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Abstract—In the context of transport electrification, a model
coupling Electric Vehicles (EV) driving and charging decisions
is considered. While a Traffic Assignment Problem (TAP) is
considered for the driving part, the charging operation is done
with an exact load flow on a simple distribution network.
This setting allows assessing precisely the coupled impact of
driving and charging decisions. In particular, to schedule the
charging need coming from the driving part, different charging
strategies are defined and compared according to a cost metric
based on the load flow computation. In view of this metric, the
proposed non-load flow based strategies can perform similarly
to a load flow based one, and with significantly reduced
computation time and data need. Numerical simulations show
how a transportation toll can influence the charging results.

Index Terms—Electric vehicles; Grid interaction

I. INTRODUCTION

The transport sector is one of the biggest source of gas
emissions, with about a quarter of the global level accord-
ing to the 2017 annual report of the International Energy
Agency [1]. Full Electric Vehicles (EV) are one of the
solutions to the low carbon mobility problematic. However,
the increasing number of EV implies a higher power load.
Then, the behavior of EV drivers, typically the choice of the
path to reach their destination and therefore the corresponding
energy consumed, induces a demand in electricity from the
grid which can be non negligible. Therefore, there is a natural
relationship between driving and charging at the user level
and globally, between transportation and grid networks.

The interaction (“coupling”) of EV driving and charging
decisions is a recent topic of research, as identified in the
review paper [2]. In [3], only EV are considered, and their
charging choices are represented in an “extended transporta-
tion network”: each station is replaced by a set of virtual
arcs, each one corresponding to a specific charging (energy)
amount. However, there is no smart charging considerations:
the resulting aggregated EV charging need is not scheduled
in time but instead charged at once. Moreover, load flow
equations considered for the electricity network do not take
into account power losses. In [4], Gasoline Vehicles (GV)
are added to the problem of [3] and more realistic load
flow equations are used. Charging need is supposed to be
the same for all EV and charging unit prices depend on the
total demand at the corresponding charging station. Still, no
algorithm is proposed to schedule the charging operations.
Other works mentioned in [2] offer similar coupled models
of EV driving and charging but with limited smart charging
algorithms. In [5] the vehicle’s destination offering a minimal
cost is chosen while in [6] a fleet operator chooses the
proportion of its vehicles to charge instead of taking cus-

tomers. Finally, [7] proposes a planning model where both the
transportation and the electricity network are optimally sized,
minimizing the operators investment. The EV charging need
comes from a Traffic Assignment Problem model [8] and
the electricity network is considered, the load flow equations
being linearized (DistFlow) [9].

Compared to this existing work, one of our previous papers
[10] considers a coupled transportation and charging setting,
with both EV and GV, in which a central operator schedules
the load of an EV fleet following a water-filling algorithm
introduced in [11]. A typical application is a charging Park
& Ride hub which can be equipped with local electricity
production like photovoltaic panels. EV drivers can park there
and charge the electricity consumed during the morning while
working at a nearby office. However this previous paper does
not study into details the impact on the grid itself of the
charging need of EV. In the present paper, the impact of EV
charging on the grid is obtained through an exact load flow
solution. This load flow is the basis of a charging algorithm,
as well as a metric to compare this first algorithm with two
heuristic charging policies which are “more distributed”. The
main contributions of this paper are:
• the design and numerical comparisons of three different

charging scheduling algorithms, depending on which
operator manages the charging operation and what in-
formation it has access to;

• to model and interpret numerically an accurate impact
of a transportation incentive (traffic toll) on a medium
voltage grid, via the EV coupling of the two systems.
This impact is measured at the head of a network,
typically a transformer dedicated to a set of Charging
Stations (EVCS) with a particular grid topology.

The rest of the paper is organized as follows. Section
II describes the global coupled model incorporating the
congestion game and the charging problem. The algorithmic
approaches which depend on the managing operator are fully
described in section III. Performances of those approaches
are compared and studied using real data sets in section IV.
Finally, main conclusions and perspectives are given in the
last section V.

II. MODEL

The use case considered in this work to accurately study
the impact of the transportation system on the electrical grid
is commuting: drivers choose one of the three paths of the
transportation network of Fig. 1 to drive from home to work.
Users choosing path i park their vehicle at the corresponding
EVCS i, from which they can reach the common destination
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Fig. 1: Transportation (in blue) and electrical (framed) networks
considered in this work. ENO, FO and CSO stand for respectively
Electrical Network, Flexibility and Charging Service Operators.

by foot or public transport (which is the purpose of Park &
Ride hubs). These three EVCS belong to the electrical grid
of Fig. 1 and can be up to a dozen kilometers apart. Then,
EV are charged during working hours in a smart manner,
chosen by operators willing to minimize their costs. This
toy example helps to illustrate the importance of a coupled
problem of driving and charging, particularly considering the
impact on the grid. A more general transportation network
and/or electrical grid topology can be considered without
changing the main messages and results of our study.

