
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/254023113

Comparison of data forwarding mechanisms for AMI networks

Conference Paper · January 2012

DOI: 10.1109/ISGT.2012.6175683

CITATIONS

21
READS

55

3 authors, including:

Some of the authors of this publication are also working on these related projects:

Industrial Control System Cybersecurity View project

Enabling REsilient urban TRAnsportation systems in smart CiTes View project

Sandra Céspedes

University of Chile

44 PUBLICATIONS 295 CITATIONS

SEE PROFILE

Alvaro Cardenas

University of Texas at Dallas

107 PUBLICATIONS 2,725 CITATIONS

SEE PROFILE

All content following this page was uploaded by Alvaro Cardenas on 27 March 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/254023113_Comparison_of_data_forwarding_mechanisms_for_AMI_networks?enrichId=rgreq-2b68994ede4393d08fd4cc4058f80cdf-XXX&enrichSource=Y292ZXJQYWdlOzI1NDAyMzExMztBUzoyMTE2MzcxNTI4MTcxNTNAMTQyNzQ2OTYzNzQyOA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/254023113_Comparison_of_data_forwarding_mechanisms_for_AMI_networks?enrichId=rgreq-2b68994ede4393d08fd4cc4058f80cdf-XXX&enrichSource=Y292ZXJQYWdlOzI1NDAyMzExMztBUzoyMTE2MzcxNTI4MTcxNTNAMTQyNzQ2OTYzNzQyOA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Industrial-Control-System-Cybersecurity?enrichId=rgreq-2b68994ede4393d08fd4cc4058f80cdf-XXX&enrichSource=Y292ZXJQYWdlOzI1NDAyMzExMztBUzoyMTE2MzcxNTI4MTcxNTNAMTQyNzQ2OTYzNzQyOA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Enabling-REsilient-urban-TRAnsportation-systems-in-smart-CiTes?enrichId=rgreq-2b68994ede4393d08fd4cc4058f80cdf-XXX&enrichSource=Y292ZXJQYWdlOzI1NDAyMzExMztBUzoyMTE2MzcxNTI4MTcxNTNAMTQyNzQ2OTYzNzQyOA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-2b68994ede4393d08fd4cc4058f80cdf-XXX&enrichSource=Y292ZXJQYWdlOzI1NDAyMzExMztBUzoyMTE2MzcxNTI4MTcxNTNAMTQyNzQ2OTYzNzQyOA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sandra_Cespedes?enrichId=rgreq-2b68994ede4393d08fd4cc4058f80cdf-XXX&enrichSource=Y292ZXJQYWdlOzI1NDAyMzExMztBUzoyMTE2MzcxNTI4MTcxNTNAMTQyNzQ2OTYzNzQyOA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sandra_Cespedes?enrichId=rgreq-2b68994ede4393d08fd4cc4058f80cdf-XXX&enrichSource=Y292ZXJQYWdlOzI1NDAyMzExMztBUzoyMTE2MzcxNTI4MTcxNTNAMTQyNzQ2OTYzNzQyOA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Chile?enrichId=rgreq-2b68994ede4393d08fd4cc4058f80cdf-XXX&enrichSource=Y292ZXJQYWdlOzI1NDAyMzExMztBUzoyMTE2MzcxNTI4MTcxNTNAMTQyNzQ2OTYzNzQyOA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sandra_Cespedes?enrichId=rgreq-2b68994ede4393d08fd4cc4058f80cdf-XXX&enrichSource=Y292ZXJQYWdlOzI1NDAyMzExMztBUzoyMTE2MzcxNTI4MTcxNTNAMTQyNzQ2OTYzNzQyOA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alvaro_Cardenas?enrichId=rgreq-2b68994ede4393d08fd4cc4058f80cdf-XXX&enrichSource=Y292ZXJQYWdlOzI1NDAyMzExMztBUzoyMTE2MzcxNTI4MTcxNTNAMTQyNzQ2OTYzNzQyOA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alvaro_Cardenas?enrichId=rgreq-2b68994ede4393d08fd4cc4058f80cdf-XXX&enrichSource=Y292ZXJQYWdlOzI1NDAyMzExMztBUzoyMTE2MzcxNTI4MTcxNTNAMTQyNzQ2OTYzNzQyOA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Texas_at_Dallas?enrichId=rgreq-2b68994ede4393d08fd4cc4058f80cdf-XXX&enrichSource=Y292ZXJQYWdlOzI1NDAyMzExMztBUzoyMTE2MzcxNTI4MTcxNTNAMTQyNzQ2OTYzNzQyOA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alvaro_Cardenas?enrichId=rgreq-2b68994ede4393d08fd4cc4058f80cdf-XXX&enrichSource=Y292ZXJQYWdlOzI1NDAyMzExMztBUzoyMTE2MzcxNTI4MTcxNTNAMTQyNzQ2OTYzNzQyOA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alvaro_Cardenas?enrichId=rgreq-2b68994ede4393d08fd4cc4058f80cdf-XXX&enrichSource=Y292ZXJQYWdlOzI1NDAyMzExMztBUzoyMTE2MzcxNTI4MTcxNTNAMTQyNzQ2OTYzNzQyOA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

