in fact typical for
finite horizon problems.

Implementing the privacy leakage signal proposed in
equation (12) poses three main challenges. First of all, to
approximate this privacy signal, we need to estimate the
unknown conditional distributions P (yt|yt−1, zT ) for each
t ∈ T . Secondly, although the expectation operation appearing
in (12) can be estimated based on previous experiences of
the agent using a Monte Carlo approach, it needs enough
samples for each possible pairs of (st, at) and so requires a

huge buffer. Finally, unlike equation (6), the approximation
of this privacy measure is non-causal as it involves the whole
sequence of the grid load zT at each t. In Section IV we will
discuss how to deal with these challenges.

2) I.I.D. case: In order to understand the role of the
correlation in time of the time series Y T and ZT , we also
consider, as a benchmark, the case in which Y T is assumed
to be independent and identically distributed (i.i.d.) and we
model the transformation between Yt and Zt as memoryless
but arbitrary, i.e., Zt = g(Yt) where g is a fixed random
transformation. Although this assumption clearly does not hold
in our MDP framework nor in practice, it is interesting to study
this scenario to assess the advantage of taking into account the
correlations across time for the privacy measure computation.
Note that, in this case, ZT is also i.i.d. In such a case, it can
be shown that:

I(Y T ;ZT ) =
T∑

t=1

I(Yt;Zt) = T [H(Y )−H(Y |Z)], (13)

where we have omitted the time dependence since all the pairs
(Yt, Zt) are assumed to be i.i.d. and therefore all the terms are
equal. Similarly as before, noting the relation

H(Y |Z) = E[E[− logP (Y |Z)|S,A]], (14)

we can define the privacy signal simply as

f(s, a) = E[logP (Y |Z)|S = s,A = a]. (15)

Note that, this i.i.d. case is not guaranteed to provide any
control over the value of I(Y T ;ZT ) in the general case. In
fact, by using the standard properties of MI, it can be shown
that [29]

I(Y T ;ZT ) ≥ 1

T

T∑
t=1

I(Yt;Zt). (16)

In summary, the i.i.d. assumption leads to using a lower bound
of the MI as a privacy measure and, therefore, does not offer
real privacy guarantees.

IV. METHODOLOGY AND ALGORITHM

We first review classical RL and DRL algorithms which
were used in previous works on this topic. Then, we extend
the DRL algorithm to accommodate the MI privacy measure.

A. Review of CQL algorithm

The classical Q-Learning (CQL) algorithm is a simple
method to learn the optimal state-action value function Q∗ by
updating the action-value of the experienced state-action pairs.
The algorithm can be summarized by the update equation:

∆Q (St, At) = α

[
r (St, At) + γ max

a∈A(St+1)
Q (St+1, a)

−Q (St, At)

]
, (17)

where α is the step size parameter. Details on the training
process and convergence properties of the CQL method can
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where the Q-function is approximated with a deep neural network.

be found in [11]. The CQL algorithm was used for smart meter
privacy in [10]. However, the main drawback of this method
is that it needs to visit all the state-action pairs several times
to provide a good approximation of Q∗. Therefore, for large
MDPs with many states and actions, convergence is usually
very slow. This is the case in our problem if the action and
state spaces are discretized with high accuracy.

B. DDQL-MI algorithm

To solve the slow convergence problem of the CQL algo-
rithm, the Q-function can be approximated by using a Deep
Neural Network (DNN) to generalize between different states
and actions. These new methods, where deep learning is used
for approximating the Q-function, are called Deep Q-Learning
(DQL) methods [30], [31]. A general diagram presenting the
agent-environment interaction under the DQL paradigm and
our context is shown in Fig. 4.

The main idea of the DQL method is to approximate
Q∗(s, a) using a DNN called the Q-network. The Q-network
takes the state s ∈ S at the input and generates Q(s, a; θ)
at the output for all different actions a ∈ A(s), where θ are
the parameters of the DNN. To define the objective function
for this Q-network, we observe from (17) that convergence is
obtained when the quantity in parenthesis is equal to zero.
The term r (st, at) + γ maxa∈A(st+1)Q (st+1, a; θ) can be
interpreted as the target, while the term Q (st, at; θ) is the
output of the Q-network. Thus, the mean squared error loss
between target and output can be used as the loss function
for training the Q-network. However, using the same network
to compute the target and output often leads to instability
[30]. To address this issue, the so-called Double Q-Learning
(DDQL) algorithm was proposed in [32] and extended to
the deep learning setting in [33]. In the DDQL algorithm,
a second network called the target-network (with parameters
θ′) is used to calculate the target term. The target-network
parameters θ′ are periodically updated by simply copying
the parameters from the Q-network. Thus, using the target-
network, the objective function of the Q-network can be

written as follows:

LQN (θ) =E
[(

r(St, At) + γ max
a∈A(St+1)

Q(St+1, a; θ
′)

−Q(St, At; θ)

)2]
. (18)

It should be noted that the expectation is approximated
by a Monte Carlo approach based on batches of samples
(st, at, r(st, at), st+1) selected randomly from a replay buffer
[31]. The DDQL algorithm was applied for the first time in
the SM privacy problem in [8] using the flatness privacy signal
defined in (6), showing clear improvements in performance
and convergence speed with respect to the CQL algorithm.
From now on, we will refer to this method as Model I.

For the DDQL-MI method, we have to deal with the three
challenges discussed in Section III-B1 regarding the privacy
leakage signal presented in equation (12). To overcome the
first challenge, a helper neural network named as H-network is
included in the DDQL to estimate the conditional probability
distributions p(yt|yt−1, zT ), t ∈ T . For the second challenge,
instead of storing samples for each possible pairs of (st, at)
which leads to a huge storage and a very slow training, we
approximate the privacy measure in equation (12) with its
expected value over the joint distribution of (st, at) , i.e.,
equation (11). Then, for each episode, the pair (yT , zT ) is
stored in a second replay buffer and, when required, samples
are selected randomly to approximate equation (11). Finally,
since training the agent in DDQL is done offline, the third
challenge is not an issue for its implementation. It should
be emphasized at this point that, once a policy is learned,
the agent will act according to it in a fully causal manner.
In order to address the exploration−exploitation dilemma, we
adopt the ϵ−greedy method: with probability 1− ϵ the action
with maximum action-value Q is selected (exploitation), while
with probability ϵ a random action is selected (exploration).
For more details, the reader is referred to [11]. The training
of the DDQL-MI method is presented in Algorithm 1 below.
It will be referred to as Model II in the following.

Algorithm 1: DDQL-MI training algorithm.

1: Initialize Q-network, target-network, and H-network. Initialize l1 = 0.
2: for number of training episodes do
3: Set the initial state s1 = [l1, y1].
4: for t = 1, . . . , T do
5: Observe the state st = [lt, yt].
6: Select a feasible action at using the ϵ−greedy algorithm.
7: Calculate reward r(st, at) from equation (3).
8: Update the next state st+1 based on (2) and observing yt+1.
9: Import (st, at, r(st, at), st+1) into the replay buffer I.

10: Every k′ time-step, update the Q-network parameters using
samples from the replay buffer I.

11: Every k time-step, update the target-network by copying from
Q-network parameters.

12: Every k time-step, update the H-network and then estimate
privacy measure in (11) for all t ∈ T = {1, . . . , T} using
samples from the replay buffer II.

13: end for
14: Import (zT , yT ) into the replay buffer II.
15: end for

Note: The copy step k and training step k′ are hyperparameters.

It is worth to mention that the Q-learning algorithm has
some shortcomings. First of all, for the sake of convergence, it
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needs a large amount of episodes to ensure all the state-action
pairs are experienced multiple times. Secondly, the state and
action sets need to be finite, while in practical applications
it is not always the case [11]. Finally, as we discussed in
Section III, a significant limitation of previous state-of-the-art
Q-learning approaches to the smart meter privacy problem is
the choice of the reward function, which does not capture a
strong statistical notion of privacy. These shortcomings were
considered in the design of Algorithm 1. Concretely, regarding
the first issue, the DQL algorithm is used instead of the CQL
method in order to reduce the required number of training
episodes. This point was discussed in detail in our previous
work [8]. In addition, the DQL algorithm is able to handle the
infinite state-action space [31]. Finally, the reward function de-
sign was revised (see Section III-B) to address the goal of this
work, i.e. minimizing the information leakage about the users’
electricity consumption pattern with a minimum increase in the
electricity cost. As it was discussed, such a reward function
raises several technical challenges. Thus, the training process
of the Q-learning algorithm is carefully modified by adding an
auxiliary network (H-network) to approximate the reward and
help the agent in its learning. In Section V, the convergence
of this framework and the performance of the agent will be
carefully examined to validate the proposed approach.

