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Abstract—The electricity grid is evolving from a monolithic 

centralized system to a smart distributed system, composed of 

distributed and renewable generation resources, where power 

supply and demand balancing is needed at a microgrid scale.  In 

this paper, we explore model selection criteria for short-term 

microgrid-level load predictions.  To this end, we experiment with 

five different models in the context of usage traces from six diverse 

sites collected over a period of eight months.   We find that model 

selection is heavily influenced by the variability in the data and 

that models which do not use weather forecast information but 

rely only on historical usage data perform better on sites with 

highly variable loads. 
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I.  INTRODUCTION 

The proliferation of local and renewable electricity generation 

is transforming the electric grid from a centralized system 

where load monitoring, prediction and control are performed by 

utility companies, to a distributed system where microgrids 

composed of individual homes, office buildings, or federated 

groups thereof are becoming active participants in energy 

generation. Accurate short-term load forecasting at the 

microgrid level is thus becoming increasingly more important 

for enabling localized supply-demand balancing of the grid. At 

the same time, forecasting at a small scale is inherently more 

challenging than forecasting at large scales due to the higher 

variability of load relative to its mean. 

 

In this paper, we investigate the effectiveness of three popular 

univariate models (which use load information) and two 

multivariate models (which use both load and weather 

information) in predicting hourly day-ahead electricity usage 

loads, by evaluating their performance in the context of traces 

collected at six different sites over an eight-month period.  We 

find that different sites may require different models for 

accurate forecasting, and that model selection is influenced 

primarily by the variability of the data both in terms of overall 

prediction accuracy and optimizing daily peak prediction. Peak 

under-prediction, in particular, is a critical metric for the 

effectiveness of a prediction model since it could impact the 

effectiveness of demand response measures, trigger expensive 

peaker plant usage, and increase the probability of blackouts. 

With better prediction of peak demand, proper actions such as 

balancing demand and supply, informing customers of critical 

peak events, and issuing attractive demand response pricing, 

can be taken in advance, before the actual peak demand occurs. 

We also find that in the context of our sites, models that do not 

use weather information lead to comparable and often better 

predictions than models that do utilize such information.  

  

II. RELATED WORK 

Electricity load forecasting has been an important area of 

research over the past several decades.  The vast majority of 

papers in the literature have focused on short-term prediction of 

aggregate load over large sections of the electricity grid, 

representing utility service areas or nation-wide electricity 

usage data (e.g., [1]-[4], [11]-[17]).  With the emergence of the 

smart grid and distributed generation capabilities in recent 

years, the research community has turned to microgrid-level 

forecasting (e.g., [5]).   Forecasting has proven to be difficult, 

since microgrid-scale loads exhibit high levels of variability, 

which we also observe in our study. 

 

Short-term forecasting has been the subject of extensive study 

as well (e.g., [1], [3]). No single short-term forecasting model 

has been shown to perform consistently better than all others, 

which is why we focus on model selection criteria rather than 

trying to find a single model that works well for all sites.   

 

Univariate models that base their predictions on past usage 

history alone and do not take into account weather information 

have been shown to be effective in predicting short-term load 

forecasts (e.g., [1], [2]), which is in concert with our findings as 

well.   

 

In this paper we focus on small-scale short-term forecasts, which 

are becoming increasingly more relevant as renewable 

generation and microgrids become more widespread.  We 

compare the prediction accuracy of five different models across 

a diverse set of sites, and come up with practical model selection 

criteria based on our results. 

III. LOAD TRACES 

We collected power consumption traces from six buildings over 

an eight-month period between August 2011 and April 2012.  

Usage reports were generated at 30-minute intervals, 24 hours a 

day.  We converted the traces into hourly traces and removed 

weekends, holidays, and off-peak hours (6pm to 9am) since the 



loads for those were nearly constant and did not present a 

modeling challenge. 