1

Comparison of Data Forwarding Mechanisms for
AMI Networks

Sandra Céspedes, Student Member, IEEE, Alvaro A. Cárdenas, Member, IEEE, Tadashige Iwao

Abstract—Advance Metering Infrastructure (AMI) networks
are often deployed under challenging and unreliable conditions.
One of the issues for the transmission of data packet in these
unreliable networks is the routing of packets, because routing
paths may behave differently from the time when the route
is discovered to the time when a data packet is forwarded.
In addition, control packets may get lost and give routers an
inconsistent view of the network.
While previous research has focused on designing the control-
plane of routing protocols to deal with the AMI network
conditions, there is comparatively a smaller amount of research
on the advantages of new data forwarding mechanisms designed
for unreliable networks.
This paper introduces a set of data forwarding mechanisms in-
spired by distributed depth-first search algorithms, and designed
for the challenging conditions of large-scale unreliable networks
envisioned by smart-grid deployments. These forwarding mech-
anisms use data packets to detect loops, update routing tables,
and perform rerouting of data packets through alternate paths,
recovering thus, packets that would have been normally dropped
due to failures at the link layer. We perform simulations based
on a real field AMI deployment to evaluate the performance of
the proposed mechanisms. We also provide the evaluation results
for the data forwarding mechanisms that have been implemented
in a real AMI network.

Index Terms—AMI networks, data forwarding, depth first
search, routing, smart grid.

I. INTRODUCTION

Wireless mesh networks are one of the technology solutions

for smart grid deployments such as Advanced Metering In-

frastructure (AMI) and Transmission/Distribution Automation.

The deployment of these mesh networks is placing new

constraints and requirements on the technology required to

maintain them. Not only are these networks large (requiring

thousands of nodes in mesh topologies) but they are also

deployed in highly unreliable environments, making the rout-

ing protocol that maintains these large networks a critical

technology for the advancement of the smart grid.

In last year’s SmartGridComm several routing protocols

were analyzed to determine their suitability for these net-

works [1], [2], [3], [4], [5]. Each of these protocols proposes

promising contributions to advance the deployment of large

S. Céspedes is with the Department of Electrical and Computer Engineer-
ing, University of Waterloo, Ontario, Canada, and with the Department of
Communications and Information Technology, Icesi University, Cali, Colom-
bia email: slcesped@bbcr.uwaterloo.ca

A. Cárdenas is with the Trusted Systems Innovation Group, Fujitsu
Laboratories of America, Sunnyvale, CA, USA email:alvaro.cardenas-
mora@us.fujitsu.com

T. Iwao is with the Smart Network Division, Fujitsu Limited, Fukuoka,
Japan email:iwao@jp.fujitsu.com

wireless networks. However, an often forgotten part of these

protocols is the improvements that can be enabled by new

forwarding mechanisms.