A. Congestion game

The goal of this section is to predict the impact of
transportation parameters on the EV charging need at each
EVCS. These charging needs depend on how many EV are at
each EVCS, so that the path choice made by drivers needs to
be modeled. In this work, this is done via a congestion game:
each driver has complete information about the possible costs
and is fully rational in the sense that it chooses the path
with minimal total cost. This cost depends on the choices of
other drivers, in particular on the number of vehicles on each
path, through network congestion effects. This is the typical
context of congestion game problems [8]. Two classes of
vehicle are considered: EV (associated with subscript e) and
GV (g), which have different costs because of the different
energy type. This model works with a larger number of
classes, such as different types of EV depending on their
initial State of Charge (SoC), but here all vehicles of the same
class are assumed to share the same characteristics which
correspond to an average use case. In this transportation
network there are N vehicles, with a proportion Xs of
vehicles of class s and a proportion xs,i of class s vehicles
on path i. Then, for example, the number of EV on path i is
xe,iXeN .
Vehicles of class s on path i experience three kinds of costs:
• Travel duration, given by the following congestion func-

tion (from the Bureau of Public Roads [12]):

di(xi) = d0i

[
1 + 2 (xi/Ci)

4
]
, (1)

where d0i = li/vi is the minimal travel duration (corre-
sponding to free flow at speed limit vi), with li the length

of path i and Ci its capacity. Note that travel duration
is the same for both vehicle classes and depends on the
total number of vehicles xi = (xe,iXe + xg,iXg)N on
path i. A stochastic version of travel duration can be
readily implemented in our model. This paper considers
the deterministic function (1), which can be seen as the
average travel duration.

• Energy consumption limsλs, with ms the energy (elec-
tricity or fuel resp. for s = e, g) consumption per
distance unit and λs the energy unit price. Note that
ms is assumed constant and does not depend on speed
profiles, thus the energy consumption only depends on
traveled distance.

• Other constant costs, like traffic tolls ts,i imposed by a
Transportation Network Operator (TNO).

Summing all these costs, the total driving cost for a type s
vehicle on path i is given by the following expression:

cs,i(xi) = τdi(xi) + limsλs + ts,i , (2)

where τ is the cost of one unit of time spent driving.
By all acting rationally, users will reach a particular

distribution of choices between the three paths, denoted by
x∗ =

(
x∗s,i
)
s,i

and called a Wardrop Equilibrium (WE) [13].
This equilibrium situation gives a model of users behavior
in a stable regime where no user has an interest to change
her choice unilaterally. The proposed approach can thus be
used to evaluate various incentive mechanisms numerically –
in a planning stage or tool – in order to “select” a particular
equilibrium before it will be observed in practice (note that
this concept is now commonly used in many operational
public transportation planning tools for the “route choice”
step in four-steps models), as done in Section IV-A.

The total charging need Li at each EVCS i can then
be computed from the WE. First note that the underlying
assumption of the energy consumption term in (2) is that EV
want to charge exactly the electricity amount they consumed
during their trip. Then, Li depends on the proportion x∗e,i of
EV parking at EVCS i at WE and on what they consumed
to get there, lime:

Li = lime × x∗e,iXeN . (3)

Note that even GV may impact the different charging needs
at the EVCSs by adding congestion on some roads which
incites EV to favor other roads and thus EVCS.
B. Charging problem

Given the charging need Li at each EVCS i resulting from
the commuting game (see (3)), the charging operation of EV
during working hours at all EVCS is scheduled by one or
several operators (depending on the scenario considered, as
explained later in this section). More precisely, the charging
period (corresponding to working hours) is divided into
several time slots. Each EVCS i has its own nonflexible
consumption `0i,t for each time slot t. Then, for each EVCS
i, an operator has to determine the quantity `i,t to charge
(flexible consumption) at each time slot t in order to minimize
its energy costs, and satisfying the total charging need Li at
this EVCS.

Several operators are part of the electrical system, as shown
in Fig. 1. Each EVCS i is under the supervision of a Charging



Service Operator (CSO). Several CSO may be managed
together by what is called a Flexibility Operator (FO). The
electrical grid, from the transformer to the EVCS, is managed
by an Electric Network Operator (ENO). Depending on
which of these three operators controls the charging operation
scheduling, three scenarios are considered. The algorithms
solution of these scenarios are detailed in next section.

