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Abstract—High penetration of distributed generation will be
characteristic to future distribution networks. The dynamic,
intermittent, uncertain and deregulated nature of distributed gen-
eration raises the need for online, distributed economic dispatch
techniques. In this paper, we demonstrate the application of such
approaches using population dynamics. We propose a congestion
management algorithm and demonstrate the notable properties
and requirements of the proposed approach.

Index Terms—Economic Dispatch, Distributed Generation,
Population Dynamics.

I. INTRODUCTION

The power industry is undergoing a transition due to

developments in renewable energy and the deregulation of

power systems. Consequently, future power systems will be

characterized by high penetration of small, local distributed

generators (DGs). Optimal operation of the distribution system

requires optimal dispatch of DGs such that total generation

cost is minimized while supply/demand matching, generation

limits, and network constrains are maintained. However, the

dynamic, intermittent, uncertain and deregulated nature of

distributed generation makes this operation a complex task.

When conventional dispatch methods (i.e., centralized and

offline) become ineffective, the need arises for online and

distributed methods for dispatch of distributed generation.

Distributed economic dispatch (ED) is essentially a dis-

tributed resource allocation problem. Conventional distributed

optimization approaches such as dual decomposition (DD),

Lagrangian relaxation, distributed gradient algorithms and the

alternative direction method of multipliers (ADMM) have been

used to solve the problem in [1]–[4]. In [5], a comparison is

made between distributed population dynamics and conven-

tional methods (i.e., DD and ADMM). In general, distributed

population dynamics require less information and communi-

cation when compared to DD and ADMM. This follows on

the introduction of population dynamics for the dispatch of
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distributed generation in [6] and the introduction of distributed

population dynamics for optimization and control applications

in [7].

In this paper, we consider radial distribution networks

supplied by distributed generators. We propose an online

distributed ED mechanism that takes into account network

flow constraints. An online dispatch mechanism can respond

to either changes in demand or changes in the availability of

DGs. The use of distributed algorithms enables multiple agents

to reach a global objective without the need for a centralized

optimizer, thus introducing scalability, a degree of privacy, and

opennes to heterogeneity.

In resource allocation, replicator dynamics have been pro-

posed in [6] and extended for the case with local information

constraints in [8]. In this case, information exchange in the

game is represented by a graph where vertices represent the

different strategies and edges represent the ability to exchange

information between them [8]. In [8] one of the main applica-

tions, ED of distributed generation, was demonstrated. How-

ever, only generation limits were considered. An extension

was made in [9] where network flow limits were considered.

The authors proposed an algorithm that implements replicator

dynamics for ED and proposed a network overflow mitigation

approach.

Although this work addresses the same issue, we differen-

tiate between this work and previous works in two aspects:i)

We propose the use of the Smith dynamics. This avoids cases

in [9] where a strategy becomes extinct while using replicator

dynamics. ii) We propose a novel congestion management

algorithm. Unlike the approach used in [9], the proposed

approach is embedded within the fitness calculation and does

not require additional runs of the population game.

In the following Section II, we formulate the ED problem

and propose the solution approach including a novel conges-

tion management algorithm. We give a background on the

concepts of population dynamics, their most notable properties,

and their suitability for distributed resource allocation. We

also highlight the differences between this work and the most
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related work in [8], [9]. We demonstrate the performance of

the control approach in Section III. For simulation purposes,

we use a modified version of the European low voltage

test feeder [10]. The simulations aim to show the ability of

the proposed algorithm to converge to the optimal solution

in reasonable time. Finally, we conclude by discussing the

advantages of the proposed algorithm and highlight future

work in Section IV.

II. METHODOLOGY

In this paper, we propose a control strategy for online

dispatch of DGs in radial distribution networks. The proposed

control strategy accounts for both generator limits and line

flow constraints imposed by the physical network.