Routing protocols are generally composed of two inde-

pendent phases, the control plane and the data forwarding

plane. The control plane discovers and maintains routes, and

the data forwarding plane performs a table lookup operation

on information (generally) gathered by the control plane to

forward the packet toward the destination. Most of the routing

protocols focus on the control plane, and the data forwarding

plane is left as an afterthought or as a choice for implementers.

Moreover, in unreliable networks, the control overhead for

detecting routing errors and for fixing paths happens often, so

it is important to avoid expensive control plane mechanisms

that might overreact in the presence of instability.

As the networks expected to be deployed in the Smart Grid

become more complex and unreliable, routing algorithms are

starting to include new options in their data forwarding plane.

For example, the newly ratified ITEF standard RPL [2], [1]

has a data forwarding plane with two options: 1) it uses

data packets to detect inconsistencies (e.g., loops), and 2) it

has a forwarding error flag that can potentially be used to

reroute packets that cannot advance toward the destination.

These forwarding mechanisms can improve the reliability of

the network and show a lot of promise; however, even the latest

RPL draft mentions that the standard document is a routing

protocol, not a forwarding protocol, and thus the forwarding

options are non-normative and not fully specified.

In this paper we consider more sophisticated forwarding

options that can increase the reliability of networks. We

propose 5 different forwarding mechanisms, compare their

advantages and disadvantages, and identify which forwarding

mechanisms can lead to more reliable networks. We perform

simulations based in real AMI deployment data and show

results from a field test. In general we find that new data

forwarding mechanisms can improve the performance of large

wireless mesh networks.

In previous work [4], we introduced DADR, a routing

protocol for unreliable networks which included an initial

proposal for a data forwarding mechanism. While this previous

work focuses on the description and evaluation of a routing

protocol following a specific data forwarding mechanism, this

paper gives a detailed evaluation of different options and

algorithms applicable exclusively to the data forwarding plane

(and thus independent of specific routing protocols). We also

include a new implementation of the data forwarding mech-

anisms in Omnest, a robust and general network simulation

tool (as opposed to the previous work which had used a978-1-4577-2159-5/12/$31.00 ©2011 IEEE

2

simple simulation engine developed internally). An additional

contribution of this paper compared to [4] is the inclusion of

real-world data from an AMI deployment in New Mexico.
The remainder of this paper is organized as follows. Section

II introduces the different data forwarding mechanisms. The

characteristics of the AMI network employed in the evaluation

of the data forwarding mechanisms are described in section

III. Sections IV and V discuss the simulation and field test

results respectively. Finally, concluding remarks are provided

in section VI.

II. DATA FORWARDING MECHANISMS

In this section, we describe five different data forwarding

mechanisms for unreliable networks. It is assumed that a

control plane exists and is in charge of finding the paths to

other nodes in the network. In general, the following data

structures are required in each node for the operation of these

mechanisms:

1) Routing Table: for storing destinations in the network. This

table allows up to K possible next hops to reach a destination.

2) Loop detection table: for storing records of the packets

forwarded by the node and the address of the node from which

it is received. It is assumed that packets have a unique identifier

that serves to determine if they have been previously registered

in this table.
As long as the control plane fills up the routing table, the

mechanisms described in this section work independent of the

underlying routing protocol (and more specifically, its control

plane). Examples of protocols that could be used in the control

plane are RPL [6] and the Babel routing protocol [7].
Additionally, since it is assumed the network presents

unreliable channel conditions and node failures, it is expected

the topology to be continually changing with possible loops

appearing in the routing table. Hence, it is not required by

these mechanisms that the control plane maintains an updated

routing table at all times. Instead, we allow the control plane

to be light and we shift part of the responsibility of fixing

paths to some of the data forwarding mechanisms.
The algorithm followed for the rerouting of data packets in

the following mechanisms is inspired in a distributed depth-

first search algorithm over the network graph [8][9], as we

explain as follows.