V. NUMERICAL RESULTS AND DISCUSSION

A. Description of data set and parameters

In this study, we use the public Electricity Consumption and
Occupancy (ECO) dataset [34], which includes 1 Hz electricity
usage measured by SMs along with the occupancy labels of
five houses in Switzerland. The measurements sampling rate
is chosen as ∆t = 15 min, and episodes with the length of
a day are considered. In total, 2700 samples (each a vector
of length T = 96) are used and split into training, validation,
and test with ratio 70:10:20, respectively. The training dataset
was used to train the presented model while the values of
the hyperparameters associated with the Q-network and the
H-network were tuned using the validation dataset to achieve
the best privacy-cost trade-off. After training and tuning, the
performance of the model was evaluated based on the test
dataset. For the flatness privacy measure, the desired constant
load is set to δc = 0.7 kW. The following values are considered
for the parameters of the RB: C = 10 kWh, η = 1, bmax =
−bmin = 4 kW, lmax = 1 and lmin = 0. For the electricity
cost calculations, since no time-of-use tariff was found online
for Switzerland, the winter rates offered by Ontario/Canada is
used, where the off-peak price is $0.101 kWh during 19:00
to 7:00, the mid-peak price is $0.144 kWh during 11:00 to
17:00, and the on-peak price is $0.208 kWh during 7:00 to
11:00 and 17:00 to 19:00.

B. Mutual information versus flat load as privacy

In this section, the results of applying Model I and Model II
to the ECO dataset are presented. In both cases, a MultiLayer
Perceptron (MLP) with two hidden layers, each including
64 neurons and Rectified Linear Unit (ReLU) as activation

function, is used for both the Q-network and the target-
network. The size of the experience replay memory is 10K
tuples. The memory gets sampled to update the Q-network
every 8 steps (k′ = 8), with minibatches of size 128, and
a target-network copy step k of 500 steps is selected. The
RMSProp optimizer with a learning rate equal to 0.00025 is
selected to train the network. For the H-network, the following
two cases are considered. On the one hand, in the general
MI case discussed in Section III-B1, a bidirectional RNN H-
network with two hidden layers (each with 44 LSTM cells
and hyperbolic tangent activation functions) is used. The size
of the second experience replay memory is 500 tuples and
minibatches of size 64 are used. On the other hand, in the
i.i.d. case where time dependency is ignored in calculating
the MI, as discussed in Section III-B2, the H-network is
a feedforward neural network with two hidden layers (each
with 64 neurons and ReLU activation functions). The size
of the second experience replay memory is 10k tuples and
minibatches of size 128 are used. In both cases, the cross-
entropy loss is used to train the network using the RMSProp
optimizer with a learning rate equal to 0.001.

Before presenting the results of both models, we need to
show that the Algorithm 1 works. To this end, the results of the
total episodic reward and the loss function of the H-network
are presented in Fig. 5 for different values of λ. It can be seen
that both the reward function (determined by the H-network
parameters) and the total episodic reward obtained by the agent
converge in roughly 200 episodes. This suggests that the policy
of the agent also converges.
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Fig. 5. (a) Total episodic reward for the DDQL method. (b) The loss function
of the H-network during training.

To compare the different methods, Fig. 6 presents the
electricity cost versus the MI between demand load and grid
load, calculated based on the Kraskov–Stögbauer–Grassberger
(KSG) estimation method (with parameter 4). It should be
noted that KSG method uses the k-nearest-neighbor distance
of the points in dataset to estimate the underlying probability
density needed to calculate MI. For more details about KSG
method, readers are referred to [35]. This figure clearly shows
that the Model II outperforms Model I for two reasons. First,
with the same electricity cost, Model II can provide a lower
MI than Model I, which means that the statistical dependence
between the sequences yT and zT is weaker for the former
case. Second, unlike the Model I, Model II can provide MI up
to very small values, thus offering the possibility of achieving
practically arbitrary privacy levels. It should be noted that
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Model II is more computationally demanding than Model
I in the training phase (due to the H-network required in
Model II). However, in the operating phase, the computational
cost is the same since only the Q-network is required for
executing the learned policy. Another important analysis that
can be made from Fig. 6 is the effect of using a recurrent H-
network (general MI case) compared with a feedforward H-
network (simplified i.i.d. case). As it was expected, the DDQL-
MI using a recurrent H-network outperforms the one with a
feedforward H-network, which can be seen from the gap of
the curves in the figure. It should be added that, for values of
λ close to 1, since the privacy term has a very small weight
in the loss function (see (3)), all cases provide similar results.
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Fig. 6. Electricity cost versus MI between demand load and grid load for
Model I and Model II (for both a recurrent and a feedforward H-networks).

