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Local Differential Privacy for Multi-Agent
Distributed Optimal Power Flow

Roel Dobbe∗†, Ye Pu∗, Jingge Zhu∗, Kannan Ramchandran, Claire Tomlin

Abstract—Real-time data-driven optimization and control
problems over networks, such as in traffic or energy systems,
may require sensitive information of participating agents to
calculate solutions and decision variables. Adversaries with access
to coordination signals may potentially decode information on
individual agents and put privacy at risk. We use the Inexact
Alternating Minimization Algorithm to instantiate local differ-
ential privacy for distributed optimization, addressing situations
in which individual agents need to protect their individual data,
in the form of optimization parameters, from all other agents and
any central authority. This mechanism allows agents to customize
their own privacy level based on local needs and parameter
sensitivities. The resulting algorithm works across a large family
of convex distributed optimization problems. We implement the
method on a distributed optimal power flow problem that aims
to prevent overload on critical branches in a radial network.

I. INTRODUCTION

Advances in sensing and computing enable various in-
frastructures, such as traffic or energy networks, to perform
optimization and control problems in real-time throughout a
network. Often the scale of such problems desires a distributed
implementation that can be solved quickly enough to allow
for high frequency control actions. To enable this, a network
may be split up into sub-networks governed by different
agents, who exchange their local optimization variables with
neighbors and/or a central operator to iteratively solve the opti-
mization problem. Exchanging optimization variables between
agents and the changes therein may reveal private information,
such as whether someone is home and what kind of appliances
someone is using [8]. In addition, there is growing under-
standing that secondary information may be inferred from the
communicated variables, including the parameters used in the
local objective and constraints, which may reveal sensitive
information such as prices and capacity [7].

To make matters more challenging, different agents may
be competing with each other to serve an operator with their
service. Knowing the control capacity of and prices negotiated
by other players can help in negotiating with the operator
and leads to strategic behavior and untruthful communication,
which harms the quality of solution to the distributed optimiza-
tion problem. As such, both privacy needs and commercial
dynamics may motivate the development of agent-to-agent
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distributed optimization algorithms that can mask sensitive
information in objectives and constraints.

In recent years, various privacy-preserving algorithms have
been proposed for distributed optimization and control prob-
lems, using various privacy metrics. The differential privacy
framework [6] has gained most attention, and is particularly
lauded for its robustness to auxiliary side information that an
adversary might have to complement information gained from
a particular algorithm, providing stronger privacy guarantees
than other existing metrics. The framework assumes a setting
in which sensitive information is stored in a database by a
trustworthy curator, which can provide answers to external
queries. A system is made “differentially private” by random-
izing its answers in such a way that the distribution over
published outputs is not too sensitive to changes in the stored
data. These perturbations can be designed to make it provably
difficult for an adversary to make inferences about individual
records from the published outputs.

In the setting of distributed optimization, each agent is its
own curator managing its own locally private information and
communication of its optimization variables to neighboring
agents or a central operator. In order to preserve differential
privacy, each curator has to ensure that the output of queries,
that is the communicated variables, remain approximately
unchanged if local parameters relating to its objective or
constraints are modified.

Related Work

This work complements an existing and rapidly growing
body of literature on incorporating differential privacy into
resource allocation and, most relevant here, in distributed op-
timization, control and networked systems. A recent elaborate
tutorial paper by Cortés et al. [3] covers differential privacy for
distributed optimization, and distinguishes between message-
perturbing and objective-perturbing strategies for distributed
optimization. In the first category, coordination messages are
perturbed with noise before sent, either to neighbors or a
central node, depending on the specific algorithm. Huang et
al. [10] proposed a technique for disguising private infor-
mation in the local objective function, and Han et al. [7]
considered problems where the private information is encoded
in the individual constraints. In the second category, each
agent’s objective function parameters are perturbed with noise
in a differentially private manner, which guarantees differential
privacy at the functional level and is preferred for systems with
asymptotically stable dynamics [11]. This is the only work
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we found developing different levels of privacy for individual
agents, however no analysis of such scenarios is done.

The above works are selective in that these consider privacy-
preserving mechanisms for either constraints, objectives or
initial states. An exception is the work Hsu et al. [9] on LPs,
which can handle both private objectives and constraints.