A. Simple Forwarding
This forwarding mechanism performs a lookup in the rout-

ing table and selects the best candidate to reach the destination

of the data packet. It is simple in the sense that it does not

keep record of the forwarded packets, hence it does not try to

do rerouting when a loop exists and the packet returns to the

node, nor it reacts to failures at the link layer. For the case in

which the destination of a packet is not found in the routing

table, the node proceeds to drop the packet.
It is a light-weight forwarding mechanism that does not

employ extra space from the node’s memory and that relies

completely on the quality of paths and candidates gathered by

the control plane. Therefore, if paths contain loops or the link

layer is highly unreliable, this mechanism does not guarantee

full delivery of packets.

TABLE I
ROUTING TABLE ENTRY FOR DESTINATION D

T U X
Destination D Destination D Destination D
Next Hop 1 U Next Hop 1 W Next Hop 1 Y

Cost (d) 20 Cost (d) 10 Cost (d) 10
Next Hop 2 X Next Hop 2 X Next Hop 2 Z

Cost (d) 40 Cost (d) 15 Cost (d) 15
Next Hop 3 S Next Hop 3 T Next Hop 3 U

Cost (d) 40 Cost (d) 30 Cost (d) 15
Next Hop 3 V Next Hop 3 T
Cost (d) 50 Cost (d) 70

B. Loop Detection

In this mechanism, the node stores in the loop detection

table an identifier for previously seen packets (e.g,. a sequence

number created by the source concatenated with the source

address) and the address of the node from which they are

initially received (i.e, the previous hop). By means of this

record, every time a packet is returned, the node identifies it

and reroutes it through the next candidate selected from the

routing table, so that it resembles a depth-first search over the

network. There are a maximum of K tries if paths through all

the candidates (i.e, the children) have a loop and the packet is

returned. At last, the packet is sent back to the previous hop

(i.e, the father) when the K trials have failed to deliver the

packet.

Topology in Fig. 1 illustrates the loop detection logic.

Assume all links are bidirectional and each node stores up

to K = 4 candidates per destination. Fig. 1 shows the initial

state of the network after all the signaling messages have been

exchanged in the control plane, and Table I shows the entry

for destination D in routing tables for nodes T , U , and X .

�

��

���

�

	

��

��

��
��

��

��

Fig. 1. Network topology

In a later stage, several nodes have lost their link to node

D. Assume that node S wants to send a data packet to node

D but the intermediate nodes have not updated their routing

tables to reflect the new changes. The loop detection logic then

operates in the following way:

• Node S registers the data packet in the loop detection

table and puts itself as the previous hop. It forwards the

packet to T .

• Node T makes a lookup of the packet in its loop detection

table. Since it is the first time it receives it, a new record

3

is created. It sets node S as the previous hop, and selects

nodes U and X as the candidates. Packet is forwarded to

U . Note that T does not include S as a possible candidate,

since it is registered as the previous hop.

• Node U makes a lookup and registers the packet in the

loop detection table for the first time. It sets node T as

the previous hop and selects nodes W , X , and V as the

candidates. Packet is forwarded to node W .

• Node W does not have a valid path to D, so it returns

the packet to node U . Once U finds the packet registered

in the loop detection table, it is forwarded to the next

candidate, node X .

• Node X makes a lookup and registers the packet in the

loop detection table for the first time. It sets node U as

the previous hop and selects nodes Y , Z, and T as the

candidates. Packet is forwarded to node Y .

• X detects a loop when Y returns the packet, so it tries

forwarding the packet to Z. Node Z also returns the

packet, so the packet is forwarded to the last candidate

T .

• T detects a loop through U; therefore it sends the packet

to the second option: node X .

• Node X once more detects a loop, so it sends the packet

back to the previous hop: node U .

• Node U detects a loop through node X . It forwards the

packet to V , which delivers it to the final destination.

This method improves reliability thanks to the rerouting

process. Furthermore, when a loop is detected, the node

updates its routing table by poisoning the entry for the specific

candidate that causes the loop. In this way, not only the node

avoids to use the same failing path in the future, but also helps

other nodes in the network to progressively remove it, since

the update is later disseminated to neighboring nodes by the

control plane.

