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Abstract—The purpose of this paper is to study conflicting
objectives between the grid operator and consumers in a future
smart grid. Traditionally, customers in electricity grids have
different demand profiles and it is generally assumed that the
grid has to match and satisfy the demand profiles of all its
users. However, for system operators and electricity producers,
it is usually most desirable, convenient and cost effectiveto keep
electricity production at a constant rate. The temporal variability
of electricity demand forces power generators, especiallyload
following and peaking plants to constantly manipulate electricity
production away from a steady operating point. These deviations
from the steady operating point usually impose additional costs to
the system. In this work, we assume that the grid may propose
certain incentives to customers who are willing to be flexible
with their demand profiles which can aid in the allowance of
generating plant to operate at a steady state. In this paper we
aim to compare the tradeoffs that may occur between these two
stakeholders. From the customers’ perspectives, adheringto the
proposed scheduling scheme might lead to some inconvenience.
We thus quantify the customers inconvenience versus the devia-
tions from an optimal set by the grid. Finally we try to investigate
the trade-off between a grid load balancing objective and the
customers’ preferences.

I. I NTRODUCTION

Electricity demand in the residential sector can be decom-
posed into a combination of individual appliances aggregated
by individual households. These appliances are tied together
through different activities performed by users throughout a
day and each of these activities may involve one or more
of these power consuming devices. These appliances are
conventionally managed by each user according to his/her
preferences, e.g. one may decide to wash clothes early in the
morning before he leaves for work, and washing clothes is an
activity or task which involves the use of washing machine,
dryer etc. Different users can perform this task at different
hours of the day according to their convenience. And many of
such acvitives/task are flexible and can be performed at any
time during a day. On the other hand, there may be certain
activities which can be regarded as essential and which needs
to be performed daily at exactly specified time slots e.g. after
sunset from 7 pm till mid night one has to turn on the lights.
Such activities and the devices involved in these activities then
contribute towards electricity load which is essential andwhich
has strict scheduling requirements.

In a traditional grid, the dominant setup has been to serve
the preferences of the users as the priority need and match
electricity supply to the instantaneous demand. This however

requires constant manipulation of electricity productionlev-
els. As a consequence power generating plants suffer large
deviations from their steady operating points which impose
additional costs to the overall system. All this is changingas
the grid is becoming smart [1]-[5]. A smart grid can help the
operator in shaping the demand (e.g. schedule the washing
machine at a later time slot when there is less demand) so
as to reduce the overall societal cost for them, this can be
done through the flattening of the demand curve [11]. To
achieve a flatter demand curve, it can propose incentives
(e.g. discount) to users to change their preference levels for
different activities. Users can then allow the grid to manage
and schedule certain appliances to enjoy these benefits at the
expense of suffering some level of inconvenience.

In this paper, we attempt to quantify the inconvenience
levels, by varying the number of appliances that participate
through deviation from their preferred scheduling time slots
and also by varying the number of time slots each activity
deviates. We can thus identify a compromise between the grid
operator objectives and user convenience levels. We believe
such understanding is beneficial for the grid to design effective
incentive to achieve load balancing in a smart grid.

There are some recent studies on this problem. In [6]
authors design incentives and propose scheduling algorithms
considering strictly convex functions of costs. Users are given
incentives to move to off peak hours and these incentives are
proposed using game theoretic analysis. However they do not
consider or quantify the inconvenience levels of the users.
In [7] authors propose pricing scheme for users in order to
achieve a perfectly flat demand curve. They show that finding
an optimum schedule is NP-hard problem. They propose
centralized and distributed algorithms depending on the degree
of knowledge of the state of the network. The authors in [8]
propose a strategy to achieve a uniform power consumption
over time. Their algorithm schedules the devices in such a
way that a target power level is not exceeded in each time
slot. However again the authors do not take into account the
inconvenience level of users while designing these algorithms.
In [9] the authors use convex optimization tools and solve a
cooperative scheduling problem in a smart grid. The authors
in [10] use a water-filling based scheduling algorithm to
obtain a flat demand curve. The proposed algorithm does not
require any communication between scheduling nodes. The
authors also study the possible errors in demand forecast and
incentives for customer participations. It should be notedthat
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the objective of all these studies is to achieve flat demand curve
for the grid. However in this paper we study the compromise
between the grid objective of flat demand vis-a-vis the user
inconvenience levels, as the acceptance from the users is the
key to have smart grid to be succeed.