 

In the examples included in this paper, site names and locations 

are not specified, and the absolute values of the loads are not 

shown, but are normalized relative to the maximum load for 

each site, in order to protect the privacy of the information as 

requested by our data source.   

 

Our sites include both office buildings and factory buildings 

and thus present a diverse mix of load patterns (Fig. 1).  Some 

sites display a strong seasonal behavior, with a marked increase 

in energy use during the summer and winter months, e.g., Sites 

B, E, and F, corresponding to heavy use of air conditioning and 

heating respectively (Fig. 2).  Others show partial seasonality 

with an increase in energy use only during the summer but not 

during the winter, e.g., Sites A, C, and D.    

 
Figure 1 Normalized hourly power consumption for all sites over the 

period August 2011 – April 2012.  

 
Figure 2 Hourly variations of normalized load vs. temperature for all 

sites over the period August 2011 – April 2012.  

 

The relationships between load and temperature at different 

sites indicate that while some sites depend on electricity for 

both their air conditioning and heating needs, others use other 

sources of energy for heating (e.g., gas).  Furthermore, some 

sites exhibit a much lower increase in usage due to temperature, 

e.g., Site C, indicating that air conditioning constitutes a lower 

portion of their overall electricity usage than at other sites, e.g., 

Site E. 

 

We also observe that sites differ in the normalized ranges of 

load they use over time, with Sites B, E and F experiencing 

ranges that are roughly twice the size of the ranges of the other 

sites (Fig. 1).  Sites B and D on the other hand display the 

highest variability of load for a given temperature (Fig. 2).  In 

addition, the highest variability in the loads at sites that rely on 

electricity for air conditioning (e.g., Sites E and F) occurs in 

late summer and early fall (Fig. 1), which we attribute to 

varying numbers of employees being on vacation and dealing 

with the beginning of the school year. 

 

Table 1 shows the ratio of the standard deviation and the mean 

of the hourly loads at each site, with Site E showing the most 

pronounced variations, with a standard deviation of 28% of its 

mean load.   

Site Std/Mean (%) 

A 10.5 

B 16.7 

C   6.4 

D 11.3 

E 28.0 

F 21.5 

 
Table 1 Ratio of the standard deviation and mean of the hourly loads 

from all six sites for the entire measurement interval. 

 
Figure 3  ACF of hourly loads for Site E. 

 
Figure 4  PACF of hourly loads for Site E. 



Figs. 3-4 show the Autocorrelation function (ACF) and Partial 

Autocorrelation function (PACF) of the hourly loads at Site E.  

High correlation of the load time series at 1, 5 and 10 hour lags 

can be observed in both ACF and PACF. The ACF and PACF 

functions for loads for the other sites showed a similar trend.  

The 1-hour lag indicates the correlation between the loads of 

consecutive hours, while the 5-hour lag indicates the correlation 

between morning, mid-day and evening loads.  Finally, the 10-

hour lag indicates the correlation of loads across days. 
 

IV. PREDICTION MODELS 

We selected five load forecasting models for our study since 

they have been shown to perform well for day-ahead hourly 

load predictions.  These are ARMA (Autoregressive Moving 

Average) ([6]), ARIMA (Autoregressive Integrated Moving 

Average) ([6]), Multiple Regression ([18]), Double Exponential 

Smoothing ([1]), and Random Forest ([9]).  

 

The deviations in model-predicted hourly loads and peak daily 

loads from the observations are quantified in terms of Mean 

Absolute Percentage Error (MAPE) of hourly loads:  
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where tt PP ˆ,  are the observed and predicted power at time t, 

and n is the number of observations. 

 

We compute MAPE for peak predictions by locating the actual 

daily peak load for each day and its time of occurrence, and 

comparing its magnitude to that of the predicted load at the 

same date and time, to estimate the percentage daily peak error. 

The percentage errors in model-predicted daily peaks are then 

averaged to produce a mean peak error.   In particular, 
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where MAPEpl is the MAPE for peak loads; tpltpl PP ˆ,  are the 

observed and predicted loads, respectively, at the time of 

occurrence of observed daily peak load, tpl, and np is the 

number of peaks used for testing the model. 