Thanks to the feedback received from the loop detection

mechanism, there is no need for the control plane to overreact

when links or nodes in the network are unstable. In this way,

the control plane can rely on the information received from

loop detection once the data is actually being sent, therefore,

avoiding the waste of resources for fixing paths that are not

commonly used in the network.

The downside of this mechanism comes with the necessity

of reserving memory space for the storage of the loop detection

table. Moreover, depending on the data rate, this table can

fill up quickly, and new packets would have to be forwarded

without being registered, increasing the chances of loops to

go undetected. One way to manage this situation is by setting

a timer for entries to be deleted from the table as soon as

possible. If a good estimate exists for the average end-to-

end delay, this could be used as a baseline for the timeout

of registered packets.

C. Loop on demand

This mechanism works is an extension to simple forwarding
as described in section II-A. It works the same as simple

forwarding except when a route towards the destination is not

found in the routing table. In that case, the node proceeds to

activate a flag for loop detection in the data packet, and returns

the packet to the previous node. Since the loop detection

flag has been activated, when the previous node receives the

packet, it initiates the loop detection logic by registering the

packet and selecting candidates to reroute it in case of loops.

Therefore, the mechanism potentially increases the chances of

delivery for packets that would have been dropped otherwise.
For nodes supporting this mechanism, they are required to

have space reserved for a loop detection table, so that packets

can be registered in the potential case that loop detection is

initiated at the source or at any intermediate node in the path

to destination.

D. Reliable Delivery
This forwarding method employs the loop detection logic

described in section II-B. In addition to rerouting, it also reacts

to packets losses notified by the MAC layer [10]. When a

packet loss occurs, the node follows the same logic as if a loop

is detected, which means, it selects the next-hop candidate in

the list and reroutes the packet towards it. However, in addition

to rerouting, the node activates a duplicate flag in the packet

being re-sent, which remains active from that point onwards.

This flag is necessary since the original packet may have been

successfully received by the next hop, but the acknowledgment

at the link-layer may have been lost. Therefore, it is important

for intermediate nodes to identify when a received packet is

a duplicate, so that they consider the packet coming from a

retransmission instead of a loop in order to prevent poisoning

routes that might not have loops.
Every time a node receives a packet with the duplicate

flag activated (including the node that sets the flag), and the

packet already exists in the loop detection table, it refrains

from poisoning the last attempted candidate, since this may

correspond to a false loop detection. In this way, the node

accounts for temporary network congestions that can cause

losses of packets or acknowledgments at the MAC layer, while

it keeps trying to deliver the packet. There is one case when

nodes poison the routing table based on a data packet with a

duplicate flag on: the routing table is poisoned when a return
flag is set. The return flag indicates when a packet has been

returned to the previous node because it failed to forward the

packet after trying (and failing) with all the possible next hops.

This flag is updated hop-by-hop–i.e., after the parent receives

a packet with the return flag on, and it forwards it to any of

its children, then the flag is turned off.
The reliability of this mechanism is expected to be high,

since it recovers losses for failures not only at the routing layer

(e.g., loops), but also at the MAC layer (e.g., link failures).

Even for cases in which the MAC layer does not operate using

acknowledgments, it could react for packets discarded due to

the inability to access the wireless channel (e.g., a 802.15.4

MAC layer that gives up after several tries to transmit a frame).
The tradeoff is the generation of duplicate packets that

would increase the load in the network. Particularly, in un-

reliable networks with unidirectional links, a large number

of packets are retransmitted as duplicates due to loss of

acknowledgments, even if the original packets are already

moving toward the destination.

5

and number of unidirectional links calculated from this test.

Since the average PSR obtained is only 67%, we consider this

an unreliable network suitable to evaluate the performance of

the proposed mechanisms. The following section introduces

the results of such evaluation.