The rest of the paper is organized as follows. In section
II we describe the load model, our approach and problem
formulation. Proposed solution, algorithms and metric for
comparing various schedules are described in section III.
Simulation results are presented in section IV while the paper
is concluded in section V.

II. L OAD MODEL AND PROBLEM FORMULATION

A. Load Model

In this paper we consider two types of loads in the grid
i.e. essential and flexible. Essential load is due to essential
activities and the devices involved in these activities have fixed
scheduling needs. Flexible load is due to flexible activities
and the devices involved in these activities can have flexible
scheduling requirements. There is a preferred scheduling time
slot for these flexible activities and user feels most convenient
if these activities are performed according to their preferences.
However we assume a generalized framework that if some
activity or task is declared as flexible then it can be scheduled
in time slots either before or after the preferred time slot for
this activity. For example, pre-cooling a room is an activity
that can be scheduled before the preferred time slot, while
cloth washing is an activity that can be scheduled after the
preferred time slot. We understand that there is no activity
that can be scheduled both before and after the preferred time
slot, but in this study, we just assume a generic load with such
flexibility to facilitate the problem formulation.

The level of inconvenience is measured by the deviation of
an activity from its specified time slot. The more an activity
is scheduled beyond its specified preferred time slot (either to
the left or to the right of it) the more inconvenience a user
faces. In the rest of the paper, the terms, devices, activities and
tasks are used interchangeably. Similarly the terms, flexible
and shiftable are also used interchangeably.

Given a set of tasks and their energy consumptions, we
propose two extreme schedules to serve as bounds. The first
schedule is optimal for the grid in terms of load balancing
and the second schedule is best for the user in terms of its
preference for non-essential tasks:

• Grid Convenient (GC) Schedule: For the given set
of essential and shiftable loads, this represents the best
schedule from the perspective of the grid. This schedule
does not care about the user preferences in scheduling es-
sential as well as non-essential tasks. Instead the objective
of this schedule is to achieve maximum load balancing
across various time slots. We can obtain this schedule by
equally dividing all the load in each time slot.

• User Convenient (UC) Schedule: This schedule is the
best schedule from the customer’s perspective. This is
another extreme schedule which does not take into ac-
count the load balancing preferences of the grid. Instead it

schedules all the non-essential tasks at the most preferred
time slots specified by the users. This schedule is most
convenient for the users.

Any other schedule for the given set of loads will lie between
these two extremes. For a given set of essential and shiftable
loads, the GC schedule is practically impossible to achieve
because there is in reality, not much flexibility in shiftingthe
essential loads. Since we assume that we can only shift the
non-essential loads, we study the region between these two
extreme schedules through the following parameters:

• We change the allowable time slot deviation of non-
essential devices from their preferred time slots, serving
as a proxy to changing the convenience levels of users.
It allows for us to schedule a device within a flexible
number of time slots either to the left or to the right of
its preferred time slot.

• We vary the number of non-essential devices willing to
be flexible. All the devices which declare themselves as
non-flexible will then be treated as essential loads and
will start exactly at their preferred time slots.

Through this study, results can influence the stakeholders
involved in this system. The grid can define incentives by
measuring the deviation of a given schedule from the perfectly
flat demand profile while also keeping in view the GC schedule
for given load conditions. Similarly a customer can through
feedback from its deviation of a given schedule from the UC
schedule, readjust its preference conditions.

B. Problem Formulation

Let A denote the set of all essential tasks. We assume that
the electricity consumption data of these essential tasks on
an hourly basis are known. LetE(t) , ∀t = 1, . . . , T denote
the consumption of electricity by all the essential tasks to
be performed during thetth time slot (maybe hour or half
hour etc). LetS denote the set of allK non-essential tasks.
The electricity consumption of these non-essential tasks is also
assumed to be known. For a non-essential taski ∈ S, let S̃i

denote its total energy consumption. Let1 ≤ ∆Ti ≤ T denote
the total time required to complete non-essential taski. We
allow for non-essential tasks to require several time slotsto
complete, and once the we decide to carry out this task at
time t then we cannot stop it until it is completed. LetBi

denotes the best operating time for taski. Since we have to
finish all the non-essential tasks withinT time slots, therefore
we assume thatBi ≤ T −∆Ti+1 , ∀i (to allow taski to finish
by timeT ). Let Si(t) denote the portion of non-essential load
i scheduled at timet. Similarly, let S̄i = {Si(1), . . . , Si(T )}
contain the per time slot load of non-essential devicei. It
should be noted that if devicei is schedule in time slotJ
then,

Si(t) =

{

S̃i

∆Ti

, if t = J, . . . ,∆Ti − 1

0, otherwise
(1)



C. Extreme Schedules

1) Grid Convenient Schedule:The objective of this sched-
ule is to achieve perfect load balancing for the grid. This
schedule re-distributes the essential as well as flexible load
equally in all time slots. Let us denote the perfectly flat
schedule byR̂. It can be obtained as follows:

L(t) =

∑T
t=1 E(t) +

∑

i∈S S̃i

T
, ∀t

Once again note that this schedule is not a practical schedule
for the given set of essential and shiftable loads. However this
schedule represents the ideal situation for the grid, and merely
serve as benchmark purposes.