Local differential privacy was formally defined in [5] for
general statistical problems to denote situations in which “data
remains private even from the statistician or learner”. We de-
velop an equivalent definition for distributed optimization, ad-
dressing situations in which individual agents need to protect
their individual data, in the form of optimization parameters,
from other agents and any central authority. We acknowledge
recent work, which proposes an algorithm that can address
local differential privacy via functional perturbations [11]. This
account does not formally motivate, define or analyze local
differential privacy, which we focus on in this manuscript.
In addition, it scopes local privacy protection to parameters
in individual objective functions, leaving aside parameters
in constraints. Similarly, other works also limit protection
to either individual objective functions [10] or individual
constraint [7].

Contributions

Motivated by personal privacy and commercial secrecy
concerns in distributed optimization of electricity networks,
we investigate the problem of preserving differential privacy
of local objectives and constraints in distributed constrained
optimization with agent-to-agent communication. Building on
previous works on privacy-aware distributed optimization via
message perturbation [7], [10], we develop and analyze the
notion of local differential privacy.

Our formulation enables us to develop privacy guarantees
for both local objective function parameters and local con-
straint parameters. More specifically, the proposed algorithm
solves a general class of convex optimization problems where
each agent has a local objective function and a local constraint,
and agents communicate with neighbors/adjacent agents, not
necessarily including a central authority.

We show that the private optimization algorithm can be
formulated as an instance of the Inexact Alternating Minimiza-
tion Algorithm (IAMA) for distributed optimization [12]. This
algorithm allows provable convergence under computation and
communication errors. This property is exploited to provide
privacy by injecting noise large enough to hide sensitive
information, while small enough to exploit the convergence
properties of IAMA. We derive and analyze the trade-off
between the privacy level and sub-optimality of the algo-
rithm, providing insight in the complexities of implementing
differential privacy mechanisms. This trade-off between sub-
optimality and differential privacy allows us to determine a
privacy budget that captures the allowable cumulative variance
of noise injected throughout the network that achieves a
desired level of (sub-)optimality.

II. PRELIMINARIES AND PROBLEM STATEMENT

In this section, we consider a distributed optimization
problem on a network of M sub-systems (nodes). The sub-
systems communicate according to a fixed undirected graph
G = (V, E). The vertex set V = {1, 2, · · · ,M} represents
the sub-systems and the edge set E ⊆ V × V specifies pairs
of sub-systems that can communicate. If (i, j) ∈ E , we say
that sub-systems i and j are neighbors, and we denote by
Ni = {j|(i, j) ∈ E} the set of the neighbors of sub-system
i. Note that Ni includes i. The cardinality of Ni is denoted
by |Ni|. We use a vector vi to denote the local variable
of subsystem i and vi can be of different dimensions for
different i. The collection of these local variables is denoted
as v = [vT1 , · · · , vTM ]T . Furthermore, the concatenation of
the local variable vi of sub-system i and the variables of
its neighbors vj , j ∈ Ni is denoted by zi. With appropriate
selection matrices Ei and Fji, the variables have the following
relationship: zi = Eiv and vi = Fjizj , j ∈ Ni, which
implies the relation between the local variable vi and the global
variable v, i.e. vi = FjiEjv, j ∈ Ni. With the notations above,
we consider the following distributed optimization problem:

Problem II.1 (Distributed Optimization).

min
z,v

M∑
i=1

fi(zi) (1)

s.t. zi ∈ Ci, zi = Eiv, i = 1, 2, · · · ,M , (2)

where fi is the local cost function for node i which is assumed
to be strongly convex with a convexity modulus ρfi > 0,
and to have a Lipschitz continuous gradient with a Lipschitz
constant L(∇fi) > 0. The local constraint Ci is assumed to
be a convex set which represents a convex local constraint on
zi, i.e. the concatenation of the variables of sub-system i and
the variables of its neighbors.

The above problem formulation is fairly general and can
represent a large class of problems in practice. In particular it
includes the following quadratic programming problem, which
we study as a particular instance in our applications.

Problem II.2 (Distributed Quadratic Problem).

min
z,v

M∑
i=1

zTi Hizi + hTi zi (3)

s.t. Cizi ≤ ci, zi = Eiv, i = 1, 2, · · · ,M ,

where Hi � 0. In particular, we will assume that the smallest
eigenvalue of Hi satisfies λmin(Hi) := λ

(i)
min > 0.

A. Local Differential Privacy

We present definitions and properties for differential privacy.
Let P be a set containing some elements from a space
X . In the language of differential privacy, the set will be
called a database, and the elements therein represent private



information of individual users. More concretely, in the context
of distributed optimization (Problem II.1), this information
comprises the private parameters that constitute the local
objective fi(·) and constraints Ci. Given two data bases P,P ′,
let adj : X |P| × X |P′| 7→ [0,∞) denote a metric that
encodes the adjacency or distance between two databases. A
mechanism or algorithm A is a mapping from X |P| to some
set denoting its output space.