 

We use the same method to compute under-prediction errors by 

averaging the errors across all days for which the peak is under-

predicted. 

 

A. Multiple Linear Regression 

We use a multiple linear regression model to establish the 

relationship between the load (response variable), temperature 

and hour of the day (predictor variables). Data analysis of the 

hourly loads and air temperatures for all sites showed that loads 

vary with temperatures and hour of the day.  Air temperature is 

treated as a numeric variable, while hour of the day is treated as 

a categorical variable. 

Pi, the power consumption at hour i, can be expressed as: 

iiii btataP  2

10 ,    (3) 

where ti is air temperature at time i, and bi is a constant 

computed for each hour of the day.  

 

A k-fold cross validation with k=18 is used to test the validity 

of the model. In the k-fold cross validation, the data is divided 

into k equal data sets, where the kth set was used for testing and 

all the remaining sets were used for training, thus testing all k 

sets.  Each set consists of 10 days of hourly loads. 

 

Site MAPE for training sets (%) MAPE for test sets (%) 

A   3.2   3.4 

B   8.1   8.6 

C   2.6   2.7 

D   5.7   5.9 

E 12.9 13.6 

F 8.7 9.1 
 

Table 2 Results from k-fold cross validation for the Multiple 

Regression model. 

 

Table 2 shows the MAPE for the training and test sets from the 

18-fold cross-validation of the multiple linear regression model 

for the different sites.  The errors in the model predictions for 

both the test and training sets are high for Site E, which has the 

highest standard deviation of hourly loads. The difference 

between training and test errors is less than 1% for all sites, 

indicating that the multiple linear regression model used does 

not overfit the data.  

 

B. SARMA and  SARIMA 

Linear regression models capture the relationship between 

predictor and response variables but do not account for all the 

dynamics seen in the time series.  Autoregressive Moving 

Average models on the other hand use internal structure such as 

autocorrelation and seasonal variation seen in past data to make 

future predictions.  A general ARMA model can be represented 

as follows: 

 tt BBP )()(  ,    (4) 

where Pt and  t  are the power usage and noise at time t, 

respectively.   

 

The Autoregressive (AR) polynomial, )(B , is defined as 

follows:  
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The Moving Average (MA) polynomial, )(B , is defined as 

follows:   
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where p and q represent the orders of the AR and MA 

polynomials respectively, and B is the backward shift operator 

( tnt

n PPB  ). 



 

The addition of differencing to the ARMA model leads to the 

development of ARIMA models that accounts for the non-

stationarity in the time series.  A general ARIMA model can be 

defined as follows: 

 t
d

t BBP )()(  ,    (7) 

where )(B and )(B  are the same as in (5) and (6) and the 

differencing operator 
d

 is defined as follows: 
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The dependence on past power loads tends to be more 

pronounced at multiple seasonal lags, e.g., power consumption 

varies with hour of the day and day of the week. Multiplicative 

Seasonal ARIMA models (SARIMA) have autoregressive and 

moving average polynomials with seasonal lags embedded in 

them.  The SARIMA (p,q,d,P,Q,D,s) model can be expressed as 

follows:  
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where )( sB  and )( sB  are the AR and MA components of 

the seasonal part, and  
D

s is the differencing component of 

the seasonal part.   The multiplicative SARMA can be obtained 

by removing the differencing parts in  (9).  The optimal   

parameters, p and q for ARMA and p, q and d for ARIMA are 

chosen by comparing values of the Akaike Information 

Criterion (AIC) ([5],[6]), computed for a range of model 

parameter values.  

 

The ARIMAX model (ARIMA with Exogenous input) was not 

included in our analysis since it only allows a linear 

dependence between load and temperature to be modeled, while 

their actual relationship is quadratic (Section IVA).  