2) User Convenient Schedule:The objective of this sched-
ule is to carry out all the essential and non-essential tasksat
their specified best time slots. This schedule can be determined
by treating the non-essential tasks like essential load at the
specified time slots. E.g. if for taski the best time slot is
Bi = 3 and∆Ti = 2 then,

S̄e
i = {0, 0, S̃i/2, S̃i/2, 0, 0, . . . , 0}

Let us denote this schedule bỹR. We determineS̄e
i =

{Si(t)}
T
t=1 , ∀i and then the total scheduled load during time

slot t is given as,

L(t) = E(t) +
∑

i∈S

Si(t) , ∀t

This is a practical schedule, representing the current status quo
and the most convenience for the users.

D. Practical Schedules

We can obtain a range of schedules between the above
two extreme schedules by changing the number of devices
declaring themself as flexible and also by defining the number
of time slot deviations they are willing to tolerate. If all
the devices declare them as non-flexible then we will obtain
scheduleR̃ (UC Schedule). On the other hand if all the all
non essential devices declare them as flexible and are willing
to tolerate maximum possible time slot deviation then such
a schedule, though not perfectly flat (due to the presence of
essential loads in each time slot) will be the best schedule
for the grid for a given set of loads. Let̂S ⊆ S denote the
set of devices which declare themselves as flexible. Similarly
let Xi denote the time slot deviation that devicei ∈ Ŝ is
willing to tolerate. It means that we aim to schedule non-
essential taski within Xi time slots of its preferred start time
Bi. This deviation can either be to the left or to the right
of the preferred time slot. We assume here that in terms of
inconvenience, the scheduling of a deviceXi time slots before
its preferred time slot is equivalent to the inconvenience caused
by scheduling the same deviceXi time slots after its preferred
time slot. Sincet ∈ [1, T ], therefore if e.g.Bi = 1 then we
can only perform taski ahead ofBi and schedule it in interval
[Bi, Bi +Xi]. Similarly if Bi = T then we can only perform
task i beforeBi and schedule it in interval[Bi − Xi, Bi].
Thus any non-essential taski ∈ Ŝ willing to tolerateX-time

slot deviation can be scheduled in the interval[αi, βi] where
αi = max(1, Bi−Xi) andβi = min(T −∆Ti+1, Bi+Xi).
All the non-essential devicesj /∈ Ŝ haveXj = 0 and they
have to be scheduled exactly at time slotBi and completed
after ∆Tj time slots. We then treat all such devicesj /∈ Ŝ
as essential load, determinēSe

j = {Sj(t)}
T
t=1 (as explained

in the description of the UC schedule) and then update the
essential load accordingly i.e.

Ẽ(t) = E(t) +
∑

j /∈Ŝ

Si(t) , ∀t (2)

We can now formulate the scheduling problem as follows (we
refer this problem asP),

P : min max
1≤t≤T

Ẽ(t) +
∑

i∈Ŝ

Si(t) (3)

subject to,
T
∑

t=1

∑

i∈Ŝ

Si(t) =
∑

i∈Ŝ

S̃i (4)

t+∆Ti
∑

j=t

Si(j) = S̃i , ∀i ∈ Ŝ, t ∈ [αi, βi] (5)

Eq (4) indicates that the total energy consumed by all the non-
essential tasks should be equal to their total required energy.
Eq (5) says that if non-essential taski ∈ Ŝ starts at timet then
it should be finished at timet+∆Ti without interruption. The
start time of flexible devices can lie in the intervalt ∈ [αi, βi].