The objective of the proposed control strategy is to minimize

overall generation cost subject to supply/demand matching,

generator limits, and line flow constraints. That is,

min
pGi

∀i∈N

∑

i∈N

Ci(pGi), (1a)

s.t. PG
min
i ≤ pGi ≤ PG

max
i , ∀i ∈ N, (1b)

∑

i∈N

pLi =
∑

i∈N

pGi, (1c)

|pij | ≤ Uij , ∀i, j ∈ N, (i, j) ∈ L, (1d)

where, pGi is the power generated at node i; N, L are

the sets of nodes and lines in the system respectively;

PG
min
i , PG

max
i are the lower and upper limits of generators;

pLi is the load at node i; pij is the line flow between nodes

i, j; Uij is the line limit for line (i, j) ∈ L; Ci(pGi) is the

cost of generation for node i represented by

Ci(pGi) = ai + bipGi + cipGi
2, (2)

where ai, bi, ci are the coefficients of the generator cost

function.

The optimization problem in (1) is particularly hard when

the system under consideration is subject to changing demand,

topology (e.g., mobile generation, electric vehicles, storage), or

intermittent distributed generation (e.g., renewables, storage).

For a system with such characteristics, an online control

strategy is more suitable than an offline one. Also, a distributed

control strategy provides a possible approach which achieves

scalability and modularity. In our proposed control strategy,

generators in the network cooperate to achieve the optimal

system-level behaviour.

In our proposed approach, a node controller is located at

key nodes in the system. These are nodes hosting a generator

or nodes connecting more than two lines (i.e., points where

lateral feeders branch from the main feeder. This is the

maximum amount of controllers required since, for overflow

management, series lines can be represented using the lowest

flow limit among them. For any key node, the node controller

has three roles:

• It measures flow in all lines connected to its node.

• It detects and calculates overflow in any of the lines.

PG
min
i

PG
max
i

fi

PGi

δ

Node contributes

against overflow

Node contributes

to overflow

δ

Fig. 1. Fitness of a generator node.

• If overflow is detected, it broadcasts a penalty/incentive

to all nodes electrically connected on its side of the con-

gested line. This is further elaborated in Subsection II-B.

The node controller of a generator node has an additional role,

i.e.,

• It calculates the fitness of the generator node in the

population game accounting for the power generated,

violation of generator limits, or any broadcast signals

received from other nodes indicating congestion.

A. Generator node fitness

Assuming a generator cost function for generator i is

represented by the polynomial in (2), the ED solution can

be obtained when the marginal cost (i.e., derivative of the

cost function) of all generators is equal. Therefore, there is a

resemblance between the solution of the ED problem and the

equilibrium condition of population dynamics [8]. The fitness

of a generator node can be found by,

fi = f̂i + fbarri, (3)

where f̂i is the decreasing fitness function within feasible

region compensated to yield positive fitness, that is,

f̂i = B − (bi + 2cipGi), (4)

where B is a large positive bias to yield positive fitness

values. fbarri is a barrier function that penalizes violation of

generation limits found by

fbarri =











mpGi pGi < PG
min
i

0 PG
min
i ≤ pGi ≤ PG

max
i

−mpGi pGi > PG
max
i

, (5)

where m is the large slope of the barrier function. The fitness

function of a typical generator node is shown in Fig. 1.



G1

G3

1

3

2

p12 > 0

p12 > U12

δ3 = −(P21 + U12)C

δ1 = −(P12 − U12)C

Broadcast signal

Fig. 2. Congestion detection at node 2.

B. Congestion detection

Whenever a node controller i ∈ N detects overflow on a line

connected between nodes i, j ∈ N , the controller computes a

value proportional to the amount of overflow and dependant

on the direction of the overflow. A node controller that detects

outgoing overflow computes a penalty, while a node controller

that detects incoming overflow computes an incentive. The

incentive/penalty δi computed by controller of node i is given

as,

δi =











−(pij − Uij)C pij > 0, |pij | > Uij

−(pij + Uij)C pij < 0, |pij | > Uij

0 otherwise

, (6)

where C ∈ R>0 is a positive constant with a large value.

The incentive/penalty signal is then broadcast to all nodes on

each side of the congested line (e.g., using power line carrier).

The penalty/incentive value is added to the fitness of generator

nodes. Therefore, a generator node contributing positively to

the overflow is penalized, while a generator node contributing

negatively is incentivized. This is illustrated in Fig. 1. and,

using an academic example, in Fig. 2.