0 500 1000 1500 2000 2500 3000 3500
0

500

1000

1500

2000

2500

3000

3500

4000
AMI Network

m

m

Fig. 4. The simulated network is based on coordinates obtained from an
ongoing deployment. It consists of 466 nodes and one collector (in red).
There are 26223 links with PSR greater than 0 in the network. Of these,
1815 links are unidirectional and the remaining 12204 are bidirectional. The
largest minimum number of hops between two nodes in the graph is 14, and
the largest minimum number of hops to the collector is 8. In our simulations,
the routing protocol selects routes based on the ETX metric, not hop count;
therefore the number of hops in practice could be higher.

IV. SIMULATION RESULTS

This section discusses the performance of the data forward-

ing mechanisms over an unreliable network such as the one

described in section III. The functionality of each mechanism

is implemented as an upper layer that works on top of

MiXiM’s 802.15.4 MAC and PHY modules for wireless sensor

networks. We include a distance-vector control data plane

that fills up the routing table with up to K=3 candidates per

destination. Since the network is unreliable, the control data

plane assumes that all links are unidirectional unless proven

otherwise (i.e, each node checks if it appears in the control

messages reported by its neighbors). The metric used to

calculate the best paths is based on the expected transmission

count metric (ETX) [11].

We trigger the sending of data packets at a rate of

1pkt/10min to emulate typical traffic conditions in a AMI

network. The total data packet size is 103bytes (payload +
header). We ran tests for two different scenarios to capture the

performance of the data forwarding mechanisms for different

parameters of configuration.

First, test 1 simulates a typical AMI network in which

meters send packets to the collector at a constant bit rate. The

purpose of this test is to evaluate how well the forwarding

mechanisms overcome flaw routes and link layer failures, in

order to guarantee delivery of packets. Second, we test the

performance of the reliable delivery mechanism for different

K values, under the same data traffic conditions described

for test 1. The purpose of test 2 is to evaluate the impact of

the number of candidates in the performance of the forwarding

mechanism. Results from test 2 could help on the parametriza-

tion of the control plane in terms of the next-hop list size to

be included in the routing table.

A. Test 1: Traffic to the collector

In this scenario, we compare the forwarding mechanisms in

terms of the following metrics:

• Reliability: Measurement of the packet delivery ratio,

calculated as PDR = PktsReceived
PktsSent

• Average delay: Measurement of the average end-to-end

delay of packets received at the destination

• Hop count: Average number of hops traversed by packets

from each source to destination

• Black holes: Number of times the forwarding mechanism

discards a packet after the MAC layer fails to deliver it

to the next hop

50 100 150 200 250 300 350 400 450 500

0.4

0.5

0.6

0.7

0.8

0.9

1

network size

Simple

Loop on demand

Loop

Reliable

DFS

(a) Reliability

50 100 150 200 250 300 350 400 450 500
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

network size

Simple

Loop on demand

Loop

Reliable

DFS

(b) Black holes

Fig. 5. Reliability and black holes evaluation of data forwarding mechanisms
in unreliable networks

The reliability obtained by each mechanism is depicted in

Fig. 5(a). One can observe that a simple forwarding mecha-

nism does not achieve a PDR greater than 50% for large size

networks. The main packet losses in this scenario come from

the unreliable conditions in the network channel. For example,

in a 300-node network, 98% or the total packets dropped are

discarded due to MAC-layer failures. The remaining 2% corre-

sponds to packets dropped due to flaws in the paths calculated

by the control plane. In general, reliable delivery improves the

total reliability between 8% ∼ 48% for the different network

sizes when compared to simple forwarding, and 9% ∼ 25%

when compared to loop detection. The difference between the

loop detection’s PDR and reliable delivery’s PDR indicates the

packets that were saved from being dropped due to failures at

6

the MAC layer. An absolute number of packets discarded due

to link layer failures is shown in Fig. 5(b).