We can then discuss some special cases of the above general
problem. If all the devices are flexible then̂S = S and if
all the devices are 100% flexible thenαi = 1 , ∀i andβi =
T−∆Ti+1, ∀i (this value ofβi will allow non-essential task to
finish withinT time slots). The solution of this100% flexible
problem is the best possible practical schedule for the grid and
achieves maximum flatness for given set of essential and non-
essential tasks. Similarly, if all the devices declare themselves
as flexible but allow onlyX-time slot deviation (we assume the
sameX for all the devices) then we call this special problem as
X-time slot deviation problem. If Y < K, devices declare
them as 100% flexible then we call this special problem as
Y -device flexible problem. A 100% flexibile devicecan be
scheduled at any timet ∈ [1, T −∆Ti + 1].

III. SOLUTION AND ALGORITHM DEVELOPMENT

In this section we discuss the solution of the above schedul-
ing problems and design practical scheduling algorithms. The
optimal solution of the above problem (including all the
special cases) in general depends on the sequence or order
in which we consider non-essential loads. We illustrate this
fact by following simple example.
Example: ConsiderT = 3 time slots. The essential load
is given asE(t) = {2, 1, 0}. There are two 100% shiftable
loads with demands per time slot given asS̄1 = {5, 0, 0} and
S̄2 = {2, 2, 0}. There are two possible permutations, load 1
followed by load 2 or load 2 followed by load 1. In the first



case, the final load per time slot is,{4,3,5} with a peak load
of 5 in third time slot. For the second case when load 2 is
scheduled before load 1 we obtain two possible schedules,
{7,3,2} or {2,3,7} both of which are optimal for this order
and give a peak load of 7 in both schedules. Thus, in order to
reduce the peak, we should schedule load 1 before scheduling
load 2. Therefore the sequence in which we consider non-
essential loads cannot be ignored. We now prove that the above
problemP is NP hard problem.

Theorem 1 The defined problemP is NP-hard.

Proof: We consider the special case of the defined prob-
lem, where we restrict that∆Ti = 1, andt ∈ {0, T }, E(t) =
0. We then prove that the special case is NP-hard by a induc-
tion from the Multi-Processor Scheduling problem, which is
a well-know NP-hard problem in the strong sense.

Multi-Processor Scheduling problem: we are givenm iden-
tical machines inM = {M1,M2, · · · } and n jobs in J =
{J1, J2, · · · , Jn}. JobJi has a processing timepi ≥ 0. The
objective of Multi-Processor Scheduling problem is to assign
jobs to the machines so as to minimize the maximum load of
the machines.

Given an instance of Multi-Processor Scheduling Problem,
we can construct an instance of the decision version of the
above special case of the defined problem in polynomial
time as follows. Let there be|M| time slots that can be
scheduled for tasks, there be|J | shiftable tasks, andpi
be the power consumed for thei-th task. Then, the load
of the tasks scheduled at timet is equal to the load of
the jobs assigned at thet-th machine. In other words, the
objective of minimizing the maximum load at each time is
is to minimize the maximum working load assigned at each
machine. Thus, the instance of Multi-Processor Scheduling
problem is equivalent to an instance of the special case of
the defined load balancing problem. Thus, by induction, the
defined load balancing problem is NP-hard.

Despite the fact that the problems are NP hard we can still
design an algorithm to find the optimal schedules. However
the complexity of the optimal algorithm is exponential which
makes it infeasible when the number of flexible devices is
large. We give the optimal algorithm for problemP below.

A. Optimal Algorithm

Let U = {(S̃1,∆T1, α1, β1), . . . , (S̃Y ,∆TY )} hold the
total power consumption, required completion time and lower
and upper limits of scheduling interval (calculated based
on specifiedXi-time slot deviations) for non-essential tasks
willing to be flexible. Note thatY ≤ K and Ŝ = {1, . . . , Y }.
Let Ĝ denote all possible permutations of this setŜ i.e. all
possible ways of arranging the shiftable tasks in this set. The
total number of permutations isY !. Let L̃(t) denote the total
load scheduled in time slott.

1. Update essential load according to eq (2) for allj /∈ Ŝ.
2. For allm ∈ Ĝ

3. Initialize: Lm(t) = Ẽ(t) , ∀t.
4. for all Ui = (S̃i,∆Ti, αi, βi)) ∈ U do,
5. for all t ∈ [αi, βi]
6. for j = 1, . . . ,∆Ti

7. X(t, j) = Lm(t+ j − 1) + S̃i

∆Ti

8. end for
9. end for
10. t∗i = mint maxj X(t, j)
11. Lm(t∗i + j − 1) = X(t∗i , j) , j = 1, . . . ,∆Ti

12. end for
13. end for
14. m∗ = minm maxt Lm(t)
15. L̃(t) = Lm∗(t)

In the first line we update the essential load if there
are some non-essential devices which declare them as non-
flexible. For each permutationm task i can be scheduled any
time between[αi, βi]. If task i starts at timet then it will be
complete at∆Ti − 1. We obtain all the schedules with all
possible start times in lines 5-9 for taski. From all possible
schedules we select the one which gives the minimum peak
in line 10 and select this best schedule. In line 11 we update
the total load and repeat for the next taski. Finally in line
14 we select the best orderm∗ in which we should consider
the shiftable tasks. The final schedule isL̃(t) given in line
15. This is the optimal algorithm. However, the complexity
of this algorithm is exponential which may not be feasible
whenY >> 1.