1) Local (CSO): The charging scheduling at each EVCS
is done by the corresponding CSO. Each CSO has no knowl-
edge about nonflexible loads and charging profiles chosen
by the other CSO, and about the characteristics of the grid.
Thus, CSO i minimizes its own energy costs (reduced to its
contract with the ENO), expressed by a quadratic (extendable
to other monomials) proxy [11] of its total load and satisfying
the charging needs:

min
`i,t

∑
t

ηt
(
`tot
i,t

)2
s.t.
∑
t

`i,t = Li , (4)

with ηt the weight of time slot t, and `tot
i,t = `0i,t + `i,t.

2) Global (FO): The charging scheduling of all EVCS is
done by the FO. This aggregator has complete information on
all EVCS, but not on the grid. This way, the FO minimizes
the total cost of the EVCS:

min
`i,t

∑
t

ηt

(∑
i

`tot
i,t

)2

s.t.
∑
t

`i,t = Li . (5)

Note that in the last two scenarios, the operators considered
solve optimization problems (4) and (5) regardless of the grid
topology, unlike the ENO in next scenario.

3) Grid aware (ENO): The charging scheduling of all
EVCS is done by the ENO, which has complete information
on the EVCS and the grid. The ENO minimizes the impact
of the charging operation on the grid, which is expressed as
a monomial of the apparent power S at the head of the grid
needed to meet the electricity demand `tot

i,t at each EVCS i:

min
`i,t

[
G =

∑
t

ηtS
2
(
`tot
1,t , `

tot
2,t , `

tot
3,t

)]
s.t.
∑
t

`i,t = Li .

(6)
Note that in all three scenarios, the various operators all

minimize a certain power: The active powers of each EVCS
in the local scenario, the sum of these powers in the global
one and the apparent power at the head of the grid for the
grid aware one.

Given the charging needs from previous section induced
from the drivers behavior (equation (3)), the charging op-
eration is scheduled according to each one of the three
scenarios described above. Then, the actual state of the
grid corresponding to each scenario loads is computed using
the power flow equations introduced in next section. The
ultimate goal is to compare the efficiency of each scenario
in terms of grid costs defined by function G (equation (6))
in Section IV-B considering real data sets. Before that, the
algorithms of the three scenarios are detailed in next section.

III. ALGORITHMS

A. Local scheduling

Each CSO i can find the charging scheduling solution of
the minimization problem (4) by using next proposition with
L = Li and `0t = `0i,t:

Proposition 1: Given a nonflexible load (`0t )t, the optimal
scheduling (`∗t )t of the charging need L is:

`∗t =

{(
L+ L0

t0

)
/
(∑

s≤t0
ηt
ηs

)
− `0t , if t ≤ t0 ,

0 if t > t0 ,
(7)

with L0
t =

∑
s≤t `

0
s, where t0 is such that L ∈]Lt0 ;Lt0+1]

and Lt =
(∑

s≤t ηt/ηs

)
`0t − L0

t .

The optimal charging profile given in proposition 1 has a
“water filling” structure [11] when ηt = η. For more details,
please refer to our previous work [14].

B. Global scheduling
Applying proposition 1 to all EVCS aggregated (i.e.,

L =
∑
i Li and `0t =

∑
i `

0
i,t) gives an optimal aggregated

profile (`∗t )t which minimizes
∑
t ηt`

2
t . However, several

total profiles (`i,t)i,t verify
∑
i `i,t = `∗t (∀t), i.e., are solution

of (5). The “disaggregation” ((`∗t )t → (`i,t)i,t) chosen is
presented in Algorithm 1:

Algorithm 1: Global scheduling

Input: `0i,t , Li
1 `i,t ←− Optimal local profile;
2 `t ←− Optimal aggregated profile;
3 `i,t ←− `i,t + 1

T (`t −
∑
i `i,t);

4 while ∃ `i,t < 0 do
5 `j,t ←− `j,t + 1

N−1`i,t j 6= i;
6 `i,s ←− `j,s + 1

T−1`i,t s 6= t;
7 `j,s ←− `j,s − 1

(T−1)(N−1)`i,t j 6= i, s 6= t;
8 `i,t ←− 0;

Output: `i,t

To obtain this optimal global scheduling, the solution of (4)
(Line 1) is modified as little as possible in order to be
solution of (5) (Line 3). Unfortunately, these perturbations
create negative charging quantities (Line 4), which are taken
into account (Line 8) and compensated (Lines 5, 6 and 7) so
that the constraints at each EVCS are still verified.