50 100 150 200 250 300 350 400 450 500
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

network size

s

Simple

Loop on demand

Loop

Reliable

DFS

(a) Average delay

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

hops

Simple
Reliable

(b) Hop count

Fig. 6. Average delay and hop count evaluation of data forwarding
mechanisms in unreliable networks

Fig. 6(a) demonstrates that the more sophisticated the

forwarding mechanism, the greater the delay for delivering a

packet at the destination. A steep increase is observed specially

for the two strategies performing retransmissions due to link-

layer failures (Reliable delivery and DFS), which measures the

search done by the forwarding mechanism to successfully find

a route towards the destination of the “saved” packets–whereas

the delay of other forwarding mechanisms does not account

packets who could not find their destination. In the same way,

an increase is observed in the average number of hops due to

the rerouting process. For example, in the 466-node topology,

an increase from 6.7 hops in average for simple forwarding

to 8.5 for reliable delivery is observed. Fig. 6(b) illustrates

the hops histograms for the 466-node topology, and compares

the number of hops employed by the simple and the reliable

forwarding mechanisms.

It is observed that, in general, reliable delivery and DFS

have a comparable performance, with a slight improvement in

PDR (Fig. 5(a)) and a slightly less average delay in the DFS

mechanism (Fig. 6(a)).

A tradeoff expected from the good performance of reliable

delivery and DFS is the memory employed to store entries

in the loop detection table. Several strategies could be used

to keep the loop detection table at a reasonable size: 1) by

implementing a proactive deletion of entries, so that a timeout

is set per entry. This timeout should be adjusted according

to the network’s data rate and the reliability conditions of

the AMI network; 2) by implementing a reactive deletion of

entries, so that a new packet registration triggers the deletion

of the oldest entry in the loop detection table when the table

is full; and 3) by implementing a reactive deletion for the

entry that has been registered for a time longer than a specific

threshold, and for which loops have not been yet detected. The

threshold value should be adjusted according to well-known

metrics such as the average end-to-end delay for data delivery

in the AMI network.

On the other hand, the maximum size of the table should

vary according to memory resources. For example, some of our

field deployments use a 3000-entry table in 802.11b devices,

whereas only a 384-entry table is implemented in a memory-

constrained 802.15.4 device.

B. Test 2: Impact of variable K

In this scenario, we run tests using reliable delivery as the

forwarding mechanism. We compare the performance with

K = {1, 2, 3, 5}, in which case the maximum number of

candidates per destinations varies accordingly in the routing

table. Besides comparing the reliability and average delay for

each scenario, we also evaluate the total packets losses due to

routing and MAC failures, and the number of times a node

has to reroute a packet due to link layer failures.

50 100 150 200 250 300 350 400 450 500
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

network size

1 neighbor

2 neighbors

3 neighbors

5 neighbors

(a) Reliability

50 100 150 200 250 300 350 400 450 500
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

network size

s

1 neighbor

2 neighbors

3 neighbors

5 neighbors

(b) Average delay

Fig. 7. Reliability and average delay evaluation of reliable delivery data
forwarding for different values of K

Fig. 7(a) confirms that a greater number of options for

forwarding a data packet impacts positively the chances for

that data packet to be delivered. In a single candidate scenario

(K = 1), the reliability decreases considerably especially for

larger size networks, where the total PDR obtained is only

67%.

Accordingly, the average end-to-end delay tends to decrease

for greater values of K, as demonstrated in Fig. 7(b). However,

it is interesting to note that for K > 1 the delay experienced by

data packets is comparable, which means that, although more

8

Fig. 11. Reliability for smart meter readings over a week-long period. During this period, 176 meters reported every 15 minutes their readings. The collector
can poll a meter reader it has not received a reading from, if the first attempt fails.

property of the Japanese utilities and not easily shareable. On

the other hand, one of our deployments outside of Japan can

be seen in Fig.10. In this field test, we implemented loop on-

demand and reliable delivery as the options that the routing

protocol can select when forwarding packets. The forwarding

option will depend on the priority of the packet that needs

to be delivered or on the size of the loop detection table.

For example, a regular meter reading sent to the collector is

forwarded with loop on-demand forwarding, whereas a packet

sent from the collector to a meter, or the response of the meter

to a request from the collector, are forwarded with the reliable

delivery option. Fig.11 shows the reliability results for the field

deployment with a PDR in the range of 94% to 100%.