B. Sub-optimal Algorithm

We discuss a special case of the above problem when all
non-essential tasks have the same power consumptionS̃i

∆Ti

=

Ŝ , ∀i ∈ Ŝ i.e.

Si(t) =

{

Ŝ, if t = J, . . . ,∆Ti − 1
0, otherwise

(6)

The required number of time slots to complete each task
however are different i.e.∆Ti 6= ∆Tj . In this case the
sequence in which we pick the tasks for scheduling becomes
irrelevant. Based on this observation we now develop a low
complexity sub-optimal algorithm.

1. Initialize: Ŝ = maxi
S̃i

∆Ti

, i ∈ Ŝ andL(t) = Ẽ(t) , ∀t.
2. for all Ui = (Ŝ,∆Ti, αi, βi) ∈ U do,
3. for all t ∈ [αi, βi]
4. for j = 1, . . . ,∆Ti

5. X(t, j) = L(t+ j − 1) + Ŝ
6. end for
7. end for
8. t∗i = mint maxj X(t, j)
9. L(t∗i + j − 1) = X(t∗i , j) , j = 1, . . . ,∆Ti

10. end for
11. for all i
12. for t = t∗i , . . . , t

∗
i +∆Ti

13. L(t) = L(t)−max

(

Ŝ − S̃i(t), 0

)



14. end for
15. end for

In this algorithm we initially assume that all the shiftable
loads have same power consumptionŜ per time slot where
Ŝ is taken as the maximum power consumption across all the
non-shiftable devices willing to tolerateXi-time slot deviation.
In lines 2-10, we arbitrarily pick the tasks one after another
and find the best scheduling timet∗i for each shiftable taski
in their scheduling intervalt ∈ [αi, βi]. Once we obtain the
schedule then in lines 11-15 we restore the loads to their actual
power consumption levels.

C. Comparison of various schedules

We can measure the difference between any two schedules
Rn = {Ln(t)}

T
t=1 and Rm = {Lm(t)}Tt=1 where Li(t)

denotes the load at time slott by measuring their mean square
error i.e.

E(Rn,Rm) =

T
∑

t=1

(

Ln(t)− Lm(t)

)2

(7)

Let Rn denote any arbitrary schedule. As defined before let
R̂ denote the GC schedule whilẽR denote the UC schedule.
Then we define,

γ = E(Rn, R̂)

ζ = E(Rn, R̃)

whereγ measures the deviation of any arbitrary scheduleRn

for the given set of load conditions from the GC scheduleR̂;
while ζ measures the deviation of any arbitrary scheduleRn

from the UC schedulẽR. The smaller the value ofγ means
that schedule is more flat; while a small value ofζ means that
schedule is more close to the UC schedule.

IV. SIMULATION RESULTS

We consider a generalised simulation setup of residen-
tial household appliances where electricity consumption is
assumed to be constant over the consumption duration and
represented in kWh. We generate essential loads in each time
slot as discrete uniform integer random variables, taking values
between 1kWh and 5kWh. Each time slot represents one hour.
In addtion, we assume that there are 100 generalized devices
which can be shifted. The total power consumption of each
shiftable device is generated as a discrete uniformly distributed
random variable taking values between 1kWh and 5kWh. The
total duration of each shiftable task is generated as a discrete
uniform random integer variable taking values between 1 and
5 time slots. We also assume that each shiftable device has a
preferred time slot. Again this preferred time slot is generated
as a discrete uniform random integer variable.