In addition, for the model II with recurrent H-network,
examples of the grid load signal for different values of λ (along
the trade-off curve in Fig. 6) with its Power Spectrum Density
(PSD) estimated using the Welch’s method [36] are presented
in Fig. 7. As it can be seen from this figure, for the middle
values of λ, e.g. Fig. 7(b), the grid load signal looks like the
actual demand load in Fig. 7 (a) but is shaped to be a little
bit noisier which would be for the sake of privacy. On the
other hand, for λ = 0 the grid load looks very noisy in a way
that completely hides the pattern of the actual demand load.
This is reflected on the PSD in which the harmonics are hided
more as we moves toward more private region. It should be
noted that although the grid load signal for the full privacy
case, i.e. λ = 0, would increase the electricity cost greatly as
was expected, it could be of interest for the UP in terms of
peak shaving.

C. Deep double Q-learning versus attacker

In this section, we evaluate the performance of Model I and
Model II (using the general MI, i.e., the recurrent H-network)
in limiting an attacker trying to infer sensitive information
about the user. To this end, two practical scenarios are studied.
In the first scenario, an attacker using a neural network with
three hidden layers (each with 32 neurons and ReLU activation
functions) uses the grid load sequence ZT to infer the user’s
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Fig. 7. Examples of the grid load for different values of λ along with its
PSD estimated using the Welch’s method.

demand load Y T . In the second scenario, an attacker using a
neural network with two hidden layers (each with 44 neurons
and ReLU activation functions) uses the sequences of grid
load ZT to infer the occupancy status of households. Both
attackers are trained using the RMSProp optimizer with a
learning rate equal to 0.001. The performance of the first
and second attacker versus the electricity cost is presented in
Fig. 8. From this figure, it can be seen that Model II is more
effective in limiting the attackers since, for a given electricity
cost, the inference performance metrics are worse in both cases
(the exception, again, occurs in the regime λ ≈ 1 where no
privacy guarantees can be expected). Besides, when λ ≈ 0,
both attackers perform as expected when Y T and ZT are
independent random vectors for Model II but not for Model
I. This full privacy regime can be obtained at the expense of
increasing the electricity cost. For example, looking at Fig.
8(b), it can be seen that by increasing the electricity cost to
more than $3/day the attacker acts like random guessing in
inferring the occupancy status of the dwelling. Note that this
amounts to more than four times the normal electricity cost
without privacy considerations.
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inferring occupancy status of household.

VI. SUMMARY AND CONCLUDING REMARKS

In this work, we study a privacy-aware SM framework
that uses an RB to hide the actual power consumption of a
household. Following the literature, the problem of finding the
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optimum battery charging/discharging policy for minimizing
information leakage with minimum additional electricity cost,
is formulated as an MDP. This MDP is tackled using a
model-free DRL approach, known as the DDQL algorithm.
We propose to include the MI (between the actual power
consumption and the masked grid load) as a strong privacy
measure in the DDQL framework by using an H-network to
estimate the required privacy leakage signal for training the
agent. To evaluate the benefits of the proposed algorithm, the
results are compared with the case where flatness is used
as the privacy measure. The privacy-cost trade-off and the
performance of two different attackers (attempting to infer
sensitive information) are empirically obtained based on SM
data, showing clear advantages of the new proposed method
over the state-of-the-art on the topic. In addition, an i.i.d.
scenario is considered as a benchmark to show the impact
of the correlations across time in the privacy measure com-
putation. It is shown that, by exploiting the time dependence,
there is a consistent gain in the achieved privacy level for a
given electricity cost. Although training our MI-based model is
computationally more expensive than the others, its operating
computational cost is equal if the structure of the Q-network is
the same. Therefore, we conclude that the general DDQL-MI
algorithm is able to better exploit an RB for privacy purposes
using the same operating resources.

To wrap up the paper, we briefly comment on two possible
extensions of this work. First, it would be interesting to study
different MDP formulations, where the definition of the state
is wisely augmented to enhance the state observability, and
analyze the performance gains that can be obtained. Second,
a multi-user/multi-resource extension of this work also seems
like a promising and challenging research avenue, where
cooperation between different users is required.
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team (Lix - Ecole Polytechnique). His research in-
terests include information theory, machine learning,

security of learning systems and the secure processing of information and
applications to computer vision, health, natural language processing, among
others. He has served as the General Co-Chair for the 2019 IEEE International
Symposium on Information Theory (ISIT). He served as an Associate Editor
for the IEEE TRANSACTIONS ON INFORMATION FORENSICS AND
SECURITY and Editorial Board of Section ”Information Theory, Probability
and Statistics” for Entropy. He is member of the IEEE Information Theory
Society Conference Committee.

Fabrice Labeau is the Deputy Provost (Student
Life and Learning) at McGill University, where
he also holds the NSERC/Hydro-Québec Industrial
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