C. Grid aware scheduling
The objective function G of the ENO requires the apparent

power S needed to meet the electricity demand at all EVCS
(equation (6)). This quantity is obtained by solving the power
flow equations from the Bus Injection Model (runpp function
in pandapower Python library) and which corresponds to
the power balance at each bus (between the given power
production/load S0,k at bus k and power flows Sk from/to
the bus):

S0,k = Uk
∑
m∈Xk

Yk,mUm (= Sk) , (8)

with Uk the complex voltage at bus k, Xk the set of buses
connected to bus k and Yk,m the admittance of the line
between buses k and m.

Because of the implicit nature of G, iterative water filling
algorithms applied to problem (6) do not result in an explicit
solution, as in the local and global scenarios. Instead, (6)
is seen as a convex optimization problem, solved by built-
in Python function minimize, relying on a sequential least
squares programming method.



Fig. 2: Number of EV and GV at equilibrium on each path, in
function of toll ts,3 on path 3.

IV. NUMERICAL ILLUSTRATIONS

A. Impact of transportation system on the grid

This section illustrates the impact of the transportation
system on the electrical grid. More precisely, we look at
how a transportation parameter – here, the toll on path 3
– controlled by a Transportation Network Operator (TNO),
can impact the grid costs G related to the charging operation
of EV and defined in (6). Note that the toll on path 3 is the
same for EV and GV.

The parameters of the congestion game are set as fol-
lows.The length of the three transportation paths are l1 = 30
km, the average commuting driving distance in USA1, and
l2 = l3 = 20 km. The corresponding speed limits are
v1 = v2 = 50 km/h and v3 = 70 km/h, so that d03 < d02 < d01.
The path capacities are equal to the total number of vehicles:
Ci = N = 3000 vehicles. The values of the following
parameters are the same as in [10]: Xe = 50%, τ = 10 e/h,
mg = 0.06 L/km, λg = 1.5 e/L and me = 0.2 kWh/km.
The charging unit price is set to λe = 20 ce/kWh. There are
no tolls on paths 1 and 2: ts,1 = ts,2 = 0 e.

Under these driving conditions, the paths choice of com-
muters (i.e., the Wardrop Equilibrium x∗) was computed for
each toll value ts,3 on path 3 (see Fig. 2). When there is
no toll (i.e. ts,3 = 0), most vehicles choose path 3 as it
is the fastest, except for a few GV which use path 2, the
second fastest (otherwise, path 3 would be too congested).
For ts,3 ≤ 3.50 e, more vehicles rather choose path 2
because of the toll on path 3. For ts,3 > 3.50 e, path 3
has become even less attractive than the longer path 1, so
that no vehicles are left on path 3.

These path choices made by EV determine the charging
need at each EVCS in function of ts,3. Fig. 3 then shows the
resulting grid costs Gm(ts,3) defined in equation (6) for each
scheduling method m (m = l, g, a resp. for local, global and
grid aware), in function of ts,3. These costs are normalized
into εm,0, using the grid costs of the grid aware method with
ts,3 = 0:

εm,t(ts,3) =
Gm(ts,3)− Ga(t)

Ga(t)
. (9)

1Omnibus Household Survey, Bureau of Transportation Statistics

Fig. 3: Grid costs Gm(ts,3) relative to the reference case (grid aware
method with no toll), in function of the toll ts,3 on path 3, for each
algorithm m.

The parameters of the scheduling problem are set as
follows2: Standard types were used for the transformer (63
MVA 110/20 kV) and the lines (1x240 RM/25 12/20 kV).
The lengths of these lines are la = 10 km and lb = lc = 5
km. The number of time slots for the scheduling is T = 8 and
the different objectives defined in (4), (5) and (6) are assumed
to be time-independent (ηt = η). Here, the nonflexible load
of each EVCS is taken proportional to the consumption
of a Texan household (from 9 a.m. to 5 p.m., i.e., eight
hours), so that the global demand over the working hours
is
∑
i

∑T
t=1 `

0
i,t = 30 MWh. The data set used gives hourly

electric consumption throughout a year of Texan households3.
The first insight given by Fig. 3 is that a transportation

toll (between 1.50 e and 3.50 e) can be beneficial in terms
of grid costs. For such values of toll, some charging need
of EVCS 3 is shifted to EVCS 2 (see Fig. 2), which is less
costly because EVCS 3 is at the end of the line supplying
the two EVCS. The transportation network impacts directly
the grid when EV drivers switch (at ts,3 = 3.50 e) from
path 3 to path 1, which is associated with a larger electricity
consumption (because longer distance traveled): This larger
charging need causes a grid costs increase of close to 8%.
Finally, note that the local method gives grid costs only
1% higher (approximately) than the other two methods. The
difference of grid costs between the three methods will be
studied in more details in next section.