In Fig. 1 we compare the optimal algorithm with the
sub-optimal algorithm. We assume that all the non-essential
devices are 100% flexible i.e. they can be scheduled at any
time t ∈ [1, T − ∆Ti + 1]. For comparison we measure
the mean square difference of both the schedules from a
perfectly flat schedule (GC Schedule). Since the complexity
of the optimal algorithm is exponential, we restrict ourself

to only 7 non-essential devices. We can see that although
there is a small difference between the performance of both
the schedules, the complexity reduction between the two
algorithms is significant, and we will use only the sub-optimal
algorithm in the following simulations.
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Fig. 1. Mean Square Deviation from a Perfectly Flat Schedule(GC Schedule)
(γ) vs Number of 100% Shiftable devices

In Fig. 2 and Fig. 3 we vary the number of devices which
are willing to be 100% flexible. All other devices which are
not willing to be flexible are then treated as essential load and
their power consumption is added to the essential load at their
preferred time slots. We plotγ, the deviation of our proposed
sub-optimal schedule from the GC schedule in Fig. 2. It is
obvious that as more devices become flexible this deviation
decreases. However, we can observe that after 40 devices the
value ofγ does not decrease much which means that there is
not much gain for the grid if more devices become flexible.
The flatness level achieved by 40 devices is comparable to the
flatness level achieved by 100 devices. In Fig. 3 we plotζ, the
deviation of our proposed sub-optimal algorithm from the UC
schedule. As more devices become flexible their scheduling
is not performed at their most convenient time slots and thus
users suffer more inconvenience. The level of inconvenience
keeps on increasing as more devices become flexible. When
40 devices are 100% flexible the value ofζ is 517 and the
corresponding value ofγ is 206. Similarly when all the devices
are 100% flexible the value ofζ is 1375 and that ofγ is 154.
If we define relative inconvenience level as,ζ̂ = ζ

max(ζ) ×100

and relative flatness level aŝγ = γ
max(γ) × 100. Then for 40

devicesζ̂ = 32.5% and γ̂ = 20.2% while for 100 devices
we haveζ̂ = 85.2% and γ̂ = 15.1%. Thus if a user only
allows 40 devices to become 100% flexible he can reduce
relative inconviniec level by85.2 − 32.5 = 52.7% while the
non-flatness will only increase by20.2 − 15.1 = 5.1%. This
results shows that there is a minimum level of customer
participation in the smart grid that the grid should aim
for that would maximize the gain to the operator while at
the same time imposing minimal inconvenience. Based on
this observation, the inconvenience to the customer will
not be too significant. Although these results may not
be representative of the system, but it does indicate a
great research opportunity to reduce system wide costs
at relatively small individual inconvenience.
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Fig. 2. Mean Square Deviation
from perfectly flat schedule (γ) vs
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from User convenient schedule (ζ)
vs Number of 100% Shiftable de-
vices

In Fig. 4 and Fig. 5, we obtain various curves by varying
the number of flexible devices. In these simulations we assume
that the total number of available flexible devices can be up
to 50. When the devices declare themselves as flexible we
can schedule them according to their described X-time slot
deviation levels. The load of devices declaring them as non-
flexible is then added to the essential load. E.g. if 10 devices
declare themselves as flexible then the load of remaining 40
devices is added to the essential load. Therefore the total load
in all these curves is same. As more devices become flexible,
we can achieve more flatness as evident in Fig. 4. However
the gains in flatness diminish and are not very significant as
the number of flexible devices are increased from 30 to 50.
Again, this could represent large system savings at minimal
individual costs. Similarly the gains in flatness also does not
increase much as the X-time slot deviation increases beyond10
time slots. On the other hand in Fig. 5 we can see that increas-
ing the number of flexible devices significantly increases the
inconvenience levels of users. When 50 devices are flexible
users experience much more inconvenience compared to 30
flexible devices. Also increasing X-time slot deviation also
increases user inconvenience.Hence, much further research
is required to quantify the trade-off between benefit versus
the users participation and inconvenience caused.From
these observations, in our test case, we can conclude that
significant gains in flatness can be achieved by declaring a
small number of devices as flexible and keeping X-time slot
deviation up to 10 time slots. How this translates to larger
more representative systems need further examination.

V. CONCLUSION

In this paper we study the problem of load balancing in
smart grids. We proposed algorithms to obtain schedules by
varying the number of flexible devices and inconvenience
levels. Then we identify the level of compromise between the
grid objective of load balancing and user convenience levels.
We show that by allowing only a small portion of the activities
to become flexible, users can contribute significantly towards

load balancing due to aggregating effect. Similarly by letting
the scheduling of activities deviate just a few hours from
their preferred time slots can also significantly impact load
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balancing for the grid. More practical system and load models
will be used in the future work to quantify these results. It is
also interesting to investigate what kind of incentives that can
be provided by the grid to encourage the users to have their
load be flexible.
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