In the scenario of our interest, there are multiple agents
involved in the algorithm, and each is only concerned with
its own privacy. In other words, individual agent does not
care nor trust other agents in the network. To this end,
we extend the notion of algorithm A(P) to a distributed
algorithm A(P1, . . . ,PM ) in a network with M agents, where
Pi is itself a database which denotes the private parameters
of agent i. The outputs of the mechanism are the message
exchanged between nodes in the network over the time horizon
of iterations. This mechanism induces M local mechanisms
A1(P1, . . . ,PM ), . . . ,AM (P1, . . . ,PM ), each executed by
one agent. The output of one local mechanism Ai is the
message sent out by node i, i.e. range(Ai) ⊆ range(A). It
is important to realize that although one local mechanism,
say Ai, does not necessarily have direct access to the in-
put/database Pj , j 6= i of other nodes, the output of Ai could
still be affected by Pj , j 6= i because of the interactions
among different nodes. For this reason, we explicitly write
P1, . . . ,PM as input to all local mechanisms.

We now let each agent i specify its own level of privacy εi.
To formalize this specification, we require a definition:

Definition II.3 (Local Differential Privacy). Consider a
(global) mechanism A for a network with M nodes, and a
local mechanisms Ai, i ∈ {1, . . . ,M} induced by A. We say
that the mechanism A is εi-differentially locally private for
node i, if for any Si ∈ range(Ai), it satisfies that

P {Ai(P1, . . . ,Pi, . . . ,PM ) ∈ Si}
P {Ai(P1, . . . ,P ′i, . . . ,PM ) ∈ Si}

≤ eεi , (4)

where adj(Pi,P ′i) ≤ 1. Moreover, if A is εi-differentially
locally private for node i, i = 1, . . . ,M , then we say that
the mechanism A is (ε1, . . . , εM )-differentially private.

Algorithm 1 Differentially private distributed algorithm

Require: Initialize µ0
i = 0 ∈ Rzi , τ0 = min1≤i≤M{ρfi} and

τk = 1
τ0k

for k = 1, 2, · · · do
1: zki = argminzi∈Ci

{fi(zi) + 〈µk−1i ,−zi〉}+ δki
2: Send zki to all the neighbors of agent i.
3: vki = 1

|Ni|
∑
j∈Ni

Fjiz
k
j .

4: Send vki to all the neighbors of agent i.
5: µki = µk−1i + τk(Eiv

k − zki )
end for

In [4], the authors provide a detailed exposé and analysis
of the algorithm used to solve Problem II.2 in a way that

instantiates and satisfies the local differential privacy criteria
in Definition II.3. Here we provide a high-level description
for Algorithm 1. At each iteration k, each agent first solves
a local version of the minimization problem based on the
current dual variable µk−1i . In Step 2, each agent sends its
local solution to all the neighbours after adding noise for the
sake of privacy. In Step 3, each agent computes the average
of the solutions received from its neighbouring sub-systems
and updates its local variable vki . This step is crucial for this
distributed algorithm as it drives the agents to come to a
consensus of the global optimal solution. After sending out
the local variable to all its neighbours in Step 4, each agent
updates its local dual variable in Step 5.

III. APPLICATION: DISTRIBUTED OPTIMAL POWER FLOW

This section presents a simplified optimal power flow (OPF)
problem that inspires the proposed control approach. We
consider the setting of a radial distribution feeder, and consider
the flow of real power on its branches. We formulate the power
flow model and the OPF objectives and develop the distributed
OPF problem according to the quadratic problem, as defined
in (3). We then discuss the parameters that are subject to
privacy requirements and interpret trade-offs.

A. Simplified Optimal Power Flow

Solving the simplified OPF problem requires a model of
the electric grid describing both topology and impedances.
This information is represented as a graph G = (V, E), with
V denoting the set of all buses (nodes) in the network, and
E the set of all branches (edges). For ease of presentation
and without loss of generality, here we introduce part of
the linearized power flow equations over radial networks,
also known as the LinDistFlow equations [2]. In such a
network topology, each bus j has one upstream parent bus
{i | (i, j) ∈ E} and potentially multiple downstream child
buses {k | (j, k) ∈ E}. By Dj we denote the set of all buses
downstream of branch (i, j). We assume losses in the network
to be negligible and model the power flowing on a branch as
the sum of the downstream net load:

Pij ≈
∑
k∈Dj

{pc
k − p

g
k + uk} (5)

In this model, capital Pij represents real power flow on a
branch from node i to node j for all branches (i, j) ∈ E ,
lower case pci is the real power consumption at node i, and
pgi is its real power generation. This nodal consumption and
generation is assumed to be uncontrollable. In addition, we
consider controllable nodal injection ui, available at a subset
of nodes i ∈ C ⊂ V that have a Distributed Energy Resource
(DER). In this case study, we aim to prevent overload of
real power flow over certain critical branches in an electric
network. This aim is formulated through constraints∑

k∈Dj

{pc
k − p

g
k + uk} − Pij ≤ 0 ,

Pij −
∑
k∈Dj

{pc
k − p

g
k + uk} ≤ 0 ,∀(i, j) ∈ Esafe ,

(6)



Esafe ⊂ E denotes a subset of branches for which power flow
limitations are defined, Pij , Pij denoting the upper and lower
power flow bounds on branch (i, j) ∈ Esafe. In addition, each
controlled node i is ultimately limited by the local capacity
on total apparent power capacity,

ui ≤ ui ≤ ui , ∀i ∈ C . (7)

We consider a scenario in which the operator negotiates
different prices for different capacities, potentially at different
points in time, with different third party DER owners. Let ui
refer to the real power used for the optimization scheme from
agent i, and πi denotes the quadratic price per procuring a
kWatt from agent i for the time period that the set points are
implemented (typically in the order of minutes). The optimal
power flow determines the control setpoints that minimizes an
economic objective subject to operational constraints.

min
ui ,i∈C

∑
i∈C

πi(ui)
2 , (8)

s.t. (6) , (7) .

The OPF problem (8) can be recast as an instance of the
quadratic distributed optimization problem (3). First, note that
the objective is quadratic in the optimization variables ui, and
separable per node. Second, for all nodes i ∈ V , the capacity
box constraints (7) are linear and fully local. The safety
constraints (6) require communication to and computation by
a central trusted node. To ensure strong convexity of the local
problems, the economic cost objectives are shared between
each agent i and the central trusted node. Hence, respectively
for ∀i ∈ C\{0} and the central node 0, the objectives read

fi(ui) =
πi
2

(ui)
2 , f0(z0) =

∑
i∈C

πi
2

(ui)
2 . (9)

As such, this distributed problem assumes a star-shaped com-
munication structure, in which the a centrally trusted node
receives all ui, pc

i, p
g
i from the agents. The agents retrieve iter-

ates of ui from the central node and compute a simple problem
with only economic cost and a local capacity constraint.

B. Private Information in Distributed OPF

We consider assigning privacy requirements to two sets of
parameters; the prices πi that the DSO charges to different
agents in the network, and the capacities ui, ui available to
all agents i ∈ C. Together, these parameters provide important
strategic insight into the commercial position of each agent.
An operator may charge different prices for different levels
of commitment or for the varying value that the operator gets
from the actions of a specific agent at specific time periods
or places in the network. In a natural commercial context, the
operator may have an interest to hide the prices to other agents.
In addition, in a negotiation setting, a strategic agent may want
to find out the capacity available by other agents in the network
to adjust its bid to the operator, so as to be the first or only
agent to be considered, which could lead to asymmetric and
potentially unfair bidding situations. As such, in order to give

all agents with capacity a fair chance to participate, there is
value in hiding the capacity (and price) parameters.

To formulate this as an instance of local differential privacy,
we need to define the adjacency metric for all considered
parameters. In the case of both prices and capacity, this is
achieved by considering the maximum range in which these
parameters are expected to lie. The distance metric proposed
is the `1-norm. Given this metric, we need to define a proper
adjacency relation, which determines the maximum change in
a single parameter that we aim to hide with the differentially
private algorithm.

Definition III.1. (Adjacency Relation for Distributed OPF):
For any parameter set P = {fi(πi),Ci(ui, ui)} and P ′ =
{f ′i(π′i),C′i(u′i, u′i)}, we have adj(P,P ′) ≤ 1 if and only if
there exists i ∈ [M ] such that

|πi − π′i| ≤ δπ , |ui − u′i| ≤ δu , |ui − u′i| ≤ δu , (10)

and πj = π′j , uj = u′j , uj = u′j for all j 6= i.

By setting δπ, δu and δu respectively as the maximum
price offered per unit of energy (i.e. π̄ if πi ∈ [0, π̄]) and
the maximum capacity in the network (i.e. arg maxi∈C ui), we
ensure that all parameters in the network are properly covered
by the definition.
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Figure 1: Feasible parameter sets (ν,K) for varying levels of
ε (left) and S (right), setting σi = σ, ∀i ∈ C.