VI. CONCLUSIONS

We have introduced five different data forwarding mecha-

nisms for the delivery of packets in wireless mesh networks

employed for smart grid deployments under unreliable con-

ditions. These mechanisms serve as a data forwarding plane

that could be employed with any generic control plane/routing

protocol in charge of filling a routing table. The logic em-

ployed to forward packets is based on a depth-first search

over the network-graph that may use multiple next-hops in

order to reach a destination. They also recover packets that

would be normally discarded due to losses an the MAC layer.

Our simulations results showed a high performance for those

mechanisms that perform rerouting and retransmission under

link failures. It has been also shown how the unreliable condi-

tions in the AMI network affect its overall performance, and

how the proposed data forwarding mechanisms overcome the

instability of links to achieve a high delivery of packets under

these unreliable conditions. Finally, we have shown results

from a successful AMI field deployment that implements two

of the proposed mechanisms: loop-on-demand and reliable

delivery.

REFERENCES

[1] J. Tripathi, J. de Oliveira, and J. Vasseur, “Applicability study of rpl
with local repair in smart grid substation networks,” in 2010 First IEEE
International Conference on Smart Grid Communications (SmartGrid-
Comm), oct. 2010, pp. 262 –267.

[2] C. Chauvenet, B. Tourancheau, D. Genon-Catalot, P.-E. Goudet, and
M. Pouillot, “A communication stack over plc for multi physical layer
ipv6 networking,” in 2010 First IEEE International Conference on Smart
Grid Communications (SmartGridComm), oct. 2010, pp. 250 –255.

[3] B. Lichtensteiger, B. Bjelajac, C. Müller, and C. Wietfeld, “RF Mesh
Systems for Smart Metering: System Architecture and Performance,” in
2010 First IEEE International Conference on Smart Grid Communica-
tions (SmartGridComm), oct. 2010, pp. 379 –384.

[4] T. Iwao, K. Yamada, M. Yura, Y. Nakaya, A. Cárdenas, S. Lee, and
R. Masuoka, “Dynamic data forwarding in wireless mesh networks,” in
2010 First IEEE International Conference on Smart Grid Communica-
tions (SmartGridComm), oct. 2010, pp. 385 –390.

[5] S. Dawson-Haggerty, A. Tavakoli, and D. Culler, “Hydro: A hybrid
routing protocol for low-power and lossy networks,” in 2010 First IEEE
International Conference on Smart Grid Communications (SmartGrid-
Comm), oct. 2010, pp. 268 –273.

[6] P. Thubert et al., “RPL: IPv6 Routing Protocol for Low power and
Lossy Networks,” IETF Secretariat, Internet-Draft draft-ietf-roll-rpl-
19.txt, March 2011.

[7] J. Chroboczek, “The Babel Routing Protocol,” IETF Secretariat, RFC
6126, April 2011.

[8] I. Cidon, “Yet another Distributed Depth-First-Search Algorithm,” In-
formation Processing Letters, vol. 26, no. 6, pp. 301 – 305, 1988.

[9] B. Awerbuch, “A new Distributed Depth-First-Search Algorithm,” In-
formation Processing Letters, vol. 20, no. 3, pp. 147 – 150, 1985.

[10] A. Cárdenas, S. Céspedes, and T. Iwao, “Depth-First Forwarding in
Unreliable Networks,” IETF Secretariat, Internet-Draft draft-cardenas-
dff-00.txt, July 2011.

[11] D. S. J. De Couto, D. Aguayo, J. Bicket, and R. Morris, “A High-
Throughput Path Metric for Multi-hop Wireless Routing,” in Proceed-
ings of the 9th annual international conference on Mobile computing
and networking, ser. MobiCom ’03, 2003, pp. 134–146.

View publication statsView publication stats

https://www.researchgate.net/publication/254023113

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /OK
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings to create PDF documents suitable for IEEE Xplore. Created 15 December 2003.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