Compared to the congestion management algorithm used

in [9], this approach is embedded within the fitness function

calculation of each node. Therefore, the ED algorithm is

only required to run once regardless of the existence of line

flow limit violations or not. This makes it more suitable for

online applications where finding a solution quickly is of high

importance.

C. Population games & mean dynamics

Population games first emerged as a model to represent in-

teractions in large systems [11]. They are usually characterized

by a large number of agents, who are small, and interact anony-

mously with a finite number of pure strategies and continuous

payoffs [12]. Agents in a single population are represented

by a continuum of mass with a finite set of pure strategies.

The social state represents the ratio of the population adopting

each strategy. A payoff function maps each social state a

vector of payoffs, one for each strategy. Every population

game admits at least one Nash equilibrium [12]. Compared to

equilibrium play in classical game theory, evolutionary game

theory uses evolutionary dynamics to describe how agents

adapt (i.e., revise) their strategies in response to their observed

strategic environment using a revision protocol. The aggregate

behaviour of the society can be described using a mean

dynamic. Most notable, replicator dynamics emerge when a

population uses imitating revision protocols (i.e., agents adopt

the most successful strategies adopted by other agents) [13].

The Smith Dynamics represent pairwise comparison protocols,

where agents adopt strategies that will improve their current

payoff.

In ED, the population is represented by the total demand in

the system, i.e., Pd =
∑

i∈N pLi. Each generator represents a

strategy and has a positive fitness decreasing in the ratio of

the population that adopts this strategy xi = pGi

Pd

Replicator

dynamics, mainly used in previous literature, are described by

ẋi = xi(fi(x) − f̄(x))∀i ∈ S, (7)

where S is the set of strategies, while f̄(x) is the mean fitness

of the population at population state x, given by

f̄(x) =
∑

i∈S

pGi

Pd

fi(x). (8)

In ED, this translates to

˙pGi

Pd

=
pGi

Pd

(

fi(x) − f̄(x)
)

∀i ∈ S. (9)

Replicator dynamics can be rewritten when information ex-

change is constrained to neighbouring strategies. This is called

the local replicator equation [8], which is given by

ẋi = xi(fi(x)
∑

j∈Ni

xj −
∑

j∈Ni

fj(x)xj)∀i ∈ S, (10)

where Ni is the set of neighbouring strategies to strategy i in

the graph representing information exchange.

It can be seen that using replicator dynamics, a generator

with initial population mass xi = 0 will always have a

change of ẋi = 0. This is then called an extinct strategy. The

assumption that loads are initially assigned to their nearest

generators in [9] combined with the use of replicator dynamics

lead to cases where an efficient generator will not be utilized

due to being assigned no load initially. This results from

the extinction property of replicator dynamics (i.e., unused

strategies are never subsequently chosen [12]). This also means

that when using distributed replicator dynamics, if the graph

representing the game is not a complete graph, an extinct

strategy will lead to truncation of the graph. An in-depth

discussion of this issue can be found in [8]. This motivates



our proposition to use the Smith dynamics. These dynamics

can be represented by

ẋi =
∑

j∈S

xj [fi(x) − fj(x)]+ − xi

∑

j∈S

[fj(x) − fi(x)]+

∀i ∈ S. (11)

In [14], a distributed form of the Smith dynamics was formu-

lated, which can be represented by

ẋi =
∑

j∈Ni

xj [fi(x)− fj(x)]+ − xi

∑

j∈Ni

[fj(x)− fi(x)]+

∀i ∈ S. (12)

Unlike replicator dynamics, in this case, a strategy with

population mass xi = 0 can still evolve if it outperforms any

of the other strategies adopted by the population. This is more

suitable for the case when a more efficient DG has an initial

allocation of 0 (e.g., due to existence of less efficient local

generation).

III. SIMULATION & RESULTS

To demonstrate the effectiveness of the proposed ED ap-

proach in use, we implement a modified version of the

European low voltage test feeder [10] in MATPOWER and use

the population dynamics toolbox to simulate the population

game [15]. While the original European low voltage feeder

has 906 nodes, we modify it to represent only key nodes as

defined in Section II. The resulting system has 110 nodes.