C. Interpreting Trade-off Between Differential Privacy and
Suboptimality

In [4, Section IV-C], we derive and discuss the trade-off
relationship between specified levels of suboptimality S̄ and
differential privacy ε̄i based on [4, Theorem III.1] and [4,
Theorem III.11], captured in [4, Equation (36)].

K

νi
≤ ui,max

Θi
εi ,

M +
∑M
i=1 ν

2
i

K
≤ S

4

(
πmax

umax

)2

, (11)

For the purpose of analysis, we assume that σi = σ, ∀i ∈ C,
which yields

K

ν
≤ ui,max

Θi
εi ,

1 + ν2

K
≤ S

4M

(
πmax

umax

)2

. (12)

Here, K the number of iterations of the algorithm, and
ν := σ

umax
is the normalized noise-to-signal ratio with umax =

maxi∈C max(|ui|, |ui|). Figure 1 shows the feasible set for



varying levels of specifications (ε,S). The first equation shows
that the ratio of the number of iterations to the normalized
noise needs to be sufficiently small, capped by the specified
privacy level εi and the agent’s maximum capacity. It also
shows the effect of the sensitivity on this trade-off. The latter
equation shows that with increasing number of agents M in-
jecting noise, we need more iterations to achieve the same level
of suboptimality. Similarly, if the maximum capacity umax of
the agents increases or the maximum price πmax decreases, we
require more iterations or lower noise variance to maintain the
same level of suboptimality.

D. Numerical Results

Numerical results are obtained for the distributed optimal
power flow problem. We first evaluate the sensitivity using the
sampling-based method in [4, Section III-C] for a smaller size
problem. We choose both parameters α and β in [4, Lemma
III.4] to be 1.6× 10−2, and the sample size to be n = 3000.
This gives a (lower bound on) sensitivity Θi = 1.8439. Using
[4, Lemma III.6], we can find an upper bound of the sensitivity
Θi ≤ 2. We can see that the solution given by the sample-
based method appears tight to the upper-bound.

We then implement our method on the larger simplified OPF
problem for the IEEE 13 Node Test Feeder [1]. We focus on
single-phase power flow (aggregated over three phases), and
do not model the voltages. We consider each node an agent
in the network communicating with neighboring agents con-
nected through an electric wire. All agents have various capac-
ities with |ui|, |ui| ≤ 0.5kW ∀i ∈ C. The prices for all agents
vary as πi ∈ [10, 100] cents/(kW)2. The critical branches
are Esafe = {(650, 632), (632, 645), (632, 671)}, with with
capacity limits Pij = [3, 0.3, 2] kW and Pij = [−3,−0.3,−2]
kW for the three branches respectively.

In Fig. 2, we demonstrate the convergence performance of
Algorithm 1 in [4] for solving the distributed optimization
problem in Problem II.2, originating from the OPF problem.
We assume that Agent 3 aims at protecting its local matrix
h3 and adds noise to its local solutions in the distributed
optimization algorithm. The blue line shows the averaged
performance of Algorithm 1 over 300 samples (experiments),
where the errors are generated randomly according to a zero-
mean Laplace distribution with the variance equal to σi = 0.1.
The black line shows the performance of the exact algorithm,
for which the errors are set to be zero. We can observe that as
the number of iterations K increases, the average difference
‖zk − z?‖ generated by Algorithm 1 and the deference
generated by the exact algorithm ‖zk − z?‖ decrease for both
the cases, however, the convergence speed of Algorithm 1
becomes slower and sub-linear, which supports the findings
in Theorem III.11 in [4].

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we developed local ε-differential privacy for
distributed optimization, applied to distributed optimal power
flow. The method builds on recent advances in inexact alter-
nating minimization algorithm (IAMA). Exploiting IAMA’s

0 50 100 150 200

10
-2

10
-1

10
0

Algorithm 1

The exact algorithm

Figure 2: Convergence performance for Algorithm 1 in [4],
averaged over 300 experiments (blue) versus the no-error
scenario (black).

convergence properties under the existence of errors in com-
munication and computation, we showed one can add noise to
agent-to-agent communication in a way that preserves privacy
in the specifications of user objectives and constraints while
still guaranteeing convergence. The method extends current
approaches for differential privacy in distributed optimization
by allowing privacy for both objectives and constraints and
customization of privacy specifications for individual agents.
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