 

C.  Random Forest 

Random Forest [9] builds 500 de-correlated regression trees 

and then averages them. Each regression tree is constructed by 

classifying data based on temperature and hour of the day; leaf 

nodes contain predicted values.  Random Forests are easy to 

train and tune and hence implemented in many software 

packages.   

 

D. Double Exponential Smoothing 

Simple Exponential Smoothing uses a weighted average of past 

observations to make forecasts about the future, where the 

weights decrease exponentially depending on the coefficient of 

smoothing parameter.  Simple exponential smoothing is widely 

used in many disciplines due to its simplicity, but performs 

poorly for forecasts of time series with seasonal variations. The 

Holt-Winters method ([7], [8]) uses three equations, one each 

for level, trend and seasonality.  Variations of the Holt-Winters 

method exist depending on whether an additive or 

multiplicative approach is used for modeling the seasonality 

([10]).  

 

The work in [1] extended the standard Holt-Winters 

exponential smoothing to accommodate two seasonal cycles in 

the electricity demand series which involved introduction of an 

additional smoothing equation for the extra seasonal part.  

 

The k step-ahead double exponential smoothing load forecast, 

Pt(k), from the origin time t is given by the following equations 

([1]): 
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where St and Tt are smoothed level and trend and Dt and Wt are 

the seasonal indices for the intra-day and intra-week seasonal 

cycles, respectively. The smoothing parameters , ,  and  

are estimated from the training data and 
k
 in (11) is the 

adjustment for  the first-order autocorrelation. . We set the two 

seasonal parameters as follows: s1=10 hours (one working day) 

and s2=50 hours (5 working days) for all sites.   

 

V. RESULTS  

In this study, we compare the prediction accuracy of the five 

models described in Section IV, across all six microgrid-scale 

sites in terms of MAPE for hourly load predictions, MAPE for 

daily peak load predictions and MAPE for daily peak load 

under-predictions.  

 

A. Model Training 

We performed a series of experiments to determine the 

minimum amount of training data needed for achieving good 

prediction accuracy and determined that for hourly day-ahead 

forecasts, all five models had negligible improvements in 

prediction accuracy with more than 40 days of training data.  

Therefore we decided to use a 40-day rolling window for 

training data. The day-ahead forecast is computed for the 

remaining 143 days in our trace starting with the 41
st
 day.  

 

B. Discussion 

All the models performed well in terms of MAPE for day-ahead 

hourly load predictions at the sites with low standard deviations 

relative to their mean (Table 1), i.e., Sites A, C and D (Fig. 5).  

Moreover, the performance of all models, with the exception of 

SARMA (which performed worse than the others) is 

comparable, indicating that model selection for sites with low 



variability is not critical, and thus the simplest and least 

computationally intensive model should be selected.   

 
Figure 5 Comparison of MAPE of day-ahead hourly load predictions 

across all models and sites. 

 
Figure 6 Comparison of MAPE of daily peak load predictions across 

all models and sites. 

 
Figure 7 Comparison of MAPE of daily peak under-prediction across 

all models and sites. 

 

The behavior of the models is quite different for the sites 

exhibiting high daily and seasonal load variations, i.e., Sites B, 

E, and F.  Prediction errors are higher overall, which is to be 

expected. In addition, SARIMA performs noticeably better than 

the other models, and in Sites B and E, all models that do not 

use weather information (SARIMA and Double Exponential 

Smoothing) but rely on load level history perform better than 

those that do.  This is not surprising as both of these sites 

exhibit high variability with respect to temperature (Fig. 2). 

 

To further explore possible differences in performance between 

the different models, we look at MAPE for daily peak 

predictions (2).  We observe that daily peak errors (Fig. 6) are 

slightly lower than the overall errors (Fig. 5), and that the 

difference between temperature-based and load history-based 

models is no longer present for Sites B and E (as it was with 

overall error).  This is because peak loads are more strongly 

correlated to temperature than non-peak loads at temperature-

sensitive sites, since peak loads typically occur at relatively 

extreme temperatures.  Another difference between the two 

types of errors can be observed at Site D, where the temperature 

based models perform noticeably worse in terms of peak error.  