Lines connected in series are replaced by a line with the

sum of their impedences. The loads in the system have an

aggregate peak of 57 kW, and vary each minute according to

specific load profiles [10]. Fig. 3 shows an overview of the

modified system with loads highlighted with a circle marker.

Additionally, the original system is supplied solely through

the distribution transformer at node 1. For the purpose of the

following simulations, we assume five more generator nodes

spread randomly with parameters shown in Table I.

TABLE I
DISTRIBUTED GENERATOR PARAMETERS

Bus Generator parameters

no. a(e) b(e/MW) c(e/MW
2) Pmin(kW) Pmax(kW)

1 0 5 0.02 0 10
114 0 1 0.01 0 10
578 0 3 0.025 0 5
739 0 4 0.01 0 10
817 0 2.5 0.015 0 20
835 0 2 0.02 0 10

For the following subsections, we assume that informa-

tion exchange between different generators is represented by

a complete graph. In this case, distributed and centralized

population dynamics are equivalent. The discussion on the

use of distributed population dynamics is addressed in Sec-

tion IV. To evaluate our results, we compare the outcome of

the population-dynamics-based approaches with the solutions

of the DC optimal power flow (DC-OPF) obtained from

MATPOWER for the same case. We use the fitness function

parameters B = 1000, m = 400, C = 1000. Unless otherwise

mentioned, Smith dynamics are adopted for the following

results.

For a baseline case, we simulate a complete day. We assume

only generator limits and infinite line limits. We show that

using the Smith dynamics, generator set points converge to the

DC-OPF solution. The outcome of each generator, compared

to the optimal dispatch for the whole day, can be seen in Fig. 4.

Fig. 3 shows the line flows represented by the weights of lines

at time step 566 of the 1440 minutes in the day. We choose

this time-step as it is the time-step with the peak load and

therefore the most prone to congestion. Note here that this is

the case when no line flow limits are enforced.

Fig. 3. Overview of the modified European low voltage feeder, line weights
represent flows at t = 566.

To demonstrate the effectiveness of the congestion manage-

ment algorithm, we limit the flow on the lines between buses

505-666 to 28kW. We simulate only 1 time-step t = 566.

This leads to an overflow of 4kW to 6kW. Fig. 5 shows

the evolution of the generators’ set points until congestion

is detected in iteration 53 of the population game. Then,

Generator 4 (bus 739) is penalized and starts to maintain

a set points within its feasible region. Generator 1 (bus 1)

increases its set points to compensate for the remaining load

while mitigating the congestion detected. The solver uses a

time-step of 0.01 sec. Convergence can be observed at iteration

201 (i.e., 2 sec).

IV. CONCLUSION

In this paper, we proposed an online distributed dispatch

algorithm for generators in radial networks with line flow

limits. The proposed approach relies on population games and

the implementation of population dynamics to establish the

optimal set points. Simulations demonstrate the ability of the

dispatch mechanism to converge towards the optimal set points

in various cases.

Results assume complete connectivity between different

strategies. This means that in this case, both distributed

and centralized population dynamics are equivalent. However,
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the extinction property challenges the implementation of dis-

tributed replicator dynamics as they require guarantees that

no strategy will be extinct. In ED, this is a strong assumption

since some generators may be assigned no load initially. An

example of this case can occur when supply provided via the

distribution transformer is more efficient than local thermal

generation (e.g., at times of low local renewable generation).

In this case, load may be assigned to nearby local thermal

generation overlooking the more efficient supply option. This

is a scenario where replicator dynamics will not converge.

Otherwise, distributed population dynamics can achieve the

same results obtained by centralized dynamics as shown in

previous literature [5], [7], [8], [14].

This work extends the work previously done in [8] by
including network constraints to a distributed smith dynamics
approach. The use of distributed smith dynamics avoids prob-
lems inherent in the replicator dynamics due to the extinction
property. We propose a novel congestion management algo-
rithm and highlight the difficulties in implementing replicator

dynamics. We only consider radial distribution networks as
they represent a majority of the systems where such an
approach is needed. However, generalizing the same concept
for a general form of distribution network is an interesting and
challenging task that remains for future work.
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