B. Grid costs associated with scheduling methods

The three scheduling methods introduced in sections II-B
and III are illustrated in this section, and compared with
respect to their associated grid costs. First, an example of
these three methods is given in Fig. 4. The nonflexible
consumption (in grey) is the same as in previous section,
except that here the eight working hours are split into T = 3
time slots. The toll on path 3 is fixed to ts,3 = 4 e, so that
there is no charging need at EVCS 3.

The local method smooths each EVCS i load profile(
`tot
i,t

)
1≤t≤T (upward diagonal hatch in Fig. 4). Unfortunately,

in some scenarios like here, the corresponding aggregated
load profile can be far from smoothed (right figure). This

2https://pandapower.readthedocs.io/en/v2.2.0/std types.html.
3Data available at http://www.pecanstreet.org/.

https://pandapower.readthedocs.io/en/v2.2.0/std_types.html
http://www.pecanstreet.org/


Fig. 4: Example of the three scheduling algorithms.

is the reason why the local method results in higher grid
costs: For example, charging vehicles at EVCS 2 during
time slot t = 3 while there is already a high nonflexible
consumption (possibly at other EVCS) can be costly. The
global method smooths the aggregated load profile of the
three EVCS (horizontal hatch), with local profiles at each
EVCS as smoothed as possible (see left figure). The optimal
“Grid aware” method, minimizing grid costs, has almost
smoothed aggregated and EVCS 1 profiles: As EVCS 1 is
farther away from the transformer than EVCS 2 (10 km
instead of 5), charging there is more expensive for the grid.

Then, a comparison between the three methods is given in
Table I. For this, a thousand nonflexible profiles with T = 8
time slots are randomly generated for each EVCS, such that
for each generation,

∑
i

∑T
t=1 `

0
i,t = 30 MWh. Each gener-

ated profile has also a 2 and a 4 time slots version. This table
shows the mean over these random profiles of the normalized
grid costs εm = εm,4(4) and the execution time Tm of
method m. This table confirms that the grid aware method
is optimal with respect to grid costs (εl, εg > 0) and shows
that the global one remains very close, while the local method
difference is of the order of the percent. In terms of execution
times obtained with an Intel Core i7-6820HQ 2.70GHz, the
local and global methods are negligible compared to the grid
aware method.

The execution time depends on the number of variables
of the optimization problems (4), (5) and (6): the number of
EVCS multiplied by the number of time slots. A comparison
between 2, 4 and 8 time slots shows that the execution time
of the grid aware method goes from 1s to approximately
21s. However, the normalized grid costs of the other two
methods increase too (nearly proportional to the number of
time slots). Thus, the choice of the method is a trade-off
between execution time and optimal grid costs. Nevertheless,
the global method seems to be the best choice as it is
fast and near-optimal, even if it does not take into account
the network topology. Though note that for more complex
electrical networks, this might not be the case anymore.

V. CONCLUSION

In this paper, the driving and charging decisions of Elec-
tric Vehicles (EV) are modeled through a coupled Traffic

TABLE I: Depending on the number of time slots into which
working hours are divided, mean over 1000 randomly generated
nonflexible profiles, of normalized grid costs εm = εm,4(4) and
execution time Tm of method m.

Nb time slots εl (%) εg (%) Tl (s) Tg (s) Ta (s)
2 0.4 8e-03 5e-05 9e-05 0.8
4 1.0 2e-02 6e-05 3e-04 4.3
8 2.2 3e-02 6e-05 1e-03 20.9

Assignment Problem and an exact load flow on a simple dis-
tribution network. The EV load scheduling is done with three
charging strategies, with different assumptions regarding the
data needed: from a purely per station distributed strategy,
to a centralized one based on the load flow calculation.
Numerically, the impact of a transportation parameter - a toll
value - is observed on the grid cost obtained on the charging
operation; it shows both interlinked driving and charging
effects. It also exhibits that distributed charging strategies,
which are non-load flow based, perform comparably to the
load flow based strategy in terms of grid cost. This opens the
way to the use of distributed simpler strategies in this coupled
context; however such comparative study will be extended to
more complicated electricity networks where this conclusion
may differ. In a future work, dynamic charging pricing to
make EV “grid-aware” (by charging at less congested EVCS
for example) will be integrated and the different operators
and their interactions will be considered.
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