This is not unexpected as this site displays the weakest 

relationship between load and temperature across all of our 

sites and the relationship between peak load and temperature is 

not as strong (Fig. 2).   

 
Figure 8 Daily peak error at Site B. Positive errors indicate under-

predictions and negative errors indicate over-predictions. 

 

Peak under-prediction is an important aspect of prediction 

accuracy and is thus a critical model selection criterion.  Since 

unexpected peak demand may lead to the need to use expensive 

peaker power plants, or potentially to blackouts, peak under-

prediction error is even more critical than peak prediction error 

in evaluating prediction model performance.   

 

We explore the possibility that under-prediction accuracy might 

help us differentiate between the different models next. The 

results for peak-under prediction are similar to the ones for 

peak prediction with respect to the relative performance of the 

temperature-based and load history-based models (Fig. 7).  

However, especially in sites with high variability (e.g., Sites B 

and E), the peak under-prediction errors are noticeably higher 

than the overall peak prediction errors.  Upon closer inspection 

of the data, we find that under-prediction errors dominate the 

overall peak prediction accuracy for all sites, with some sites 

showing an especially strong bias (e.g., Figs. 8-9).  This 

indicates that our models, while optimizing for overall 

prediction accuracy and peak prediction accuracy, are not 

aggressive enough in estimating peak usage and tend to 

underestimate it as a result.    

 

We also observed that under-prediction accuracy has a seasonal 

component for some sites and models.  For example, peak 

under-prediction errors dominate peak errors at Site E for the 



SARIMA model during the cold season but not during the 

summer and late spring months, when over-prediction is more 

prevalent (Fig. 9). This could be due to the higher variability in 

the loads during winter months, for which load variations due 

to temperature tend to be highest (Fig. 2) thus making it 

difficult to predict peak loads.   

 
Figure 9 Daily peak error at Site E.  Positive errors indicate under-

predictions and negative errors indicate over-predictions. 

 

Our observations provide some practical insights for prediction 

model selection, which we summarize below: 

 Given comparable prediction accuracy across a set of 

models, the simplest model, i.e., the one with the least 

required inputs (e.g., weather forecast), configuration (e.g., 

model parameter settings), and computational requirements 

(e.g., compute resources), should be preferred. 

 For sites with low variability, prediction accuracy is high 

across a variety of different models, and the simplest model 

should be used (see bullet above). 

 Load-history based models should be used for sites and 

seasons during which:  

o Load does not change in response to temperature. 

o Load changes in response to temperature but there 

is high variability of load in response to a given 

temperature.  

 Temperature-based models should be used when: 

o Prediction is performed for sites and seasons 

during which load changes in response to 

temperature, and the variability of loads in 

response to temperature is low. 

o Predicting peak-time usage for sites and seasons 

during which load changes in response to 

temperature (e.g., a temperature-based model 

should be used between 3 and 5pm). 

 

VI. CONCLUSIONS AND FUTURE WORK 

We used five models to perform day-ahead hourly and daily 

peak forecasts of electricity loads at six microgrid sites, and 

derived prediction model selection criteria for load prediction 

based on our findings. 

   

We also find that SARIMA performs slightly better than the 

other four models and that models that do not utilize weather-

related information perform comparably or better than the 

models that do use this kind of information.  This simplifies the 

modeling problem and eliminates the reliance on weather 

forecast information, which is sometimes difficult and costly to 

obtain, and may also be inaccurate.  

 

Peak under-prediction is an important metric for evaluating 

model performance as it plays an important role in reducing 

electricity generation costs.  We find that prediction results 

across all sites and models are dominated by under-prediction 

errors.  This is an important result, which we plan on exploring 

further in future work.   
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